
Contents

1. ABI
1. Type Layout

1. Deviations from the Standard
2. Fixed-Point Support

2. Register Layout
1. Fixed Registers
2. Call-Used Registers
3. Call-Saved Registers

3. Frame Layout
4. Calling Convention

1. Exceptions to the Calling Convention
5. Reduced Tiny

2. Extensions
1. Types
2. Attributes
3. Pragmas
4. Address Spaces
5. Inline Assembly

1. Constraint Modifiers
2. Constraints
3. Print Operand Modifiers
4. Special Sequences
5. Assembly Operand Modifiers

3. Using avr-gcc
1. Locating .rodata in Flash for AVR64* and

AVR128* Devices
2. Supporting "unsupported" Devices

1. avr-gcc v5 and newer
2. avr-gcc v4.9 and below

4. Libf7
1. Implementation
2. Known Problems
3. Using 64-bit long double without proper AVR-

LibC
4. Shortcomings
5. Other Implementations

ABI

Application Binary Interface and implementation defined behaviour of avr-gcc. Object
format bits are not discussed here. See also C Implementation-defined behaviour.

Type Layout

Endianess: Little

default sizeof Note

char 1 signed

short 2

int 2

long 4

http://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html
http://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html
http://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html
http://gcc.gnu.org/onlinedocs/gcc/C-Implementation.html

long long 8

size_t 2 unsigned int

ptrdiff_t 2 int

void* 2

float 4

double 4,8 depends on configuration and command line options

long double 8,4 depends on configuration and command line options

wchar_t 2

Deviations from the Standard

double

long double

In avr-gcc up to v9, double and long double are only 32 bits wide and

implemented in the same way as float.

In avr-gcc v10 and higher, the layout of double and long double are

determined by configure options --with-double= and --with-long-
double=, respectively. The default layout of double is like float, and the default
layout of long double is a 64-bit IEEE format, see GCC configure options for

details. Depending on the configuration, command line options -mdouble=32 and

-mdouble=64 are available so that the type layout of double can be chosen at

compile time, similar for -mlong-double=32 and -mlong-double=64 for

long double. In order to test in a program which type layout has been chosen,

GCC built-in macros __SIZEOF_DOUBLE__ and __SIZEOF_LONG_DOUBLE__
can be used.

8-bit int with -mint8

With -mint8 int is only 8 bits wide which does not comply to the C standard.

Notice that -mint8 is not a multilib option and neither supported by AVR-LibC

(except stdint.h) nor by newlib.

-mint8 sizeof Note

char 1 signed

short 1

int 1

long 2

long long 4

size_t 2 long unsigned int

ptrdiff_t 2 long int

Fixed-Point Support

http://gcc.gnu.org/install/configure.html#avr
http://gcc.gnu.org/install/configure.html#avr
http://gcc.gnu.org/install/configure.html#avr
http://gcc.gnu.org/install/configure.html#avr

avr-gcc 4.8 and up supports fixed point arithmetic according to ISO/IEC TR 18037. The
support is not complete. The type layouts are as follows:

Type sizeof unsigned signed Note

_Fract

short 1 0.8 ±.7

— 2 0.16 ±.15

long 4 0.32 ±.31

long long 8 0.64 ±.63 GCC extension

_Accum

short 2 8.8 ±8.7

— 4 16.16 ±16.15

long 8 32.32 ±32.31

long long 8 16.48 ±16.47 GCC extension

Overflow behaviour of the non-saturated arithmetic is unspecified.

Please notice that some private ports found on the web implement different layouts.

Register Layout

Values that occupy more than one 8-bit register start in an even register.

Fixed Registers

Fixed Registers are registers that won't be allocated by GCC's register allocator. Registers
R0 and R1 are fixed and used implicitly while printing out assembler instructions:

R0

is used as scratch register that need not to be restored after its usage. It must be saved
and restored in interrupt service routine's (ISR) prologue and epilogue. In inline

assembler you can use __tmp_reg__ for the scratch register.

R1

always contains zero. During an insn the content might be destroyed, e.g. by a MUL
instruction that uses R0/R1 as implicit output register. If an insn destroys R1, the
insn must restore R1 to zero afterwards. This register must be saved in ISR prologues
and must then be set to zero because R1 might contain values other than zero. The

ISR epilogue restores the value. In inline assembler you can use __zero_reg__
for the zero register.

T
the T flag in the status register (SREG) is used in the same way like the temporary
scratch register R0.

User-defined global registers by means of global register asm and / or -ffixed-n
won't be saved or restored in function pro- and epilogue.

Frame Layout after Function Prologue

incoming arguments

return address (2–3 bytes)

saved registers

stack slots, Y+1 points at the bottom

Call-Used Registers

The call-used or call-clobbered general purpose registers (GPRs) are registers that might be
destroyed (clobbered) by a function call.

R18–R27, R30, R31
These GPRs are call clobbered. An ordinary function may use them without restoring
the contents. Interrupt service routines (ISRs) must save and restore each register
they use.

R0, T-Flag
The temporary register and the T-flag in SREG are also call-clobbered, but this
knowledge is not exposed explicitly to the compiler (R0 is a fixed register).

Call-Saved Registers

R2–R17, R28, R29
The remaining GPRs are call-saved, i.e. a function that uses such a registers must
restore its original content. This applies even if the register is used to pass a function
argument.

R1
The zero-register is implicity call-saved (implicit because R1 is a fixed register).

Frame Layout

During compilation the compiler may come up
with an arbitrary number of pseudo registers
which will be allocated to hard registers during
register allocation.

• Pseudos that don't get a hard register will
be put into a stack slot and loaded /
stored as needed.

• In order to access stack locations, avr-gcc
will set up a 16-bit frame pointer in
R29:R28 (Y) because the stack pointer
(SP) cannot be used to access stack slots.

• The stack grows downwards. Smaller
addresses are at the bottom of the drawing at the right.

• Stack pointer and frame pointer are not aligned, i.e. 1-byte aligned.

• After the function prologue, the frame pointer will point one byte below the stack
frame, i.e. Y+1 points to the bottom of the stack frame.

• Any of "incoming arguments", "saved registers" or "stack slots" in the drawing at the
right may be empty.

• Even "return address" may be empty which happens for functions that are tail-called.

Calling Convention

• Neither function arguments nor function return values are promoted to wider types.

• An argument is passed either completely in registers or completely in memory.

• To find the register where a function argument is passed, initialize the register

number Rn with R26 and follow this procedure:

1. If the argument size is an odd number of bytes, round up the size to the next
even number.

2. Subtract the rounded size from the register number Rn.

3. If the new Rn is at least R8 and the size of the object is non-zero, then the low-

byte of the argument is passed in Rn. Subsequent bytes of the argument are

passed in the subsequent registers, i.e. in increasing register numbers.

4. If the new register number Rn is smaller than R8 or the size of the argument is

zero, the argument will be passed in memory.

5. If the current argument is passed in memory, stop the procedure: All
subsequent arguments will also be passed in memory.

6. If there are arguments left, goto 1. and proceed with the next argument.

• Return values with a size of 1 byte up to and including a size of 8 bytes will be
returned in registers. Return values whose size is outside that range will be returned
in memory. Sizes of structures up to 8 bytes are padded to the next power of two
when they are returned in registers.

• If a return value cannot be returned in registers, the caller will allocate stack space
and pass the address as implicit first pointer argument to the callee. The callee will
put the return value into the space provided by the caller.

• If the return value of a function is returned in registers, the same registers are used as
if the value was the first parameter of a non-varargs function. For example, an 8-bit
value is returned in R24 and an 32-bit value is returned R22...R25.

• Arguments of varargs functions are passed on the stack. This applies even to the
named arguments.

For example, suppose a function with the following prototype:

int func (char a, long b);

then

• a will be passed in R24.

• b will be passed in R20, R21, R22 and R23 with the LSB in R20 and the MSB in
R23.

• The result is returned in R24 (LSB) and R25 (MSB).

Exceptions to the Calling Convention

GCC comes with libgcc, a runtime support library. This library implements functions that
are too complicated to be emit inline by GCC. What functions are used when depends on
the target architecture, what instructions are available, how expensive they are and on the
optimization level.

Functions in libgcc are implemented in C or hand-written assembly. In the latter case, some
functions use a special ABI that allows better code generation by the compiler.

For example, the function that computes unsigned 8-bit quotient and remainder,

__udivmodqi4, just returns the quotient and the remainder and clobbers R22 and R23.
The compiler knows that the function does not destroy R30, for example, and may hold a
value in R30 across the function call. This reduces the register pressure in functions that

call __udivmodqi4.

Function Availability Operation Clobbers Description

__umulhisi3

4.7+ &&
MUL

SI:22 = HI:26 * HI:18 Rtmp

Multiply 2
unsigned
16-bit
integers to a
32-bit result

__mulhisi3

4.7+ &&
MUL

SI:22 = HI:26 * HI:18 Rtmp

Multiply 2
signed 16-
bit integers
to a 32-bit
result

__usmulhisi3

4.7+ &&
MUL

SI:22 = HI:26 * HI:18 Rtmp

Multiply
the signed
16-bit
integer in
R26 with
the
unsigned
16-bit
integer in
R18 to a
32-bit result

__muluhisi3

4.7+ &&
MUL

SI:22 = HI:26 * SI:18 Rtmp

Multiply an
unsigned
16-bit
integer with
a 32-bit
integer to a
32-bit result

__mulshisi3

4.7+ &&
MUL

SI:22 = HI:26 * SI:18 Rtmp

Multiply a
signed 16-
bit integer
with a 32-
bit integer
to a 32-bit
result

__udivmodqi4

QI:24 = QI:24 / QI:22
QI:25 = QI:24 % QI:22

R23

Unsigned 8-
bit integer
quotient
and
remainder

__divmodqi4

QI:24 = QI:24 / QI:22
QI:25 = QI:24 % QI:22

R23,

Rtmp, T

Signed 8-bit
integer
quotient
and
remainder

__udivmodhi4 HI:22 = HI:24 / HI:22
HI:24 = HI:24 % HI:22

R21,

R26...27

Unsigned
16-bit

integer
quotient and
remainder

__divmodhi4

HI:22 = HI:24 / HI:22
HI:24 = HI:24 % HI:22

R21,

R26...27,

Rtmp, T

Signed 16-
bit integer
quotient
and
remainder

The Operation column uses GCC's machine modes to describe how values in registers are
interpreted.

Machine Modes
Qarter, 8
bit

Half, 16
bit

Single, 32
bit

Double, 64
bit

Partial
Single, 24 bit

Integer QI HI SI DI PSI

Float – – SF DF –

Signed _Accum – HA SA DA –

Signed _Fract (Q-
Format)

QQ HQ SQ DQ –

Unsigned _Accum – UHA USA UDA –

Unsigned _Fract
(Q-Format)

UQQ UHQ USQ UDQ –

Reduced Tiny

On the Reduced Tiny cores (16 GPRs only) several modifications to the ABI above apply:

• Call-saved registers are: R18–R19, R28–R29.

• Fixed Registers are R16 (__tmp_reg__) and R17 (__zero_reg__).

• Registers used to pass arguments to functions and return values from functions are
R25...R20 (instead of R25...R8).

• Values that occupy more than 4 registers are returned in memory (instead of more
than 8 registers).

There is only limited library support both from libgcc and AVR-LibC, for example there is
no float support and no printf support.

Extensions

Types

• Signed and unsigned 24-bit integers: __int24 (v4.7), __uint24 (v4.7).

Attributes

• Variable: progmem, absdata (v7).

• Function: interrupt, interrupt(n) (v15), signal, signal(n) (v15),

naked, OS_main (v4.4), OS_task (v4.4), no_gccisr (v8), noblock (v15).

• Type: (none).

Pragmas

(none)

Address Spaces

__flash (v4.7), __flash1 ... __flash5 (v4.7), __memx (v4.7).

Address spaces are supported as part of GNU-C. They are not supported for ISO C, and are
not supported for C++.

avr-gcc puts objects in __flash into section .progmem.data, and objects in __memx
into section .progmemx.data. These sections are handled in the default linker
description file and need no further attention. This is different for the address spaces

__flashN, where objects are put into section .progmemN.data but are not
mentioned in the linker script, because there is no one-fits-all memory layout. This means
you have to provide location directives for these sections. Suppose for example that an

application uses address space __flash2, and therefore it has to locate the respective
section somewhere in the range 0x20000-0x2ffff of flash memory. One way to achieve it is
to use the following linker script augmentation:

SECTIONS

{

 .text :

 {

 . = MAX (ABSOLUTE(0x20000), ABSOLUTE(.));

 . = ALIGN(2);

 __progmem2_start = .;

 (.progmem2.text)

 (.progmem2.data)

 __progmem2_end = .;

 ASSERT (__progmem2_start == __progmem2_end || __progmem2_end <=

ABSOLUTE(0x30000),

 ".progmem2.data exceeds 0x30000");

 }

}

INSERT AFTER .text

Store this text in a file flash2.ld and link with -T flash2.ld. This will locate in

the order text-progmem2-data where text refers to "ordinary" code (startup-code,

vector table, functions, progmem, jump-tables, etc.) and data refers to the data from
which the startup-code initialized non-zero objects in static storage. If you want the order to

be text-data-progmem2 instead, then you would use INSERT AFTER .data in
the snippet above.

Inline Assembly

For introductions and tutorials on inline assembly, see

• GCC: How to Use Inline Assembly Language in C Code

• AVR-LibC: Inline Assembler Cookbook

• Roboternetz: Inine-Assembler in avr-gcc (Deutsch)

• Mikrocontroller.net: Assembler und Inline-Assembler (Deutsch)

Constraint Modifiers

Modifier Meaning

=
An output operand, like in "=r". Without &, the operand may overlap
with input operands.

&
An output operand that may not overlap with any input operand, like in

"=&r". Referred to as "early-clobber".

+ An output operand that is also an input operand, like in "+r".

Constraints

Constraint Register Range

a Simple upper registers that support FMUL R16...R23

b Base registers Y and Z R28...R31

d Upper registers that support LDI, ORI, etc. R16...R31

e Pointer registers X, Y, and Z R26...R31

l Lower registers, empty on Reduced Tiny R2...R15

r General purpose registers R2...R31

w Registers for ADIW and SBIW R24...R31

x X register R26...R27

y Y register R28...R29

z Z register R30...R31

Constraint Constant Range

n Compile-time constant

s
Symbolic operand known at link-
time

Address of a function or static
variable

i
Immediate operand known at link-
time

Same as "sn"

I Unsigned 6-bit integer constant 0...63

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://www.nongnu.org/avr-libc/user-manual/inline_asm.html
https://www.nongnu.org/avr-libc/user-manual/inline_asm.html
https://www.nongnu.org/avr-libc/user-manual/inline_asm.html
https://www.nongnu.org/avr-libc/user-manual/inline_asm.html
https://rn-wissen.de/wiki/index.php/Inline-Assembler_in_avr-gcc
https://rn-wissen.de/wiki/index.php/Inline-Assembler_in_avr-gcc
https://rn-wissen.de/wiki/index.php/Inline-Assembler_in_avr-gcc
https://rn-wissen.de/wiki/index.php/Inline-Assembler_in_avr-gcc
https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/Assembler_und_Inline-Assembler
https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/Assembler_und_Inline-Assembler
https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/Assembler_und_Inline-Assembler
https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial/Assembler_und_Inline-Assembler

J Negative 6-bit integer constant −63...0

M Unsigned 8-bit integer constant 0...255

EF Floating-point constant

Ynn Fixed-point or integer constant

Constraint Explanation

m Memory

X Matches anything

0...9 Matches respective operand number

• Specifying more than one constraint, like in "az", specifies the union of all
mentioned constraints.

Print Operand Modifiers

Modifier
Number of
Arguments

Explanation
Suitable
Constraints

%a0 1
Print pointer register as address X, Y or Z,

like in "LD r0, %a0+"
x, y, z, b,

e

%i0 1

Print compile-time RAM address as I/O

address, like in "OUT %i0, r0" with

argument "n"(&RAMPZ)
n

%n0 1 Print the negative of a compile-time constant n

%r0 1

Print the register number of a register, like in

"CLR %r0+7" for the MSB of a 64-bit
register

reg

%x0 1

Print a function name without gs()
modifier, like in "%~CALL %x0" with

argument "s"(main)
s

%A0 1 Add 0 to the register number (no effect) reg

%B0 1 Add 1 to the register number reg

%C0 1 Add 2 to the register number reg

%D0 1 Add 3 to the register number reg

%T0%t1 2
Print the register that holds bit number %1 of

register %0
reg + n

%T0%T1 2
Print operands suitable for BLD/BST, like in

"BST %T0%T1", including the required ,
reg + n

• Register constraints are: r, d, w, x, y, z, b, e, a, l.

Special Sequences

Squence Meaning

%~
"" or "r": "%~call" yields "call" on devices with CALL,

and "rcall" on devices without CALL

%!
"" or "e": "%!icall" yields "eicall" on devices with

EICALL, and "icall" on devices without EICALL

%=
A number that's unique for this inline assembly snip and the
compilation unit. Used to compose unique local labels

%% Insert a %, provided the inline asm has arguments

\n Insert a line break

\t Insert a TAB

\" Insert a "

\\ Insert a \

$ Logical line separator, like in "LDI %A0,1 $ LDI %B0,2"

__zero_reg__ The register containing zero, see section Register Layout

__tmp_reg__ The scratch register, see section Register Layout

Moreover, the following I/O addresses are defined provided the device supports the

respective SFR: __SREG__, __SP_L__, __SP_H__, __CCP__, __RAMPX__,

__RAMPY__, __RAMPZ__, __RAMPD__.

Assembly Operand Modifiers

Modifier Explanation Purpose

lo8() 1st Byte of a link-time constant, bits 0...7

Getting parts
of a byte-
address

hi8() 2nd Byte of a link-time constant, bits 8...15

hlo8() 3rd Byte of a link-time constant, bits 16...23

hhi8() 4th Byte of a link-time constant, bits 24...31

hh8() Same like hlo8

pm_lo8() 1st Byte of a link-time constant divided by 2, bits 1...8

Getting parts
of a word-

address

pm_hi8() 2nd Byte of a link-time constant divided by 2, bits 9...16

pm_hh8()
3rd Byte of a link-time constant divided by 2, bits
17...24

pm()
Link-time constant divided by 2 in order to get a
program memory (word) address, like in

lo8(pm(main)).

word-address

gs()

Function address divided by 2 in order to get a (word)

addresses, like in lo8(gs(main)). Generate stub
(trampoline) as needed. This is needed when
computing the address of a function on devices with
more than 128KiB of program memory that's supposed

to be used in EICALL. For rationale, see GCC
documentation. On devices with less program memory,

gs() behaves like pm().

function
address for

[E]ICALL

When the argument of a modifier is not computable at assembler-time, the assembler has to
encode the expression in an abstract form using relocs. Consequence is that only a very
limited number of argument expressions is supported when they are not computable at
assembler-time.

Using avr-gcc

Locating .rodata in Flash for AVR64* and AVR128*
Devices

• See Application Note avr-gcc: Locate .rodata in Flash for AVR Devices like
AVR64 and AVR128

Supporting "unsupported" Devices

avr-gcc v5 and newer

In contrast to older versions of the compiler that support -mmcu=<mcu> natively, avr-

gcc v5+ comes with a bunch of spec files in ./lib/gcc/avr/<version>/
device-specs. These files are generated when the compiler is built and are part of each
distribution since then. Spec files specify substitution and transformation rules for
command line options for the compiler proper and for subprograms like assembler and
linker.

Adding support for a new device consists in writing a new spec file for that device and
supply it by means of

avr-gcc -mmcu=<mcu> -B <path-to-dir> ...

where <path-to-dir> is a directory containing a folder named device-specs
which contains a file named specs-<mcu>. As a blue print, start with an already existing

spec file for a device as closely related to <mcu> as possible. Also read the comments in
that spec file.

Just like with older versions, you have to get the device headers which are realm of AVR-

LibC from somewhere; same applies for the startup code in crt<mcu>.o and for the

device library lib<mcu>.a. If you do not need or have a device library, -
nodevicelib will do, but note that some non-standard functionality like EEPROM
support is missing then.

https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash
https://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html#EIND-and-Devices-with-More-Than-128-Ki-Bytes-of-Flash
https://github.com/bminor/binutils-gdb/blob/master/include/elf/avr.h
https://github.com/bminor/binutils-gdb/blob/master/include/elf/avr.h
https://github.com/bminor/binutils-gdb/blob/master/include/elf/avr.h
https://github.com/bminor/binutils-gdb/blob/master/include/elf/avr.h
https://gist.github.com/sprintersb/7e538928f5b481961d31458d2e5a402d
https://gist.github.com/sprintersb/7e538928f5b481961d31458d2e5a402d
https://gist.github.com/sprintersb/7e538928f5b481961d31458d2e5a402d
https://gist.github.com/sprintersb/7e538928f5b481961d31458d2e5a402d
https://gist.github.com/sprintersb/7e538928f5b481961d31458d2e5a402d
https://gist.github.com/sprintersb/7e538928f5b481961d31458d2e5a402d
http://gcc.gnu.org/gcc-5/changes.html#avr
http://gcc.gnu.org/gcc-5/changes.html#avr
http://gcc.gnu.org/gcc-5/changes.html#avr
http://gcc.gnu.org/gcc-5/changes.html#avr
http://gcc.gnu.org/gcc-5/changes.html#avr
http://gcc.gnu.org/gcc-5/changes.html#avr
http://gcc.gnu.org/onlinedocs/gcc/Spec-Files.html
http://gcc.gnu.org/onlinedocs/gcc/Spec-Files.html
http://gcc.gnu.org/onlinedocs/gcc/Spec-Files.html
http://gcc.gnu.org/onlinedocs/gcc/Spec-Files.html

Spec files allow to add support for new devices without the need to change the binares of
the compiler, the assembler or the linker. Spec files may depend on the versions of GCC
and Binutils, and using an incompatible spec file may lead to errors or wrong or sub-
optimal code. For example, this is the case when newer tool versions support more or
different options, but a spec file doesn't reflect that.

As the tools evolve, new features and command line options are added. When porting a
device-specs file across one of the following features and versions, extra care must be
taken:

• -mmcu=avrxmega3 (GCC v8, PR81072), -mavrxmega3 (Binutils v2.29,
PR21472)

• -mgas-isr-prologues (GCC v8, PR81268), -mgcc-isr and pseudo-

instruction __gcc_isr (Binutils v2.29, PR21683)

• -mrodata-in-ram and -mflmap (GCC v14, PR112944), -
mavrxmega2_flmap and -mavrxmega4_flmap (Binutils v2.42, PR31124).
This does only make a difference for AVR64* and AVR128* devices, see the GCC
v14 Release Notes for details.

Notice that the compiler behaves differently depending on the Binutils features it finds
during configuration.

Using .atpack Device Pack Files from Atmel / Microchip

To make your life easier, Atmel / Microchip provides device-pack files at http://
packs.download.atmel.com and https://packs.download.microchip.com. The files have

extension .atpack but apart from that, they are just ZIP files, so you can unzip them
and use them. These files contain all you need: Device header and device lib, startup-code,

specs-file. Suppose you unzipped the pack to a folder <atpack>, then amongst others,
following folders and files are present:

<atpack>

|--include

| +--avr

| +--io*.h

+--gcc

 +--dev

 +--<mcu>

 |--device-specs

 | +--specs-<mcu>

 +--<mdir>

 |--lib<mcu>.a

 +--crt<mcu>.o

Where <mcu> comes from -mmcu=<mcu>, and <mdir> is the multilib-path as printed

by avr-gcc -mmcu=<mcu> -print-multi-directory. This means we can
support a device like, say, ATtiny424 by means of:

> avr-gcc -mmcu=attiny424 -B <atpack>/gcc/dev/attiny424 -isystem

<atpack>/include ...

Known Issues

https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/PR81072
https://gcc.gnu.org/PR81072
https://gcc.gnu.org/PR81072
https://gcc.gnu.org/PR81072
https://sourceware.org/PR21472
https://sourceware.org/PR21472
https://sourceware.org/PR21472
https://sourceware.org/PR21472
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/gcc-8/changes.html#avr
https://gcc.gnu.org/PR81268
https://gcc.gnu.org/PR81268
https://gcc.gnu.org/PR81268
https://gcc.gnu.org/PR81268
https://sourceware.org/PR21683
https://sourceware.org/PR21683
https://sourceware.org/PR21683
https://sourceware.org/PR21683
https://gcc.gnu.org/gcc-14/changes.html#avr
https://gcc.gnu.org/gcc-14/changes.html#avr
https://gcc.gnu.org/gcc-14/changes.html#avr
https://gcc.gnu.org/gcc-14/changes.html#avr
https://gcc.gnu.org/PR112944
https://gcc.gnu.org/PR112944
https://gcc.gnu.org/PR112944
https://gcc.gnu.org/PR112944
https://sourceware.org/PR31124
https://sourceware.org/PR31124
https://sourceware.org/PR31124
https://sourceware.org/PR31124
http://packs.download.atmel.com/
http://packs.download.atmel.com/
http://packs.download.atmel.com/
http://packs.download.atmel.com/
http://packs.download.atmel.com/
http://packs.download.atmel.com/
https://packs.download.microchip.com/
https://packs.download.microchip.com/
https://packs.download.microchip.com/
https://packs.download.microchip.com/
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/ZIP_(file_format)

• With Binutils 2.39 and older: crt<mcu>.o from atpack defines symbol

__DATA_REGION_LENGTH__ to a value much narrower than the one from the

default linker script. This may lead to linker errors because .data or .bss sections
no more fit in the data memory segment. One way out is to (re)define this symbol to

a larger value like -Wl,--defsym,__DATA_REGION_LENGTH__=0xffa0.

You can place this in the command line for the link, or add it without -Wl, to the

*link_data_start spec in specs-<mcu>. A different fix is to use a linker
script file similar to the ones distributed with Binutils 2.40 and newer, that uses

symbol __DATA_REGION_ORGIN__ from crt<mcu>.o instead of hard-coded
values like 0x802000. See also AVR-LibC Issue #971.

• With GCC v7 and older: Some devices belong to device family avrxmega3 which
is only supported since avr-gcc v8+. If you want to use such a device with avr-gcc

v7 or lower, you'll have to rewrite the files so that they use core arch avrxmega2
instead.

avr-gcc v4.9 and below

avr-gcc and avr-as support the -mmcu=<mcu> command line option to generate code for a

specific device <mcu>. Currently (2012), there are more than 200 known AVR devices and
the hardware vendor keeps releasing new devices. If you need support for such a device and
don't want to rebuild the tools, you can

1. Sit and wait until support for your -mmcu=<mcu> is added to the tools.

2. Use appropriate command line options to compile for your favourite <mcu>.

Approach 1 is comfortable but slow. Lazy developers that don't care for time-to-market will
use it.

Approach 2 is preferred if you want to start development as soon as possible and don't want
to wait until the tool chain with respective device support is released. This approach is
only possible if the compiler and Binutils already come with support for the core
architecture of your device.

When you feed code into the compiler and compile for a specific device, the compiler will
only care for the respective core; it won't care for the exact device. It does not matter to the
compiler how many I/O pins the device has, at what voltage it operates, how much RAM is
present, how many timers or UARTs are on the silicon or in what package it is shipped. The

only thing the compiler does with -mmcu=<mcu> is to build-in define a specific macro
and to call the linker in a specific way, i.e. the compiler driver behaves a bit differently, but
the sub-tools like compiler proper and assembler will generate exactly the same code.

Thus, you can support your device by setting these options by hand.

Additionally, we need the following to compile a C program:

• A device support header avr/io.h similar to the headers provided by AVR-
LibC.

• Startup code for the device.

The Device Header avr/io.h

https://github.com/avrdudes/avr-libc/issues/971
https://github.com/avrdudes/avr-libc/issues/971
https://github.com/avrdudes/avr-libc/issues/971
https://github.com/avrdudes/avr-libc/issues/971
http://gcc.gnu.org/gcc-8/changes.html#avr
http://gcc.gnu.org/gcc-8/changes.html#avr
http://gcc.gnu.org/gcc-8/changes.html#avr
http://gcc.gnu.org/gcc-8/changes.html#avr
http://nongnu.org/avr-libc
http://nongnu.org/avr-libc
http://nongnu.org/avr-libc
http://nongnu.org/avr-libc
http://nongnu.org/avr-libc
http://nongnu.org/avr-libc

This header and its subheaders contain almost all information about a particular device like
SFR addresses, size of the interrupt table and interrupt names, etc.

After all, it's just text and you can write it yourself. Find a device that is already supported
by AVR-LibC and that is similar enough to your new device to serve as a reasonable
starting point for the new device description.

If you are lucky, the device is already supported by AVR-LibC but not yet by the compiler.
In that case, you can use verbatim copies from AVR-LibC.

Yet another approach is to write the file from scratch or not to use avr/io.h like headers
at all. I that case, you provide all needed definitions like, say, SP and size of the vector table
yourself.

If your toolchain is distributed with AVR-LibC then avr/io.h is located in the

installation directory at ./avr/include i.e. you find a file io.h in ./avr/
include/avr. In that file you find the lines:

#if defined (__AVR_AT94K__)

include <avr/ioat94k.h>

#elif defined (__AVR_AT43USB320__)

include <avr/io43u32x.h>

/* many many more entries */

#else

if !defined(__COMPILING_AVR_LIBC__)

warning "device type not defined"

endif

#endif

Add an entry for __AVR_mydevice__ and include your new file avr/
iomydevice.h.

If you don't want to change the existing avr/io.h then copy it to a new directory and add

that directory as system search path by means of -isystem whenever you compile or

preprocess a C or assembler source that shall include the extended avr/io.h. Notice that

the new directory will contain a subdirectory named avr.

Compiling the Code

Let's start with a simple C program, source.c:

#include <avr/io.h>

int var;

int main (void)

{

 return var + SP;

}

Your source directory then contains the following files:

source.c gcrt1.S macros.inc sectionname.h

The startup code gcrt1.S and macros.inc are verbatim copies from AVR-LibC.

sectionname.h is included by macros.inc but we don't need it: Simply provide

sectionname.h as an empty file.

For the matter of simplicity, we show how to compile for a device that is similar to

ATmega8 so that we don't need to extend avr/io.h to show the work flow. In the case

you copied avr/io.h to a new place, don't forget to add respective -isystem to the

first two commands for source.c and gcrt1.S.

ATmega8 is a device in core family avr4, thus we compile and assemble our source.c
for that core architecture. __AVR_ATmega8__ stands for the subheader selector you

added to avr/io.h.

avr-gcc -mmcu=avr4 -D__AVR_ATmega8__ -c source.c -Os

Similarly, we assemble the startup code for our device by means of:

avr-gcc -mmcu=avr4 -D__AVR_ATmega8__ -c gcrt1.S -o crt0-
mydevice.o

Finally, we link the stuff together to get a working source.elf (assuming that RAM
starts at address 0x124):

avr-gcc -mmcu=avr4 -Tdata 0x800124 source.o crt0-
mydevice.o -nostartfiles -o source.elf

Voilà!

Libf7

Libf7 is an ad-hoc, AVR-specific, 64-bit floating point emulation written in GNU-C and
(inline) assembly. It is hosted and deployed as part of libgcc. Hence, it will be part of
any avr-gcc distribution from v10 onwards without any further ado.

Implementation

• The emulated 64-bit floating point representation is IEEE compatible: Little endian,
11 bit for the encoded exponent, 52 bits for the encoded mantissa.

• The transcendental functions are implemented using MiniMax approximations, i.e.
they minimize the maximum norm. Most of these functions use rational MiniMax
approximations because they perform better than CORDIC (and they perform better
than Taylor or Padé expansions, of course).

• Portability to other architectures or to other compilers was of no consideration; the
implementation focuses solely on avr-gcc.

Known Problems

http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/crt1/gcrt1.S?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/crt1/gcrt1.S?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/crt1/gcrt1.S?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/crt1/gcrt1.S?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/common/macros.inc?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/common/macros.inc?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/common/macros.inc?root=avr-libc&view=markup
http://svn.savannah.nongnu.org/viewvc/trunk/avr-libc/common/macros.inc?root=avr-libc&view=markup
http://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgcc/config/avr/libf7
http://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgcc/config/avr/libf7
http://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgcc/config/avr/libf7
http://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgcc/config/avr/libf7

• PR99184: Wrong double to 16-bit and 32-bit integer conversion. A work-around is
to do an intermediate cast to an 64-bit integer type:

 double x = 2.9;

 int x_int = (int) (int64_t) x; // For [u]int64_t and uint32_t, do

#include <stdint.h>

 uint32_t x_u32 = (uint32_t) (uint64_t) x;

The issue is fixed in v10.5+, v11.4+ and v12.3+.

The following long standing patches to avr-libc are needed:

• AVR-LibC #57071: Fix math.h and function names and symbols that block 64-bit
double.

• AVR-LibC #49567: Use meta-info from --print-multi-lib and --print-multi-
directory.

Without these additions to AVR-LibC, 64-bit double cannot work correctly and you will get
non-working programs. The AVR-LibC patches were integrated February 2022 and should
be available in AVR-LibC v2.2 or newer. Or you can build / use AVR-LibC from git
master.

• AVR-LibC #929: A problem with the prototypes of frexp, frexpf, frexpl
can lead to wrong code. This bug can be fixed locally by removing const attribute

from the prototypes of these functions in math.h.

Using 64-bit long double without proper AVR-LibC

Even without the mentioned AVR-LibC patches, you can use 64-bit long double arithmetic
if:

• Prototypes for long double functions are provided like in the following example:

long double sinl (long double);

long double example (long double x)

{

 return sinl (x + 1.23L);

}

Notice that you don't need prototypes for basic arithmetic like comparisons, addition,
etc.

• For C++, you need extern "C" prototypes.

• The compiler is used in the default configuration, i.e. Libf7 has not been switched
off, and long double layout is 64 bits wide. If you do not know how the compiler has
been configured, you can use the following tests to check whether everything is all
right:

#if __WITH_LIBF7_MATH_SYMBOLS__ != 1

#error Using 64-bit double requires avr-gcc v10+ and --with-

libf7=math-symbols.

#endif

http://gcc.gnu.org/PR99184
http://gcc.gnu.org/PR99184
http://gcc.gnu.org/PR99184
http://gcc.gnu.org/PR99184
http://www.nongnu.org/avr-libc/
http://www.nongnu.org/avr-libc/
http://www.nongnu.org/avr-libc/
http://www.nongnu.org/avr-libc/
http://savannah.nongnu.org/bugs/?57071
http://savannah.nongnu.org/bugs/?57071
http://savannah.nongnu.org/bugs/?57071
http://savannah.nongnu.org/bugs/?57071
http://savannah.nongnu.org/bugs/?49567
http://savannah.nongnu.org/bugs/?49567
http://savannah.nongnu.org/bugs/?49567
http://savannah.nongnu.org/bugs/?49567
https://github.com/avrdudes/avr-libc
https://github.com/avrdudes/avr-libc
https://github.com/avrdudes/avr-libc
https://github.com/avrdudes/avr-libc
https://github.com/avrdudes/avr-libc
https://github.com/avrdudes/avr-libc
https://github.com/avrdudes/avr-libc/issues/929
https://github.com/avrdudes/avr-libc/issues/929
https://github.com/avrdudes/avr-libc/issues/929
https://github.com/avrdudes/avr-libc/issues/929

None: avr-gcc (last edited 2024-08-01 11:00:08 by GJLay)

#if __SIZEOF_LONG_DOUBLE__ != 8

#error Only 64-bit long double is supported without the AVR-LibC

patches.

#endif

#if __WITH_DOUBLE_COMPARISON__ != 2

#error Wrong configuration of long double comparison.

#endif

• Without the required patches, AVR-LibC has no idea about the true size of double
and long double. This means that when you pass such a variable to a varargs

funtion like printf or scanf, you program might crash and do evil things because
these function will pop the wrong number of arguments from the stack. Note: With

the patches installed, printf will just print "?" for 64-bit float, reading the correct
number of bytes from the stack so nothing is corrupted.

Shortcomings

Libf7 is incomplete:

• Some functions are only avalable with newer versions of the compiler:

◦ v13.3: Multiplication and sqrt for devices without MUL instruction, atan2,

fma.

• Some functions from math.h like lround, lrint, Bessel and Gamma are not
implemented. If you try to use them, you will get undefined references from the
linker. If you really need it, you can provide such functions in your projects, or better
still contribute them to GCC.

Other Implementations

• fp64lib from Uwe Bissinger: Written in GNU assembly. Slightly less precise.
Smaller stack footprint. Smaller code size and execution times. No build script /
Makefile as it targets the Arduino ecosystem. fp64lib is not reentrant and cannot
be used in multi-threaded programs.

• avr_f64.c from Detlef with improvements from Florian Königstein: Implemented
in C. Resource consumption might be a multiple of what Libf7 consumes. Easy to
integrate in own projects that use avr-gcc without native 64-bit double support.
Precision is quite good except for some corner(?) cases where it might deteriorate.

Could be compiled after fixing minor problems (missing const at progmem).
Should also work with other compilers / targets.

• dannis64bit.S from Peter Danegger. Written in GNU assembly.

https://gcc.gnu.org/wiki/GJLay
https://gcc.gnu.org/wiki/GJLay
https://fp64lib.org/
https://fp64lib.org/
https://fp64lib.org/
https://fp64lib.org/
https://github.com/fp64lib/fp64lib/issues/15
https://github.com/fp64lib/fp64lib/issues/15
https://github.com/fp64lib/fp64lib/issues/15
https://github.com/fp64lib/fp64lib/issues/15
https://www.mikrocontroller.net/topic/85256#1266013
https://www.mikrocontroller.net/topic/85256#1266013
https://www.mikrocontroller.net/topic/85256#1266013
https://www.mikrocontroller.net/topic/85256#1266013
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=113673
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=113673
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=113673
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=113673

