
Robust emulation of shared memory

using dynamic quorum-acknowledged broadcasts

Nancy Lynch Alex Shvartsman

Massachusetts Institute of Technology, Laboratory for Computer Science,

545 Technology Square, NE43-365, Cambridge, MA 02139, USA.

December 2, 1996

Abstract

This paper presents robust emulation of multi-writer/multi-reader registers in message-passing

systems using dynamic quorum con�gurations. In addition to processor and link failures, this

emulation tolerates changes in quorum con�gurations, i.e., on-line replacements of one quorum

system consisting of read and write quorums with another such system. This work extends the

results of Attiya, Bar-Noy and Dolev [1] who showed how to emulate single-writer/multi-reader

registers robustly in message-passing systems using majorities.

The emulation in this paper is speci�ed using a modular two-layer architecture. The lower layer

uses unreliable broadcast to disseminate a request from the higher layer to a set of processors, and

then to collect responses from a subset of the processors. The subset can be speci�ed by a predicate

or by using a quorum system. The lower layer then computes a function on the collected responses

and returns the result to the higher layer. The broadcast can take advantage of hardware-assisted

broadcast as we do not assume that the broadcast is reliable or that it has fifo, causal or atomic

properties. The higher layer algorithm emulates robust multi-writer/multi-reader registers where

quorum con�gurations are used to ensure that the registers are atomic.

A unique feature of the read/write service is that it implements dynamically changing quorum

con�gurations. The service includes two interfaces, a functional interface for reads and writes,

and a management interface for recon�guration. The processor designated as the recon�gurer ex-

ecutes requests that replace the current quorum con�guration with the new con�guration. The

combination of the higher and lower layers allows essentially unlimited concurrency and does not

involve locks. Waiting can occur only (a) due to processor or link failures that disconnect at least

one processor in each read and write quorum of the speci�ed con�gurations, or (b) when frequent

recon�gurations interfere with reads/writes and cause them to contribute to recon�gurations. How-

ever, as soon as recon�gurations stop, and as long as for each lower level request specifying a set of

read or write quorums there exists a single quorum of active and connected processors, then reads

and writes complete without waiting. All of this is transparent to the clients of the service.

The algorithms are speci�ed here in terms of I/O automata [8, 9], and their correctness is proven

using invariants and partial-order-based methods. It is shown that the algorithm is correct, and

that it implements atomic replicated read/write objects.

Keywords : Distributed algorithms, fault-tolerance, atomic registers, message-passing, quorums.

Author e-mail : lynch@theory.lcs.mit.edu (primary contact), alex@theory.lcs.mit.edu.

Submission category : Regular paper.

Approximate word count : 9,500 (not counting optional appendices).

This material has been cleared through author a�liations.

1

1 Introduction

The two major multiprocessor computation paradigms are the shared-memory paradigm and

the message-passing paradigm. Developing e�cient algorithms that can tolerate component

failures and timing delays for these models has been a goal for algorithm designers for a

long time. It has been observed that in many cases it is easier to develop algorithms for the

shared-memorymodel than for the message-passing model. Consequently, in such cases there

is value in developing an algorithm �rst for the shared-memorymodel and then automatically

converting it to run in the message-passing model. Among the important results in this

area are the algorithms of Attiya, Bar-Noy and Dolev [1] who showed that it is possible to

emulate shared memory robustly in message-passing systems. Their very interesting, fully

asynchronous algorithm implements atomic single-writer/multi-reader registers in unreliable,

asynchronous networks. Our work is inspired by and builds on their results.

In more detail, [1] shows that any wait-free algorithm for the shared-memory model

that uses atomic single-writer/multi-reader registers can be emulated in the message-passing

model where processors or links are subject to crash failures. The authors of [1] give a

basic algorithm for complete networks using unbounded timestamps, a version for arbitrary

network topologies, and they also modify their algorithms so that it uses only bounded

timestamps. These algorithms are based on processor majorities and thus are able to tolerate

scenarios where any minority of processors are disabled or are unable to communicate. The

algorithms [1] are constructed with the help of a communicate procedure that uses half-

duplex, ping-pong, point-to-point links to broadcast messages and to collect responses from

any majority of processors. The basic algorithmic techniques are very e�cient and they

render the algorithm suitable for an e�ective implementation.

Using majorities is a special case of quorum systems [6]. A simple quorum system (also

called coterie) is a collection of sets such that any two sets, called quorums, intersect [5]. A

more re�ned approach divides the quorum system into a collection of read quorums and a

collection of write quorums such that any read quorum intersects any write quorum. Such

systems have been used to implement distributed mutual exclusion [5] and data replication

protocols [4, 7]. Quorums can be used with replicated data in transaction-style synchro-

nization that limits concurrency (cf. [2]), whereas our goal and the goal of [1] is to reduce

restrictions on asynchrony and concurrency.

In this paper we present a service that emulates shared memory registers using broadcasts

and dynamically changing quorum con�gurations. Our algorithms extend the unbounded-

timestamp single-writer solution of Attiya, Bar-Noy and Dolev [1] in four ways:

1. Our construction emulates multi-writer/multi-reader registers.

2. We replace the majority-based approach of [1] with a quorum-based approach { this is

done in a way that does not involve synchronization and that preserves the asynchrony

and non-determinism found in the original solution [1].

3. We augment the multi-writer/multi-reader service with a management interface used to

recon�gure the quorum system on-the-
y without changing the functional interface of the

service and without suspending any reads/writes in progress or disabling new requests.

4. Our algorithm is de�ned in a modular way using a two-layer architecture; the lower

level speci�es a new general-purpose primitive that formalizes abstract acknowledged-

broadcast computation.

2

Of the four extensions, the most technically challenging part of our work is the dynamic

quorum system recon�gurations. We next cover in more detail the speci�c extentions and

innovations. We split the complexity of the overall solution by specifying it in a modular

fashion as a composition of two layers.

� The lower layer implements a computation primitive that we call �. The primitive

uses quorum-acknowledged broadcasts and condenser functions to perform computations

requested by the higher layer. The broadcast used by the lower layer can take advantage

of hardware-assisted broadcast as we do not assume that the broadcast is reliable or that

it has fifo, causal or atomic properties.

We specify two versions of the primitive, the simpler primitive �(C) uses a globally-

known static quorum con�guration C, while � allows for the quorum con�gurations to be

changed. Each primitive admits straightforward implementation using message-passing.

Our use of the � primitive illustrates how computing with the � primitive can be an

e�ective tool in developing distributed algorithms.

� The higher layer algorithm emulates robust multi-writer/multi-reader registers where

quorum systems are used to ensure that the registers are atomic. This layer extends the

single writer protocol [1] to a multi-writer protocol. We use quorum systems in a way

that ensures the atomicity of the multi-writer/multi-reader registers without resorting to

locking or mutual exclusion.

A unique feature of this layer is that we deal with dynamically changing quorum con�gu-

rations. In a static quorum system the same con�guration is used regardless of changing

load balancing or availability concerns. Our service exports two interfaces, a functional

interface o�ering the read/write service, and a management interface for recon�guration.

The management interface designates one processor as the recon�gurer. This processor

executes requests that replace the current quorum con�guration with a new con�guration

using �. This does not involve any synchronization, but some read and write requests

concurrent with a recon�guration may need to perform steps that contribute to the re-

con�guration. This is done transparently to the clients of the service.

The solution implemented by the composition of the two layers re
ects practical system

concerns dealing with communication e�ciency, with fault-tolerance and with system man-

agement (i.e., with supervision and control of the system so that it ful�lls the requirements

of its users, cf. [16]).

Our service can be implemented by using point-to-point messages or by taking advantage

of broadcast. In the network settings where processors closely cooperate, it is increasingly

important to assume the availability of e�cient broadcast or multicast. This assumption is

reasonable for LAN-based environments and for emerging high-speed WANs. The availability

of hardware-assisted broadcast [14, 3] makes the cost of using broadcast similar to the cost

of sending a point-to-point message. Note that our algorithms do not require such broadcast

to have atomic, fifo, or causal properties.

Our robust emulation can tolerate a broad range of patterns of processor and link failures.

The service is guaranteed to continue operation provided that the processor performing a

service request is able to communicate with processors constituting some read quorum and

some write quorum during a certain time interval. The duration of this interval must be

3

su�cient to allow the completion of the individual invocations of � using the con�gurations

containing these quorums. The actual quorums need not be the same for all invocations.

When a quorum system needs to be recon�gured, this is done using the management

interface of our service without suspending or interrupting the read/write service provided

to its clients via the functional interface. The successful deployment and use of complex dis-

tributed applications often depends on our ability to manage the application as a distributed

resource on the basis of current and historical observations [15]. A resource manager can

monitor the environment for changing performance requirements and availability conditions

and, in our case, evolve the quorum system using the management interface of the service.

In achieving the above, we formally specify and analyze the algorithms for the multi-

writer/multi-reader service. Our algorithms are speci�ed in terms of I/O automata [8, 9].

We use invariants and partial-order based methods to prove that our algorithms are correct,

and that it implements atomic replicated read/write objects. The main proof introduces a

new \Fill" notion used to predict the acknowledgment vector of � invocations. This is an

e�ective tool in reducing the complexity and size of proofs.

The correctness analysis assumes no bounds on message delivery times. We carry out

conditional performance analysis by assuming that point-to-point messages are delivered

and locally processed in bounded time d (unknown to the processors), or not delivered at

all. In the absence of recon�gurations, and assuming that messages to and from a set of

processors constituting at least one read and one write quorum are delivered, reads and

writes take no more than time 4d using the current quorum system. Each recon�guration

takes no more than time 6d, whether or not there are any concurrent writes or reads. When

recon�gurations are encountered, the response time for writes and reads grows incrementally.

In general, using a quorum system that is k versions older than the current system increases

time by at most 2dk, thus reads and writes take at most time 4d + 2dk.

In our implementation, we assume the availability of unbounded counters, whereas Attiya,

Bar-Noy and Dolev [1] also provide an implementation using bounded counters. We discuss

this assumption at the end of the paper.

The rest of this paper is as follows. In Sec. 2 we de�ne models and conventions. In Sec. 3 we

present �(C) and � primitives. In Sec. 4 we specify multi-writer/multi-reader service that

uses �(C). In Sec. 5 we give the recon�gurable algorithm using �, prove atomicity of the

emulated registers, and assess the performance of the service. We conclude with a discussion

in Sec. 6. Supporting material and proofs are given in the optional appendices.

2 The model of computation and conventions

The message-passing model of computation we use in this work is as follows. There are n

processors with unique identi�ers in the set PID. For simplicity we assume PID = f1: : : : ; ng,

but we do not assume that the identi�er set is compact. The processors communicate

using point-to-point messages at the level of abstraction of the network layer, i.e., in normal

operations, any two processors can send messages to each other, the delivery is unreliable,

but the contents of messages are not corrupted. We assume no bounds on message delivery

times { the algorithms must be asynchronous. In the cases where a message is sent to all

processors, broadcast can be used. Such broadcast does not need to guarantee any atomic,

fifo, causal or any other such properties.

We use the following failure model:

4

�

�

�

�

The �(C) primitive

submit(m; ; s; id)

i

respond(r; id)

i

deliver(m; id)

i

ack(v; id)

i

j

1

K

�

�

�

��

(1) (2)

(3)(4)

Figure 1: The model of the quorum-acknowledged broadcast primitive �(C).

� Processors are subject to crash-failures and restarts. Processors do not lose their context

due to failures. Such failures can be modelled as (possibly unbounded) delays.

� Link failures may render some of the nodes unreachable some of the time.

� In general we allow an adversary to cause arbitrary patterns of failures. When we assess

performance of an algorithm we assume that when a response is expected from a quorum

in some con�guration, then the processors in at least one such quorum do respond.

In presenting distributed algorithms and showing the algorithms to be correct we make

no assumptions about the length of time it takes for a message to be delivered or the amount

of time it takes to perform a local computation. These assumptions will be made only for

the purpose of evaluating the performance of the algorithms.

For the rest of the paper we de�ne the following data types and conventions:

� PID = f1; 2; : : : ; ng, the set of processor unique identi�ers

� OID = [

i2PID

OID

i

, operation unique identi�ers, where OID

i

is the set of identi�ers

generated by processor i and for i 6= j we have OID

i

[OID

j

= ;

� M , the set of messages sent by processors

� A, the set of values sent and returned by processors

� A condenser is a function � : (A [f?g)

n

! A; let � be the set of condenser functions

� Q = 2

PID

, the set of quorums

� C � Q

�

� Q

�

, the set of quorum con�gurations, each con�guration has selectors read

and write, such that if C = hC:read;C:writei 2 C, where C:read = fR

1

; : : : ; R

r

g and

C:write = fW

1

; : : : ;W

w

g, then every R

i

has a nonempty intersection with every W

j

.

The speci�cations in this paper are done in terms of I/O automata [8, 9]. When a named

value x is used in the code fragment of an action and the name is neither a part of the state,

nor appears in the signature, we declare the type of such name using Hidden(x) notation.

3 The quorum-acknowledged broadcast primitive

We de�ne two versions of the primitive, �(C) which uses a �xed quorum con�guration

C = hC:read;C:writei, and � which allows changing quorum con�gurations.

3.1 The �(C) primitive

The model of the primitive is given in Figure 1. The primitive is invoked via the submit

action (1) that contains the message m, the condenser function and selector s which is

5

either read or write to indicate whether to use read or write quorums of the globally known

con�guration C. The message is delivered to a processor via the deliver action (2), and

the processor acknowledges the message by returning the value v via the ack action (3).

The invoking processor applies the function to a set of responses corresponding to an

appropriate quorum at some point after these acknowledgements become available, and it

returns the results to its client (4).

Below we state an abstract speci�cation of �(C), give an abstract implementation using

send/receive channels and assess its performance.

The �(C) primitive

Data-types:

m 2M

v 2 A

Condenser function: 2 �

Unique identi�ers: id 2 OID

Operation descriptors: d; desc= hmsg; con; sel; acc[1::n]; dlv; rspi 2 D,

where D =M � �� fread; writeg�A

n

� 2

PID

� Bool. The selectors are:

msg : the message to be broadcast

con : the condenser function

sel : quorum type selector, either read or write

acc[1::n]: array of accumulated acknowledgements, where n is the number of processors

dlv : a set of member ids to whom the message was delivered

rsp : a boolean indicating whether the submitter had responded to its client

Operations: op 2 O,where O = OID ! D [f?g

Actions of i:

Input: submit(m; ; s; id)

i

ack(v; id)

i

Output: respond(r; id)

i

deliver(m; id)

i

State:

op 2 O, initially empty, i.e., for any id, op(id) is unde�ned

C 2 C, the �xed quorum con�guration

Transitions of i:

submit(m; ; s; id)

i

E�: op(id) := hm; ; s;?

n

, ;, false i

deliver(m; id)

i

Pre: op(id):rsp = false

i =2 op(id):dlv

op(id):msg = m

E�: op(id):dlv := op(id):dlv [fig

ack(v; id)

i

E�: op(id).acc[i] := v

respond(r; id)

i

Hidden(a[1::n] 2 V

n

; Q 2 Q)

Pre: op(id).rsp = false

Q 2 C:(op(id):sel)

Q � fk : op(id):acc[k] 6= ?g

8k 2 Q : a[k] = op(id):acc[k]

8k =2 Q : a[k] = ?

E�: r := (op(id):con)(a)

op[id].rsp := true

We assume that the clients of �(C) adhere to the syntax of the speci�cation. Furthermore,

each submit is made unique by the invocation identi�er id, and that any ack is issued only

in response to a deliver and only once. The clients of the primitive have OID

i

as a state

6

component and they structure their output submit actions so that its precondition includes

the conjunct \id 2 OID

i

" and its e�ect includes \OID

i

:= OID

i

� fidg".

An execution � of an I/O automaton A is a �nite or in�nite sequence of alternating

states and actions of A starting with the initial state. The trace of �, denoted by trace(�),

is the subsequence of � consisting of all the external actions. Let � be an execution of �(C)

together with clients as above.

For a con�guration C we have a lemma that follows from the properties of quorums:

Lemma 3.1 Suppose � is an execution of �(C) together with its clients and respond(: : : ; id

1

)

i

and respond(: : : ; id

2

)

j

are two actions in � with id

1

6= id

2

. Suppose that � includes

submit(: : : ; write; id

1

)

i

and submit (: : : ; read; id

2

)

j

. Then there is an index k such that both

ack (: : : ; id

1

)

k

and ack (: : : ; id

2

)

k

occur in �.

In Appendix A we present a straightforward implementation of the �(C) primitive that

we call �(C). The implementation uses send/receive point-to-point channels. Each channel

is modelled having send(m)

i;j

and recv(m)

j;i

actions, and channel

i;j

state variables for i; j 2

PID. Such channels have very simple speci�cations (cf. [8]) which are omitted here.

Lemma 3.2 The composition of �(C) and the channel automata implements �(C).

The performance analysis is as follows:

Theorem 3.3 Suppose in any execution of �(C) (a) there is a �xed upper bound on local

step time during which a processor reads all received messages, performs local computation,

and sends any necessary replies, (b) for any delivered message, it is delivered after at most

a known �xed delay, and (c) there exists a set of processors Q 2 C:s for s speci�ed in any

submit action such that they receive the request and their acknowledgements are delivered

to the invoker of the submit, then it takes O(1) time between the submit transition and the

matching respond transition, and there are �(n) messages sent as the result of the submit.

3.2 The � primitive

The � primitive is an extension of the �(C) primitive which does not rely on the �xed

globally-known quorum con�guration C. The single di�erence in the interfaces of the two

primitives is that the submit action of �(C) has the argument s 2 fread;writeg indicating

whether to use C:read or C:write quorums, while � has the argument q 2 Q

�

in which the

client speci�es the set of quorums to use.

The state of � does not include C, and de�nition of the operation descriptors is changed

so that sel selector is replaced with qrm 2 Q

�

. The qrm component is initialized to q

in the e�ect of the submit action. The only remaining change is in the respond action,

where in the precondition the conjunct \Q 2 C:(op(id):sel)" is replaced with the conjunct

\Q 2 op(id):qrm".

The implementation �(C) can be similarly extended to produce the implementation �

for the � primitive. It is not di�cult to see that Lemma 3.1 and Lemma 3.3 given in the

previous subsection equally apply to � and �.

4 Fixed quorums algorithm using �(C)

In this section we specify an algorithm for atomic multi-writer/multi-reader registers using a

�xed quorum con�guration and the �(C) primitive. The algorithm speci�es the higher layer

7

and �(C) the lower layer of the robust register emulation. We give a proof sketch of the

algorithm correctness and of its performance analysis. The presentation illustrates the main

algorithmic ideas and proof techniques used in the next section in the more complicated

algorithm using dynamic quorum con�gurations.

4.1 Fixed quorums algorithm speci�cation

In the approach of Attiya, Bar-Noy and Dolev [1], each copy of the register is stored together

with a label used to order the writes and to determine the result of which write is returned

by reads. In their single-writer approach the monotonically increasing label is maintained

by the writer and is associated with the register. When the writer assigns a new value

to the register along with the next higher label, it informs a majority of processors of the

new value and label. Readers perform their operation by reading a majority of values and

associated labels, selecting the value with the maximum label, and then informing a majority

of processors of the value and the labels adopted by the write before returning the chosen

value ot the client.

We generalize this approach by using a quorum con�guration instead of majorities. Our

solution is a pleasingly uniform algorithm for the readers and the (now multiple) writers.

We replace the labels of [1] with the tags generated by the writers. The tags are pairs

consisting of the sequence number seq and the processor identi�er pid , and the tags are

ordered lexicographically. Thus each register is represented locally at each processor by its

value val and its tag tag. To simplify the presentation, we state the solution for one emulated

register. Other than the interface, the only di�erence between the readers and the writers

is that the writers assign new tags by incrementing the maximum tag found, while readers

simply use the maximum tags.

The formal speci�cation is given below. At a high level, the writer (reader) accepts a

client write (read) request, invokes the �(C) primitive by using the submit action to query

all processors in a read quorum for their tags. When this query phase completes with the

respond action, the writer lexicographically increments the maximum tag returned and then

invokes the �(C) primitive to propagate the new tag prop-tag and the new value prop-val to

all processors in a write quorum. The reader simply propagates the maximum tag.

Each processor has two queues. The request-q maintains client read requests in the form

h\read", ci and write requests in the form h\write", v; ci, where c is the client identi�er. Only

the request at the head of the queue is processed at any given time. The second queue ack-q

is used for acknowledgments to be sent out subsequently to the speci�c deliver transitions.

Reader/writer speci�cation with �xed quorums

Data-types:

T = N� PID, the tags of read and write operations with selectors seq and pid

q 2 fread; writeg, selector for the quorum con�guration

L, client unique identi�ers

(Other data-types as in � de�nition)

State: (for each processor p 2 PID)

tag 2 T , initially tag = hseq; pidi = h0; 0i

val 2 A, initially val = v

0

2 A

8

prop-tag 2 T , tag used in propagating results, initially prop-tag = h0; 0i

prop-val 2 A, initially unde�ned

status 2 f query-ready, query-active, prop-ready, prop-active, prop-done g, initially idle

request-q , a sequence of (f\read"g�L) [(f\write"g�A�L), queue of requests, initially empty

ack-q, a sequence of M � ID, initially empty

Condenser functions:

� � � (a).(ha[k]:val; a[k]:tagi : 8j : a[k]:tag � a[j]:tag) : maximum tag computation.

Actions:

Input: write(v)

c;p

read

c;p

respond(h\query-ack",v; t i,id)

p

respond(h\prop-ack" i, id)

p

deliver(h\query" i, id)

p

deliver(h\propagate", v; t i, id)

p

Output: read-con�rm(v)

c;p

write-con�rm

c;p

submit(h\query" i, (\query-ack",�),q; id)

p

submit(h\propagate", v; t i,

(� (a).(\prop-ack")), q; id)

p

ack(m; id)

p

Transitions:

write(v)

c;p

E�: append h\write", v, c i to request-q

read

c;p

E�: append h\read", c i to request-q

submit(h\query" i, (\query-ack", �), q; id)

p

Pre: status = query-ready

request-q 6= ;

q = read

E�: status := query-active

respond(h\query-ack",v; t i,id)

p

Hidden(u 2 A)

E�: if head(request-q) = h\write", u; c i then

prop-val := u;

prop-tag := ht:seq + 1; p i

else

prop-val := v;

prop-tag := t

status := prop-ready

submit(h\propagate", v; t i,

(� (a).(\prop-ack")), q; id)

p

Pre: status = prop-ready

q = write

v = prop-val

t = prop-tag

E�: status := prop-active

respond(h\prop-ack" i, id)

p

E�: status := prop-done

read-con�rm(v)

c;p

Pre: v = prop-val

status = prop-done

head(request-q) = h\read", c i

E�: request-q := tail(request-q)

status := query-ready

write-con�rm

c;p

Hidden(v)

Pre: status = prop-done

head(request-q) = h\write", v, c i

E�: request-q := tail(request-q)

status := query-ready

deliver(h\query" i, id)

p

E�: append hh\query-ack", val; tag i, id i to ack-q

deliver(h\propagate", v; t i, id)

p

E�: if t >

lex

tag then

val := v; tag := t

append hh\prop-ack" i, id i to ack-q

ack(m; id)

p

Pre: head(ack-q) = hm, id i

E�: ack-q := tail(ack-q)

We now de�ne conventions that in the rest of the paper are used to identify client-level

read and write operations. We use variable � (appropriately subscripted when necessary) to

uniquely identify the client-level operations.

Client-level read and write operations contain the query and propagation phases in each

of which the �(C) primitive is invoked once for the case of the �xed quorum con�guration.

The �rst phase uses read quorums C:read and the second uses the write quorums C:write.

9

De�nition 4.1 The phases of the read or write operation � are de�ned as follows:

1. The operation � is in its query phase after the transition of the submit of \query" and

prior to the submit of \propagate".

2. The operation � is in its propagate phase after the transition of the submit of \propagate"

and prior to the response to its client. 2

In a given execution � we say that a read (write) operation � propagates a tag if the

tag is used in the submit action in the propagation phase of �. We denote by �

�

(�) the tag

propagated by operation �. Where � is clear from the context we omit it and use � (�).

The invocation event of a client-level read (write) operation is its corresponding read

(write) action. The response event of the read (write) operation is its corresponding read-

con�rm (write-con�rm) action.

Suppose for some execution � the actions of an operation � include the actions of the

�(C) primitive for some id, starting with the submit action and including the respond action.

The unique identi�er id also uniquely identi�es the client-level operation �. When the

propagation tag �

�

(�) is de�ned for an operation � in the respond action uniquely identi�ed

by id

1

, or when �

�

(�) is propagated by the �(C) primitive using unique identi�er id

2

, then

we also let � (id

1

) or � (id

2

) stand for �

�

(�).

For the client-level operations in an execution we de�ne relation CP, the client-preceding

order as follows:

De�nition 4.2 If in an execution �, any � invoked in the operation �

1

completes before

any � is invoked in the operation �

2

(i.e., �

1

completes before �

2

starts), then h�

1

; �

2

i 2 CP.

Where convenient, we use the notation �

1

�

cp

�

2

to indicate the same. 2

The CP relation can be dynamically maintained as a history variable { for the purpose

of the proofs only. This is done by maintaining a set completed of operations that is initially

empty, and by adding an operation to it at the point of its completion, i.e., setting completed

to completed [f�g, where � is the operation just being completed. We dynamically construct

CP by setting CP, upon the start of a new operation �, to CP [f(�

0

; �) : �

0

2 completedg.

Note that these derived variables are otherwise not used in any way by the algorithm.

4.2 Proof of correctness

For any execution we are interested in showing the atomicity of the read and write operations.

We show atomicity of the implementation by using the following lemma of [8]:

Lemma 4.1 [8] Let � be a (�nite or in�nite) sequence of actions of a read/write object ex-

ternal interface. Suppose that � is well-formed for each i 2 PID, and contains no incomplete

operations. Let � be the set of all operations in �. Suppose that � is an irre
exive partial

ordering of all the operations in �, satisfying the following properties:

1. For any operation � 2 �, there are only �nitely many operations � such that � � �.

2. If the response event for � precedes the invocation event for � in �, then it cannot be

the case that � � �.

3. If � is a write operation and � is any operation in �, then either � � � or � � �.

4. The value returned by each read operation is the value written by the last preceding write

operation according to � (or v

0

, the initial value, if there is no such write).

10

Then � satis�es the atomicity property. 2

This lemma lists four conditions involving a partial order on operations in �. If an

ordering satisfying these four conditions exists, it is guaranteeing that there is some way to

insert serialization points satisfying the atomicity property. Condition 1 rules out orderings

in which in�nitely many operations precede some particular other operation. Condition 2

says that the � ordering must be consistent with the order of invocations and responses by

the clients. Condition 3 says that � totally orders the write operations and orders all the

read operations with respect to the write operations. Condition 4 says that the responses to

reads are consistent with �.

We now present the proof of atomicity of the registers implemented by the composition

of the �xed quorum algorithm and �(C). We proceed with preliminary lemmas that lead to

the main result (a selection of proofs is in the optional Appendix B).

It is easy to see that since tags are only changed in the e�ects of deliver actions where

tags are lexically increased, we have:

Lemma 4.2 Tags maintained by each processor are monotonically nondecreasing.

Each read and write operations include exactly two sequential invocations of the �(C)

primitive. The �rst invocation uses read quorums and the second uses the write quorums.

Lemma 4.3 If for an operation �, t is the tag returned by the query phase of the algorithm

and � (�) is the tag used in the propagation phase, then (i) if � is a read then t = � (�), and

(ii) if � is a write then t < � (�).

Now the main supporting lemma:

Lemma 4.4 If in an execution �, �

1

�

cp

�

2

, then (i) if the operation �

2

is a read, then

�

�

(�

1

) �

lex

�

�

(�

2

), and (ii) if the operation �

2

is a write, then �

�

(�

1

) <

lex

�

�

(�

2

).

We now de�ne the partial order needed to apply Lemma 4.1 in the main theorem for �xed

con�gurations as follows: Let � be any sequence of read and write operations � containing

no incomplete operations. We de�ne the (irre
exive) partial order PO = h�;� i on the

operations by letting: �

1

� �

2

for �

1

; �

2

2 �, if (a) � (�

1

) <

lex

� (�

2

), or (b) �

1

is a write and

�

2

is a read such that � (�

1

) =

lex

� (�

2

).

The following theorem is shown with the help of Lemma 4.1:

Theorem 4.5 � satis�es the atomicity property.

4.3 Conditional performance analysis

To assess the performance of the atomic multi-writer/multi-reader service, we assume that

for any invocation of �(C) the invoker does not fail, and that it receives responses from

at least one quorum of processors in C. We also assume that d is an upper bound for the

longest message delivery delay (when message is indeed delivered), plus local processing of

the message, and sending any replies. In addition, it is assumed that processors that have

enabled transitions continue taking steps. With these assumptions, and using Theorem 3.3

(recall its assumptions) we show the following:

Theorem 4.6 Any read or write operation takes time 4d and at most 8n messages.

11

The � primitive

submit(m; ; q; id)

i

respond(r; id)

i

deliver(m; id)

i

ack(v; id)

i

recon

�

�

�

�

~

]

/

3

read

read-con�rm(v) write(v) write-con�rm

& %

6

Atomic Read/Write Service

q

K

�

1

'

&

$

%

Figure 2: Two-layer modular view of the read/write service with recon�gurable quorums.

5 Recon�gurable quorums algorithm using �

In this section we specify the multi-writer/multi-reader algorithm with quorum recon�gura-

tions using the � primitive. We then prove that the algorithm correctly implements atomic

multi-reader/multi-writer registers and assess its conditional performance. A high-level mod-

ular representation of the service is given in Figure 2.

5.1 Recon�gurable quorums algorithm speci�cation

To extend the �xed quorum algorithm to recon�gurable quorums, we need to solve the

problems of (1) informing active processors of new con�gurations, (2) ensuring that it is

safe to stop using an older con�guration in favor of the new one, and (3) ensuring that

any processors that attempt to use any of the obsolete con�gurations are able to obtain the

current con�guration.

Achieving this is technically challenging for several reasons. We do not assume availability

of reliable broadcast or channels, thus not all processors may learn of the existence of a new

con�guration. Furthermore, since we allow processor restarts, and restarted processors may

have their con�gurations arbitrarily out of date. We need a distributed solution which does

not rely on the availability of the recon�gurer to dispense current quorum con�gurations to

processors with obsolete con�gurations. The solution also has to allow concurrency in the

presence of recon�gurations without resorting to locking or mutual exclusion.

We give speci�cation in two parts. In the �rst part we give common data-types and the

transitions of reader/writer. In the second part we de�ne the transitions of the recon�gurer.

Read and write operations consist of two phases in which the � primitive is invoked at

least once. The �rst phase, query, uses read quorums and the second, propagation, the write

quorums. De�nitions 4.1 and 4.2 are the same for client operations with recon�gurations.

The fact the queries and propagations may involve more than one invocation of � has no

impact on the meaning of these de�nitions.

As in the case with �xed con�gurations, � (�) denotes the tag propagated by operation �.

12

Similarly, the main di�erence between reads and writes is that in the case of reads, the value

with the associated maximum tag are propagated, and in case of writes, the new value and

the lexicographically incremented tag are propagated.

A reader/writer maintains con�guration index pair cix and con�guration pair Cfg. These

are such that cix:act is the index of the active current con�guration, cix:bid is the index of

the proposed con�guration, and Cfg:Act is the active current con�guration and Cfg:Bid is

the proposed con�guration. When cix:act = cix:bid, it means that Cfg:Act = Cfg:Bid , and

that the proposed con�guration is accepted as active. Note that the con�guration index

pairs can be compared lexicographically.

The query and propagation phases of readers/writers are similar to the phases of the �xed

quorum algorithm, but include a possible iteration. Each phase invokes � until the response

returns an index pair that contains no higher con�guration index than the index of the

invoker. If a higher active index is detected, it is adopted and the primitive is invoked using

the con�guration with the higher index. When a reader/writer uses the current con�guration,

the processing is essentially identical to the �xed con�guration case. Perhaps surprisingly,

the con�gurations used in the query and propagation phases need not be the same!

Recon�gurable quorums algorithm

Data-types:

The set of con�guration indices: I

2

, with selectors act, the active con�guration number, and bid,

the proposed con�guration number

Con�guration indices: x; z; cix =2 I

2

The set of con�guration pairs: C

2

, with selectors Act, the active con�guration, and Bid, the pro-

posed con�guration

Con�guration pairs: X;Z 2 C

2

The values returned in the acknowledgements of the query phase (and accumulated in op(id)acc[1::n]

by �) are of the type M � A� T � I

2

�Q

2

. The selectors for each component is as follows:

msg 2M , the message type of \query-ack"

val 2 A , the data object value

tag 2 T , the tag of the object

cix 2 I

2

, the con�guration index pair

cfg 2 C

2

, the quorum con�guration pair

Condenser functions:

� � � (a).(ha[k]:val; a[k]:tagi : 8j : a[k]:tag � a[j]:tag) : maximum tag (same as for �xed con�gu-

rations)

� � � (a).(ha[k]:cix; a[k]:cfgi : 8j : a[k]:cix� a[j]:cix) : maximum con�guration index and associ-

ated con�guration

State of the reader/writer: (for each processor p 2 PID)

The state components are the same as for the �xed quorums algorithm, but with

the following additions:

cix 2 I

2

, the con�guration index pair, initially h0; 0i

Cfg 2 C

2

, the con�guration pair, initially hC

0

; C

0

i, for some C

0

.

next-con�g : C , a generator of con�gurations.

13

Actions of the reader/writer:

(The actions write, read, write-con�rm and read-con�rm are identical to their

counterparts in the �xed quorums speci�cation and we do not repeat them here.)

Inputs: respond(h\query-ack", v; t; z; Z i, id)

p

respond(h\prop-ack", z; Z i, id)

p

deliver(h\query" i, id)

p

deliver(h\propagate", v; t i, id)

p

deliver(h\recon-done", z; Z i, id)

p

Outputs:submit(h\query" i, (\query-ack",�; �),

q; id)

p

submit(h\propagate", v; t i,

(� (a).(\prop-ack"), �), q; id)

p

ack(m; id)

p

Transitions of the reader/writer:

submit(h\query" i, (\query-ack", �; �), q; id)

p

Pre: status = query-ready

request-q 6= ;

q = Cfg:Act:read

E�: status := query-active

cix-used := cix.act

cfg-used := Cfg.Act

respond(h\query-ack", v; t; z; Z i, id)

p

E�: if cix-used � z:bid then

if head(request-q)=h\write",u; c i then

prop-val := u;

prop-tag := ht:seq + 1; pi

else

prop-val := v;

prop-tag := t

status := prop-ready

else

if z > cix then

cix := z; Cfg := Z

status := query-ready

submit(h\propagate", v; t i,

(� (a).(\prop-ack"), �), q; id)

p

Pre: status = prop-ready

q = Cfg:Act:write

v = prop-val

t = prop-tag

E�: status := prop-active

cix-used := cix:act

cfg-used := Cfg:Act

respond(h\prop-ack", z; Z i, id)

p

E�: if cix-used � z:bid then

status := prop-done

else

if z > cix then

cix := z; Cfg := Z

status := prop-ready

deliver(h\query" i, id)

p

E�: append hh\query-ack", val; tag; cix; Cfg i, id i

to ack-q

deliver(h\propagate", v; t i, id)

p

E�: if t >

lex

tag then val := v; tag := t

append hh\prop-ack", cix; Cfg i, id i to ack-q

deliver(h\query-install", z; Z i, id)

p

E�: append hhval; tag; cix; Cfg i, id i to ack-q

if z > cix then cix := z;Cfg := Z

deliver(h\recon-done", z, Z i, id)

p

E�: if z > cix then cix := z;Cfg := Z

append hh\prop-ack" i, id i to ack-q

ack(m; id)

p

Pre: head(ack-q) = hm, id i

E�: ack-q := tail(ack-q)

The recon�gurer has three phases. Each phase consist of a single invocation of �. In the

query-install phase it informs a read quorum and a write quorum in current con�guration of

the new con�guration and it obtains the register value with the maximum tag it found. In

the propagate phase it propagates this tag and value to a quorum in the new con�guration.

In the recon-idle phase it announces the recon�guration complete.

14

De�nition 5.1 The phases of the recon�gurer are de�ned as follows:

1. The recon�gurer is in its query-install phase after the transition of the submit of \query-

install" and prior to the submit of \propagate".

2. The recon�gurer is in its propagate phase after the transition of the submit of \propagate"

and prior to the submit of \recon-done".

3. The recon�gurer is in its recon-idle phase after the transition of the submit of \recon-

done" and prior to the submit of \query-install". The recon�gurer is also in its \recon-

idle" phase prior to the submit of the very �rst \query-install". 2

The recon�gurer r maintains the current quorum con�guration sequence number cix:act

r

and the current con�guration Cfg:Act

r

. In any global state, the current con�guration index is

de�ned to be cix:act

r

. For any processor p, its con�guration is current, if cix:act

p

= cix:act

r

.

State of the recon�gurer r:

The state components are the same as for the reader/writer above, except that

the request-q component is deleted

Actions of the recon�gurer:

(The deliver and ack actions are identical to the actions of readers/writers)

Inputs: recon

r

respond(h\install-ack",

v; t; z; Z i, id)

r

respond(h\prop-ack", z; Z i, id)

r

respond(h\recon-ack" i, id)

r

Outputs:submit(h\query-install", z; Z i,

(� (a).(\install-ack"), �; �), q; id)

r

submit(h\propagate", v; t i,

(� (a).(\prop-ack"), �), q; id)

r

submit(h\recon-done", z; Z i,

� (a).(\recon-ack"), q; id)

r

Transitions of the recon�gurer:

recon

r

Pre: status = idle

E�: Cfg.Bid := next-con�g

cix.bid := cix.act + 1

status := new-con�g

submit(h\query-install", z; Z i,

(� (a).(\install-ack"), �; �), q; id)

r

Pre: status = new-con�g

z = cix ^ Z =Cfg

q = Cfg:Act:read 1 Cfg:Act:write (see note)

E�: cix := z; Cfg := Z

status := query-active

respond(h\install-ack", v; t; z; Z i, id)

r

E�: prop-val := v; prop-tag := t

status := query-done

submit(h\propagate", v; t i,

(� (a).(\prop-ack"), �), q; id)

r

Pre: status = query-done

v = prop-val ^ t = prop-tag

q = Cfg:Bid:write

E�: status := prop-active

respond(h\prop-ack", z; Z i, id)

r

E�: status := propagate-done

submit(h\recon-done", z; Z i,

� (a).(\recon-ack"), q; id)

r

Pre: status = propagate-done

z = hcix:bid; cix:bidi

Z = hCfg:Bid; Cfg:Bidi

q = Cfg:Bid:write

E�: cix := z

Cfg := Z

respond(h\recon-ack" i, id)

r

E�: status := idle

The deliver and ack actions are identical

to the actions of readers/writers.

Note: For A;B 2 Q, we de�ne A 1 B as

the set fa [b : a 2 A ^ b 2 Bg.

15

5.2 Correctness of the composed automaton

We now consider the composition of the multi-reader/multi-writer automaton, the recon�g-

urer automaton and the � primitive.

In showing the correctness of the composed automaton, we introduce a succinct and ef-

fective way of expressing the eventuality of certain outcomes based on the current knowledge.

The proof uses a new \Fill" notion, which we use to predict the acknowledgment vector for

a current invocation. This notion can be used to great advantage in stating our invariants

and in reducing the size of their proofs.

Our Fill notion produces a \virtual" acknowledgment from each processor based on

taking the actual acknowledgment if it is already de�ned, else a predicted acknowledgment

determined as follows. If a deliver has occurred at p without the corresponding ack, then

the queued acknowledgment; if the deliver has not occurred, then the acknowledgment that

would be produced if the deliver occurred as the next event.

Formally,

De�nition 5.2 For the invocation of the � primitive with the unique identi�er id, let �

p

:

M �State !M be the function computed in the e�ects of the deliver action by processor p

to construct the acknowledgment message upon the receipt of a message from the submit-er,

we de�ne:

Fill(p; id)� if op(id) = ?

then ?

else if p 2 op(id):acks

then op(id):acc[p]

else if 9hm; idi 2 ack-q

p

then m

else �

p

(m; state

p

) 2

We now show the atomicity of the implementation using Lemma 4.1. In the rest of this

section we state the most important lemmas and theorems. The detailed proofs are given in

Appendix C. The numbering below preserves the numbering given in Appendix C.

The key to the proof is a multi-part invariant, which we present just below. Part I3 is the

most important part; it mirrors Lemma 4.4 of the algorithm with �xed quorum con�gurations

as it relates the tags of operations where one follows another. Parts I1 and I2 are auxiliary

invariants.

Parts I1a,b,c deal with the properties of the tags of completed operations and the state

of the recon�guration. Part I1a states that for any completed read or write operation �, if

no new quorum system is being processed by the recon�gurer, then there exists a current

write quorum such that all processors in it re
ect either � or some other operation that

supercedes it.

Part I1b states that if the recon�gurer invoked � to install a new con�guration, then no

matter what active read quorum it ends up using, it is guaranteed to obtain a tag that is at

least as large as the tag of any completed operation. This guarantee is expressed using the

Fill notation.

Part I1c states that if the recon�gurer invoked � to propagate the maximum tag it found

to a new write quorum, then this tag is as high as the tag of any completed operation and

any processors that have acknowledged the propagated tag have updated their own tags.

16

query phase of �

�

0

~

(1) �(�

0

)

recon�guration

U

(2) new con�g

propagation phase of �

recon�guration

1

(2) �(�)

U

(3) new con�g

I2a I2b

Time

�

(1) �(�)

-

Figure 3: Invariant illustration for parts I2a and I2b.

Part I2a states that for any read or write in its query phase, either (1) the tag returned

by the query is guaranteed to be at least as high as the tag of any completed operation {

this is expressed with the help of the Fill notation, or (2) the operation detects that its

con�guration is obsolete { the guarantee of detection is expressed using Fill. See Figure 3.

Part I2b states that for any read or write operation � in its propagation phase, then at

least on of the following conditions is guaranteed to hold: (1) its propagation tag is either

being propagated using the current con�guration, or (2) the tag is already re
ected in a

write quorum of the new con�guration, or (3) � detects that its con�guration is obsolete {

again this guarantee of detection is expressed using Fill. See Figure 3.

Part I3 is the key part of the invariant. It states that a read completely following another

operation has the tag that is at least as large, and that a write has the tag strictly larger

than any other operation that precedes it.

Lemma 5.14 In all reachable states:

I1 8� 2 completed,

(a) if the recon�gurer is in its recon-idle phase :

9W 2 Cfg.Act:write

r

: 8i 2 W : � (�) � tag

i

(b) if the recon�gurer is in its query-install phase having invoked � using identi�er oid

r

:

8R 2 Cfg.Act:read

r

: � (�) � max

i2R

fFill(i; oid

r

):tagg

(c) if the recon�gurer is in its propagate phase having invoked � using identi�er oid

r

and

the tag � (recon) : (� (�) � � (recon)) ^ (8i 2 op(oid

r

):acks : � (recon) � tag

i

)

I2 8� =2 completed,

(a) If �

0

�

cp

� and � at processor p is in the query phase having invoked � using identi�er

oid, then for any R 2 cfg-used:read

p

, then

(1) � (�

0

) � max

i2R

fFill(i; oid):tagg, or

(2) cix-used

p

< max

i2R

fFill(i; oid):cix:bidg.

(b) If � is in the propagation phase having invoked � using identi�er oid, then

(1) cix-used

p

is current, or

(2) 9W 2 Cfg.Act:write

r

: 8i 2 W : � (�) � tag

i

, or

(3) 8W 2 cfg-used:write

p

: cix-used

p

< max

i2W

fFill(i; oid):cix:bidg.

I3 If �

1

�

cp

�

2

and � (�

2

) is de�ned, then

(a) � (�

1

) � � (�

2

) when �

2

is a read,

(b) � (�

1

) < � (�

2

) when �

2

is a write.

The proof of the lemma is by induction on the length of any execution of the composed

automata (Appendix C).

17

Lemma 5.15 In any execution, if �

1

�

c:p:

�

2

, then (i) if �

2

is a read operation, then

� (�

1

) �

lex

� (�

2

), and (ii) if �

2

is a write operation, then � (�

1

) <

lex

� (�

2

).

Proof: Using Lemma 5.14(I3) and Lemma 5.2. 2

We now prove the atomicity of the register implementation similarly to the proof of the

�xed quorums implementation by constructing a partial order and using Lemma 4.1.

Let � be � containing no incomplete operations. We de�ne the (irre
exive) partial order

PO = h�;� i on the operations by letting: �

1

� �

2

for �

1

; �

2

2 �, if

(a) � (�

1

) <

lex

� (�

2

), or

(b) �

1

is a write and �

2

is a read such that � (�

1

) =

lex

� (�

2

).

Theorem 5.16 Any such sequence of read and write operations � satis�es the atomicity

property.

Proof: Follows the proof of Theorem 4.5. 2

5.3 Conditional performance analysis

To assess the performance of the atomic multi-writer/multi-reader service, we make the

same assumptions as in Section 4.3. With these assumptions, and adapting Theorem 3.3 for

recon�gurable quorums, we show the following:

Theorem 5.1 In the absence of recon�gurations, any client-level read or write operation

takes (a) time 4d if it starts with the current con�guration, and (b) time 4d + (current �

cix-used) � 2d if it starts in the con�guration cix-used.

The performance of any recon�guration does not depend on any concurrent client-level-

operations:

Theorem 5.2 Any recon�guration takes time at most 6d and at most 12n messages.

6 Discussion

We have presented a robust service that emulates atomic multi-writer/multi-reader register

in message passing systems. The service ensures atomicity of the emulated registers by

relying on quorum systems in a way that allows great deal of asynchrony, concurrency and

fault-tolerance. The service also allows for the quorum systems to be evolved dynamically,

for example in response to changing operating conditions. This dynamic changes do not

require any synchronization and the performance of the atomic register service is degraded

gracefully when recon�gurations are frequent.

On manageability of distributed services: One of the problems often encountered in deploying

distributed systems is that they are di�cult to manage { many resource come without su�-

cient management facilities and require either manual intervention or else are equipped with

management interfaces that are either inadequate or require out-of-band communication.

Although the management interface provided by our service solves a narrowly focused man-

agement problem, it gives a good example of clean integration of functional and management

aspects of the service. In particular, we require no out-of-band communication or reliance

on �xed external quorum systems { the recon�guration is achieved by using exclusively the

native communication primitives and the quorum system that is being changed!

18

On e�cient atomic read/write registers and bounded sequence numbers: Our algorithms

assume the availability of unbounded counters used to number register versions and quorum

con�gurations. The single-writer algorithm of Attiya, Bar-Noy and Dolev [1] is re�ned by

the authors to use bounded counters at a modest increase in storage in message sizes. The

implementation of [1] relies on a reliable ping-pong mechanism. This is done to allow, in a

particular section of the protocol, only a single unacknowledged message between any two

processors. Furthermore, any link is assumed to be reliable unless it crashes, after which the

link remains forever inoperable.

It appears that such reliable ping-pong mechanism would assume too much reliability

on the part of the communication subsystem. We conjecture that either the underlying

subsystemmay need itself either to use unbounded counters or to use messages of unbounded

size (cf. the result [8, Thm. 22.11] due to Lynch, Mansour and Fekete).

On failure models considered: We have considered only the benign component failures { the

processor and link failures never create spontaneous messages and the messages that are sent

are delivered without alteration. Malki and Reiter [10] recently explored the use of quorum

systems in the presence of Byzantine failures. It would be interesting to examine additional

failure models that can be handled by atomic register emulations.

Optimizing the communication e�ciency of accessing quorum systems: In our solution we use

unreliable broadcast (or simulated broadcast) to achieve substantial asynchrony, concurrency

and fault-tolerance. We have argued in the introduction that in contemporary networks

the use of hardware-assisted broadcast is more e�cient than its linear-in-the-number-of-

destinations message complexity suggests. In addition, the results of Peleg and Wool [13]

indicate that for many quorum systems a linear number of messages would in fact be required

to either reach a single active quorum or to detect a quorum all of whose members have either

failed or are inaccessible. It may be interesting to explore a staged approach to broadcast

using multicasts in conjunction with quorum systems that do not su�er from the worst case

linear number of messages.

Other extensions, uses and optimizations: In this paper we concentrated on the correctness

of the solution. There are obvious ways to optimize the solution. For example, instead of

sending sets of quorums in the invocation of the lower layer primitive, we can easily send

names of well-known quorum systems. It is also easy to reduce the number of unnecessary

request deliveries and acknowledgements in the lower layer by piggy-backing cancellation

messages onto broadcasts.

Our recon�gurable algorithm implements a single recon�gurer. However note that the

recon�gurer need not be a single point of failure { we conjecture that the algorithm can be

modi�ed so that the processors that learn of a new con�guration start using the current

and the new con�gurations concurrently until (if ever) the recon�gurer enters its recond-idle

phase. Of course it is also very interesting to extend the recon�gurable algorithm to multiple

concurrent recon�gurers.

We are currently pursuing other uses of the lower layer computation primitive. The prim-

itive can be extended easily to handle termination conditions (i.e., preconditions of respond)

that are de�ned as a predicate (instead of expressing set containment). We are looking

for algorithms that can be expressed naturally in a modular fashion using the generalized

primitive as a general-purpose distributed systems building block.

Acknowledgments: The authors thank Alan Fekete and Roberto De Prisco for their com-

19

ments an an earlier draft. This work was supported by the following contracts: ARPA

N00014-92-J-4033 and F19628-95-C-0118, NSF 922124-CCR, and ONR-AFOSR F49620-94-

1-01997.

Author email: lynch@theory.lcs.mit.edu, alex@theory.lcs.mit.edu.

References

[1] H. Attiya, A. Bar-Noy and D. Dolev, \Sharing Memory Robustly in Message Passing Systems",

J. of the ACM, vol. 42, no. 1, pp. 124-142, 1996.

[2] P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in

Database Systems, Addison-Wesley, Reading, MA, 1987.

[3] S.E. Deering and D.R. Cheriton, \Multicast Routing in Datagram Internetworks and Extended

LANs", ACM TOCS, vol. 8, no. 2, 1990.

[4] S.B. Davidson, H. Garcia-Molina and D. Skeen, \Consistency in Partitioned Networks", ACM

Computing Surveys, vol. 15, no. 3, pp. 341-370, 1985.

[5] H. Garcia-Molina and D. Barbara, \How to Assign Votes in a Distributed System," J. of the

ACM, vol. 32, no. 4, pp. 841-860, 1985.

[6] D.K. Gi�ord, \Weighted voting for Replicated Data", in Proc. of 7th ACM Symp. on Oper.

Sys. Princ., pp. 150-162, 1979.

[7] M.P. Herlihy, Replication Methods for Abstract Data Types, Doctoral Dissertation, MIT,

LCS/TR-319, 1984.

[8] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.

[9] N.A. Lynch and M.R. Tuttle, \An Introduction to Input/Output Automata", CWI Quarterly,

vol.2, no. 3, pp. 219-246, 1989.

[10] D. Malki and M. Reiter, \Byzantine Quorum Systems", TR CS96-8, Inst. of Comp. Sci, the

Hebrew Univ. of Jerusalem, July 9, 1996.

[11] M.H. Olsen, E. Oskiewicz and J.P. Warne, \A Model for Interface Groups", IEEE 10th Symp.

on Reliable Distributed Systems, pp. 98-107, 1991.

[12] J.-F. Paris and P.K.Sloope, \Dynamic Management of Highly Replicated Data", in IEEE 11th

Symp. on Reliable Distr. Systems, pp. 20-27, 1992.

[13] D. Peleg and A. Wool, \How to be an E�cient Snoop, or the Probe Complexity of Quorum

Systems", in Proc. of the 15th ACM Symp. on Princ. of Distr. Comput., pp. 290-299, 1996.

[14] RFC 1112, Internet Group Multicast Protocol, Internet Standard Protocol (Recommended).

[15] A.A. Shvartsman, \Dealing with History and Time in a Distributed Enterprise Manager",

IEEE Network, vol. 7, no. 6, pp. 32-41, 1993.

[16] M. Sloman, "Management: What and Why", in Network and Distributed Systems Manage-

ment, M. Sloman, Ed., Addison-Wesley, 1994.

20

Optional Appendices

An implementation �(C) of �(C)

Here we present a straightforward implementation of the �(C) primitive that we call �(C).

The implementation uses send/receive point-to-point channels. Each channel is modelled

having send(m)

i;j

and recv(m)

j;i

actions, and channel

i;j

state variable for i; j 2 PID. Such

channels have very simple speci�cation (cf. [8]) that is omitted here. Main di�erences between

�(C) and �(C) are that (1) instead of the global op, each processor maintains a state

component op invocations it initiates, and (2) messages are communicated using the channels

with the help of queues out-q and deliver-q. It is not di�cult to see that the composition of

�(C) and the channel automata implements �(C).

Speci�cation of �(C)

Data-types:

Operation descriptors: desc = h msg, con, qrm, acc[1::n] i 2 D

a

,

where D

a

=M � �� Q

�

� (A [f?g)

n

. The selectors for each component is as follows:

msg : message to be broadcast by the primitive

con : the condenser function

sel : read/write quorum selector

acc[1::n]: array of accumulated acknowledgements, where n is the number of processors

Operations: O = OID ! D

a

[f?g

(Other data-types from the Sections 2 and 3.1 as needed)

State: (for each processor i 2 PID)

Ops : 2

OID

, the set of active operation identi�ers, initially empty

op 2 O, operations

out-q

j

: queues of outgoing messages to individual processors (for j 2 PID), initially empty

deliver-q : the queue of incoming requests to be delivered locally, initially empty

Auxiliary variables: (computed on global state)

op(id):dlv : the set of processors to whom the message was delivered as the result of the primitive

invocation id. It is initially empty, and it is computed as: op(id):dlv : op(id):dlv [fig in the

e�ects of the deliver action.

op(id):acks�fpid : op(id):acc[pid] 6= ?g

op(id):rsp : when op(id) 6= ?, then op(id):rsp = false i� id 2 Ops, and op(id):rsp = true i�

id 62 Ops.

Actions: (for processor i)

Input: submit(m; ; s; id)

i

ack(v; id)

i

recv(m)

j;i

Output: respond(r; id)

i

deliver(m; id)

i

send(m)

i;j

21

Transitions:

submit(m; ; s; id)

i

E�: op(id) := hm; ; s;?

n

i

Ops := Ops [fidg

for j 2 PID

do append hm, id i to out-q

j

send(m)

i;j

Pre: head(out-q

j

) = m

E�: out-q

j

:= tail(out-q

j

)

recv(m)

j;i

Hidden(m

0

2M; v 2 A)

E�: if m = hm

0

; idi then

append hm

0

; j; id i to deliver-q

else

if m = hv; idi ^ id 2 Ops then

op(id):acc[j] := v

deliver(m; id)

i

Pre: head(deliver-q) = hm; j; id i

E�: deliver-q

i

:= tail(deliver-q

i

)

ack(v; id)

i

E�: append hv, id i to out-q

j

respond(r; id)

i

Hidden(Q 2 Q; a 2 A

n

)

Pre: id 2 Ops

Q 2 C:(op(id):sel)

Q � op(id):acks

8k 2 Q : a[k] = op(id):acc[k]

8k 62 Q : a[k] = ?

E�: r := (op(id):con)(a)

Ops := Ops� fidg

Appendix B: Selected proofs for Section 4

Lemma 4.2 Tags maintained by each processor are monotonically nondecreasing.

Proof: The tags are changed only in the e�ects of deliver actions used in the propagation of tags,

where the change is e�ected only if the tag value is lexically increased. 2

Lemma 4.3 If for an operation �, t is the tag returned by the query phase of the algorithm and

�(�) is the tag used in the propagation phase, then (i) if � is a read then t = �(�), and (ii) if � is

a write then t < �(�).

Proof: Established by the respond action that completes the query phase of �. 2

The main supporting lemma:

Lemma 4.4 If in an execution �, �

1

�

cp

�

2

, then (i) if the operation �

2

is a read, then �

�

(�

1

) �

lex

�

�

(�

2

), and (ii) if the operation �

2

is a write, then �

�

(�

1

) <

lex

�

�

(�

2

).

Proof: We consider each of the two cases:

(i) �

1

is a read or a write and �

2

is a read. LetW

1

2 C:write be a write quorum used in propagating

�

�

(�

1

). Let R

2

2 C:read be a read quorum used the query phase of �

2

. By Lemma 3.1, there is

at least one processor i such that i 2 W

1

\ R

2

and uses its tag

i

in the acknowledgement in query

phase of �

2

. Since tags are monotonically nondecreasing by Lemma 4.2, tag

i

� �

�

(�

1

). Since �

�

(�

2

)

is computed as the maximum over the acknowledgements received from R

2

and by Lemma 4.3 it

follows that �(�

1

) �

lex

�(�

2

).

(ii) �

1

is a read or a write and �

2

is a write. Using a similar argument we can show that tag

i

�

lex

�(�

1

) for the processor i. Since �(�

2

) is computed by the action respond and from Lemma 4.3 it

follows that �(�

1

) <

lex

�(�

2

). 2

We now de�ne the partial order needed to apply Lemma 4.1 in the main theorem for �xed

con�gurations as follows:

Let � be any sequence of read and write operations � containing no incomplete operations.

We de�ne the (irre
exive) partial order PO = h�;� i on the operations by letting: �

1

� �

2

for

�

1

; �

2

2 �, if

22

(a) �(�

1

) <

lex

�(�

2

), or

(b) �

1

is a write and �

2

is a read such that �(�

1

) =

lex

�(�

2

).

In what follows, we let � stand for some read operation, and ! stand for some write operation

as needed.

Theorem 4.5 � satis�es the atomicity property.

Proof: The necessary properties for Lemma 4.1 (see lemma statement) are as follows:

1. If � is a write, it has a �nite tag �(�) and is preceded by �nitely many other writes. Since �

contains no incomplete operations, there can only be a �nite number of reads � preceding �

with �(�) <

lex

�(�). Similarly, if � is a read, it can only be preceded by �nitely many writes !

with �(�) � �(�), with �nitely many other reads preceding or concurrent with these writes.

2. We show this by case analysis. For an operation �, we use "� to denote the invocation event,

and �# to denote the response event. We use � for read and ! for write events. With two

operations, there are four cases:

(a) �# precedes "! { in this case, �(�) <

lex

�(!) by Lemma 4.4. Thus ! 6� � by the PO

construction.

(b) �

1

precedes "�

2

{ in this case, by the de�nition of PO, if �(�

1

) <

lex

�(�

2

), then �

2

6� �

1

, else

if �(�

1

) =

lex

�(�

2

), then, since both are reads, they are not ordered by the PO construction.

(c) !# precedes "� { in this case �(�) �

lex

�(!) by Lemma 4.4, and ! � � by the PO

construction. Thus � 6� !.

(d) !

1

precedes "!

2

{ in this case �(!

1

) < �(!

2

) by the same lemma again forcing !

1

� !

2

in

PO. Thus !

2

6� !

1

.

3. This follows from the de�nition of PO, since the tags of any two writes are (lexicographically)

comparable and are not equal, since they are unique. If � is a read then (a) if its tag is smaller,

it implies � � !, (b) if its tag is larger, it implies ! � �, or (c) if it has the same tag, then in

this case again ! � �.

4. The value returned by a read � is value written by the last preceding write ! according to �.

This is so because for any such read and write pair, �(!) = �(�). (If there is no preceding write,

then � returns v

0

.)

Therefore, by Lemma 4.1, any such � satis�es the atomicity property. 2

Appendix C: Selected proofs for Section 5

In the presentation below where necessary, for any state component x, we let x

(k)

denote the value

of the component after k transitions, and x

(k+1)

its value after the k + 1

st

transition.

Lemma 5.1 Tags maintained by each processor are monotonically increasing, i.e., if for any trace,

j and k are transitions such that j � k, then for all i 2 PID we have tag

j

i

�

lex

tag

k

i

.

Proof: The tags are changed only in the e�ects of deliver actions used in the propagation of tags,

where the change is e�ected only if the tag value is lexically increased. 2

Lemma 5.2 If for on operation �, t is the tag returned by the query phase of the algorithm and

�(�) is the tag used in the propagation phase, then (i) if � is a read then t = �(�), and (ii) if � is

a write then t < �(�).

Proof: Established by the respond action that completes the query phase of �. 2

23

Lemma 5.3 In any reachable state, for any client-level operation � if i 2 op(oid):acks, where oid

is the invocation of the � primitive in the propagation phase of �, then �(�) � tag

i

.

Proof: When a processor i acknowledges a propagated tag, it makes tag

i

= �(�) unless tag

i

> �(�).

This establishes �(�) � tag

i

. The invariant is maintained by the monotonicity of tag

p

(Lemma 5.1)

and by the fact that �(�) is not changed once it is de�ned. 2

The single recon�guration processor r maintains the current quorum con�guration sequence

number cix:act

r

and the current con�guration Cfg:Act

r

.

In any global state, the current con�guration index is de�ned to be cix:act

r

.

For any processor p, its con�guration is current, if cix:act

p

= cix:act

r

.

Lemma 5.4 For any processor p, cix:act

p

� cix:act

r

, where r is the recon�gurer.

Proof: { left as an exercise for the reader. 2

Lemma 5.5 For any processor p, either cix:act

p

is current, or 9W 2 Cfg:Act:write

p

: 8i 2 W :

cix:act

i

> cix:act

p

.

Proof: Operationally: before the new con�guration is activated by the submit of \recon-done",

all members of at least one write quorum of the previous con�guration are informed of the new

proposed con�guration as ensured by the recon�gurer's \query-install" phase. 2

Lemma 5.6 For any read or write operation � in its propagation phase that executes a submit at

processor p:

(a) If cix-used

p

is not current, then 8W 2 cfg-used

p

: cix-used

p

< max

i2W

fFill(i; oid

p

):cix:bidg.

(b) If cix-used

p

is current and the submit occurs while the recon�gurer is in its propagation

phase, then 8W 2 cfg-used

p

: cix-used

p

< max

i2W

fFill(i; oid

p

):cix:bidg.

Proof: (a) Using Lemma 5.5 it can be shown that the following is an invariant for the primitive

invocation oid in the propagation phase:

If cix-used

p

< cix:act

r

at submit, then 9R 2 cfg-used

p

: 8i 2 R : cix-used

p

< Fill(i; oid):cix:bid.

(b) Since cix-used

p

is current and the submit follows the recon�gurer's respond to \query-install",

then the respond to \propagate" at p returns z such that cix-used

p

< z:bid. 2

The following lemmas will be used in the proof of the main multi-part invariant. In the �rst

two lemmas we address the state of a read or write operation that is in the \propagate" phase.

Lemma 5.7 If a read or write operation � at processor p is in the propagation phase using the

primitive oid

p

using cix-used

p

that is current, and the recon�gurer is in the query-install phase

using the primitive oid

r

, then 8R 2 Cfg:Act:read

r

: 8W 2 cfg-used

p

: 8i 2 R \W , at least one of

the following holds:

(a) i 62 op(oid

p

):dlv [op(oid

r

):dlv

(b) cix-used

p

< Fill(i; oid

p

):cix:bid

(c) �(�) � Fill(i; oid

r

):tag

Proof: By induction on the length of any execution of the composition of the reader/writer and

the recon�g automata.

Base case: the execution is of length 0. Since there are no operations in progress, this case is

vacuously satis�ed.

Inductive step: assume the invariant holds for all executions consisting of k transitions of the

composed automata, and we now consider an execution of length k+ 1. We are using the property

of the current con�guration that if R 2 Cfg:Act:read

r

and W 2 Cfg:A:write

r

, then R \W 6= �.

24

submit of \query-install" : The e�ects of the transition establish op(id):dlv. If op(oid

p

):dlv = �,

then the clause (a) is satis�ed.

Else consider any i 2 (R \W) \ op(oid

p

):dlv. If such i exists, then �(�) � tag

i

(monotonicity)

and this establishes the clause (c) since tag

i

= Fill(i; id):tag.

respond to \query-install" : maintains the invariant.

submit of \propagate" : This establishes op(id):dlv = �. If op(oid

r

):dlv = �, then the clause (a) is

satis�ed.

Else consider any i 2 (R\W)\op(oid

r

):dlv. If such i exists, then cix-used

p

� Fill(i; oid

p

):cix:bid.

This establishes the clause (b).

respond at p : maintains the invariant.

deliver : The invariant is maintained by the monotonicity of data object tags and the con�guration

indices.

ack : Any ack maintains the invariant.

2

Lemma 5.8 If a read or write operation � at processor p is in the propagation phase using the

primitive oid

p

with cix � used

p

current, and the recon�gurer is in the propagation phase, then

either:

(1) 8W 2 cfg-used:write

p

: cix-used

p

< max

i2W

fFill(i; oid

p

):bidg, or

(2) �(�) � �(oid

r

).

Proof: By induction on the length of any execution of the composition of the reader/writer and

the recon�g automata.

Base case: the execution is of length 0. Since there are no operations in progress, this case is

vacuously satis�ed.

Inductive step: assume the invariant holds for all executions consisting of k transitions of the

composed automata, and we now consider an execution of length k + 1.

submit of \propagate" of � : Since the recon�gurer is in its \propagate" phase and cix-ised

p

is

current, the clause (1) is established using Lemma 5.6(b).

submit of \propagate" by the recon�gurer : Since the recon�gurer is in its query phase prior to this

submit and cix-used

p

is current, Lemma 5.7 invariant holds prior to the submit.

Clause 5.7(a) does not hold true, since the recon�gurer proceeds to propagate. If clause 5.7(c)

holds true prior to this submit, then the clause (1) of the lemma is satis�ed. If clause 5.7(b)

holds true prior to this submit, then the clause (2) is satis�ed.

respond to propagate at p : This maintains the invariant.

respond to \propagate" at the recon�gurer : This maintains the invariant.

deliver : The invariant is maintained because of the monotonicity of tags and indices.

ack : The invariant is maintained because of the monotonicity of tags and indices.

2

The following simple lemma establishes a property of the propagation tag of the recon�gurer.

Lemma 5.9 If the recon�gurer is in its \query-install" phase using the primitive oid

r

and if for

some read or write operation �, 8R 2 X:A:read

r

: �(�) � max

I2R

fFill(i; oid

r

):tagg, then following

the respond to \query-install" and prior to submit of \propagate", the recon�gurer's propagation

tag is such that �(�) � �(recon).

25

Proof: The lemma follows from the algorithm speci�cation by the monotonicity of tags and the

preconditions and e�ects of the respond. 2

The next two lemma establish certain properties of the recon�gurer and reader/writer in their

respective \propagate" phases.

Lemma 5.10 If the recon�gurer is in its \propagate" phase using the primitive oid

r

and the

propagation tag �(recon), then

(a) 8i 2 op(oid

r

):acks : (�(recon) � tag

i

^ cix

r

� cix

p

) , and

(b) Following the respond to \propagate" and prior to submit of \recon-done", 9W 2 Cfg:Bid:write

r

:

8i 2W : (�(recon) � tag

i

^ cix

r

� cix

p

) .

Proof: The clause (a) follows from the algorithm speci�cation by the monotonicity of tags. The

clause (b) follows from clause (a) and the preconditions on the respond. 2

Lemma 5.11 If a read or write operation � at processor p is in its \propagate" phase using the

primitive oid

p

with cix-used

p

that is not current, then either:

(a) 8W 2 cfg-used

p

: cix-used

p

< max

i2W

fFill(i; oid

p

):cix:bidg, or

(b) 9W 2 Cfg.Act:write

r

: 8i 2 W : �(�) � tag

i

.

Proof: By induction on the length of any execution of the composition of the reader/writer and

the recon�g automata.

Base case: the execution is of length 0. Since there are no completed operations, this case is

vacuously satis�ed.

Inductive step: assume the invariant holds for all executions consisting of k transitions of the

composed automata, and we now consider an execution of length k + 1.

The following transitions have the potential of a�ecting the invariant:

submit of \propagate" of � : Since cix-used

p

is not current, the clause (a) follows from Lemma 5.6(a).

submit of \recon-done" by the recon�gurer : In the state preceding the submit, � is in the \prop-

agate" phase and the recon�gurer is in the \propagate" phase. Here we distinguish two cases:

� cix-used

p

is current in the previous state: in this case we use Lemma 5.8. If the clause 5.8(1)

is true, then the clause (a) is satis�ed with the. Else, if the clause 5.8(2) is true, it establishes

�(�) � �(recon). From Lemma 5.10(b) together with the e�ects of submit of \recon-done"

we establish 9W 2 Cfg.Act:write

r

: 8i 2 W : �(�) � tag

i

and satisfy the clause (a).

� cix-used

p

is not current in the previous state: Here, by the inductive hypothesis, either

the clause (a) or clause (b) hold and are not a�ected by the submit of \recon-done" since

cix-used

p

is not current in all cases.

2

The next two lemmas establish the properties of reader/writer in its \propagate" phase when

they use a con�guration index that is not current.

Lemma 5.12 If a read or write operation � at processor p is in its \propagate" phase using the

primitive oid

p

with cix-used

p

that is not current, and the recon�gurer is in its \query-install" phase

using the primitive oid

r

, then either:

(a) 8W 2 cfg-used

p

: cix-used

p

< max

i2W

fFill(i; oid

p

):cix:bidg , or

(b) 8R 2 Cfg.Act:read

r

: �(�) � max

i2R

fFill(i; oid

r

):tagg .

26

Proof: By induction on the length of any execution of the composition of the reader/writer and

the recon�g automata.

Base case: the execution is of length 0. Since there are no operations in progress, this case is

vacuously satis�ed.

Inductive step: assume the invariant holds for all executions consisting of k transitions of the

composed automata, and we now consider an execution of length k + 1.

The following transitions have the potential of a�ecting the invariant:

submit of \propagate" of � : Since cix-used

p

is not current, the clause (a) follows from Lemma 5.6(a).

submit of \query-install" : Prior to this transition, � is still in the \propagate" phase with cix-used

p

not current. Therefore Lemma 5.11 applies. If the clause 5.11(a) is true, then the clause (a) is

satis�ed.

Assume the clause 5.11(b) is true. Then by the intersection property of the read and write

quorums in Cfg.Act

r

, the clause (b) is satis�ed.

2

Lemma 5.13 If a read or write operation � at processor p is in its \propagate" phase using the

primitive oid

p

with cix-used

p

that is not current, and the recon�gurer is in its \propagate" phase

using the primitive oid

r

, then either:

(a) 8W 2 cfg-used

p

: cix-used

p

< max

i2W

fFill(i; oid

p

):cix:bidg , or

(b) �(�) � �(oid

r

) .

Proof: By induction on the length of any execution of the composition of the reader/writer and

the recon�g automata.

Base case: the execution is of length 0. Since there are no operations in progress, this case is

vacuously satis�ed.

Inductive step: assume the invariant holds for all executions consisting of k transitions of the

composed automata, and we now consider an execution of length k + 1.

The following transitions have the potential of a�ecting the invariant:

submit of \propagate" of � : Since cix-used

p

is not current, the clause (a) follows from Lemma 5.6(a).

submit of \propagate" by the recon�gurer : Prior to this transition, � is in its \propagate" phase

and the recon�gurer is in its \query-install" phase. Therefore Lemma 5.12 applies. If the

clause 5.12(a) is true, then the clause (a) is satis�ed. Else the clause 5.12(b) is true.

2

We now show the main multi-part invariant:

Lemma 5.14 In all reachable states:

I1 8� 2 completed,

(a) if the recon�gurer is in its recon-idle phase :

9W 2 Cfg.Act:write

r

: 8i 2 W : �(�) � tag

i

(b) if the recon�gurer is in its query-install phase having invoked � using identi�er oid

r

: 8R 2

Cfg.Act:read

r

: �(�) � max

i2R

fFill(i; oid

r

):tagg

(c) if the recon�gurer is in its propagate phase having invoked � using identi�er oid

r

and the

tag �(recon) : (�(�) � �(recon))^ (8i 2 op(oid

r

):acks : �(recon) � tag

i

)

I2 8� =2 completed,

(a) If �

0

�

cp

� and � at processor p is in the query phase having invoked � using identi�er oid,

then for any R 2 cfg-used:read

p

, then

(1) �(�

0

) � max

i2R

fFill(i; oid):tagg, or

(2) cix-used

p

< max

i2R

fFill(i; oid):cix:bidg.

27

(b) If � is in the propagation phase having invoked � using identi�er oid, then

(1) cix-used

p

is current, or

(2) 9W 2 Cfg.Act:write

r

: 8i 2 W : �(�) � tag

i

, or

(3) 8W 2 cfg-used:write

p

: cix-used

p

< max

i2W

fFill(i; oid):cix:bidg.

I3 If �

1

�

cp

�

2

and �(�

2

) is de�ned, then

(a) �(�

1

) � �(�

2

) when �

2

is a read,

(b) �(�

1

) < �(�

2

) when �

2

is a write.

Proof: By induction on the length of any execution of the composition of the reader/writer and

the recon�g automata.

Base case: the execution is of length 0. Since there are no completed operations, this case is

vacuously satis�ed.

Inductive step: assume each of the three invariants of the lemma hold for all executions consist-

ing of k transitions of the composed automata, and we now consider an execution of length k + 1.

The inductive step is divided into three parts:

Inductive step for I1a: Only the following actions can a�ect the invariant:

respond to \propagate" : Here we only need to consider a client-level operation � that becomes

completed as the result of the respond of the propagation phase of �. Let oid be the identi�er

of the query phase. From the preconditions to respond, 9W 2 cfg-used:write

p

such that W �

op(oid):acks. The operation becomes completed as the e�ect of the transition i� cix-used

p

�

z:bid . By Lemma 5.3, if i 2 op(oid):acks then �(oid) = �(�) � tag

i

. If cix-used

p

is current then

the invariant I1a is re-established. Else if cix-used

p

is not current then we use the inductive

hypothesis I2b. Since � completes, then the clause (2) must hold, i.e., 9W 2 Cfg.Act:write

r

:

8i 2 W : �(�) � tag

i

and I1a is re-established.

submit of \recon-done" : Prior to this transition, the recon�gurer is in its \propagate" phase. Using

the inductive hypothesis for I1c, we have �(�) � �(recon). Together with the e�ects of the

transition and Lemma 5.10 this re-establishes I1a.

deliver or ack : The invariant is preserved by monotonicity of tags and indices.

Inductive step for I1b: Only the following actions can a�ect the invariant:

respond to \propagate" of � : Prior to this transition, � is in its \propagate" phase using the

primitive oid

p

and con�guration index cix-used

p

and the recon�gurer is in its \query-install"

phase. We distinguish two cases

� cix-used

p

is current: Here Lemma5.7 applies. Since � completes, only the clause 5.7(c) is

true. This is su�cient to re-establish I1b.

� cix-used

p

is not current: Here Lemma5.12 applies. Since � completes, only the clause 5.12(b)

is true. This is su�cient to re-establish I1b.

submit of \query-install" : Prior to the transition, � 2 completed and the recon�gurer is in its

\recon-idle" phase. We use the inductive hypothesis for I1a and the intersection property of

read and write quorums and De�nition 5.2 of Fill to re-establish I1b.

Inductive step for I1c: Only the following actions can a�ect the invariant:

respond to \propagate" of � : Prior to this transition, � is in its \propagate" phase using the

primitive oid

p

and con�guration index cix-used

p

and the recon�gurer is in its \propagate" phase.

We distinguish two cases

28

� cix-used

p

is current: Here Lemma5.8 applies. Since � completes, only the clause 5.8(2) is

true. This is su�cient to re-establish I1c.

� cix-used

p

is not current: Here Lemma5.13 applies. Since � completes, only the clause 5.13(b)

is true. This is su�cient to re-establish I1b.

submit of \propagate" by the recon�gurer : Prior to the transition, � 2 completed and the re-

con�gurer is in its \query-install" phase. We use the inductive hypothesis for I1b and Lem-

maLemQ7 to re-establish �� � �(recon) and thus I1c.

Inductive step for I2a: Only the following actions can a�ect the invariant:

submit of \query" : Consider a new client-level operation �

2

and the submit with identi�er id of

its query. Assume that there is also an operation �

1

such that �

1

�

cp

�

2

(if no such �

1

exists

then I2a is preserved).

If cix-used

p

is current then using the inductive hypothesis for I1a we have 9W 2 Cfg.Act:write

p

:

8i 2 W : �(�

1

) � tag

i

. This establishes the clause I2a(1).

Else cix-used

p

is not current. By Lemma 5.5 9W 2 Cfg.Act:write

p

: 8i 2 W : cix:act

i

>

cix-used

p

. By the intersection property of read and write quorums, this establishes the clase

I2a(2).

In either case the invariant I2a is re-established.

deliver : We only need to consider the actions of the type deliver(h\query" i, id)

p

. From the

code of the composed automata: op(oid):dlv

(k+1)

= op(oid):dlv

(k)

[fig and ack-q

(k+1)

i

= ack-

q

(k)

i

� hhval

i

; tag

i

i; idi. The e�ects of this on I2a is to move, for the processor i, is to place

the value of tag

i

on the ack-q

i

. This does not change the set of values used to compute the

maximum in I2a and preserves the invariant.

ack : We only need to consider the actions of the type ack(hval; tagi; id)

i

in the query phase.

From the code of the composed automata: ack-q

(k+1)

i

= tal(ack-q

(k)

i

) and op(id):ack[i]

(k+1)

=

hval; tagi. This does not change the set of values used to compute the maximum in I2a, since

the e�ects of this is to set op(id):acc[i] to the tag that was previously in the queue ack-q

i

. The

invariant is re-established.

respond to \query" : Since either the clause (1) or (2) is true prior to this transition, it is still so

as the result of the transition.

Inductive step for I2b: Only the following action can a�ect the invariant:

submit of \propagate" : If cix-used

p

is current then the clause (1) is established.

Else cix-used

p

is not current. Here, by Lemma 5.5 the clause (3) is established.

submit of \recon-done" : If some � is in its \propagate" phase at processor p, then cix-usedp is no

longer current. Prior to the \recon-done", the recon�gurer is in its \propagate" phase, and so

is �. We consider two cases:

� cix-used

p

is current prior to \recon-done": Therefore Lemma 5.8 applies.

If the clause 5.8(1) is true prior to \recon-done", then it is still the case. This establishes

the clause I2b(3).

If the clause 5.8(2) is true prior to \recon-done", then �(oid

r

) � �(�). Together with

Lemma 5.10 and the e�ects of the submit of \recon-done" implies 9W 2 Cfg.Act:write

r

:

8i 2 W : �(�) � tag

i

. This establishes the clause I2b(2).

29

� cix-used

p

is not current prior to \recon-done": Here � is in its propagate phase and

Lemma 5.13 applies. If the clause 5.13(a) is true, then the clause I2b(3) is established.

Else the clause 5.13(b) is true. Together with Lemma 5.10 and the e�ects of the submit

of \recon-done" implies 9W 2 Cfg.Act:write

r

: 8i 2 W : �(�) � tag

i

. This establishes the

clause I2b(2).

respond to \propagate" : If cix-used

p

is current, then clause (1) is established.

Assume cix-used

p

is not current. Using the induction hypothesis, if I2b(3) is true prior to the

transition, then it is still true after. Else if I2b(2) is true prior to the transition, then it is still

true.

The invariant I2b is re-established.

Inductive step for I3: Only the following action can a�ect the invariant:

respond to \query" : Here for some client-level operation �

2

, the respond for a query de�nes new

�(�

2

). Prior to the respond, �

2

was in the query phase, and we use the inductive hypothesis

I2a.

If the clause I2a(2) is true prior to the transition, then �(�

2

) is still unde�ned. If the clause

I2a(1) is true prior to the transition, then �(�

2

) is de�ned using a read quorum R 2 cfg-

used:read

p

as max

i2R

fFill(i; oid):tagg.

The above maximum is the value of the variable t used in the computation of �(�

2

) in the

e�ects of respond. When �

2

is read, this results in �(�

2

) = t, and when �

2

is write, this results

in �(�

2

) > t. Thus, for any �

1

�

cp

�

2

, if �

2

is a read, then �(�

1

) � �(�

2

), and if �

2

is a write,

then �(�

1

) < �(�

2

). Therefore I3 is maintained.

2

Lemma 5.15 In any execution, if �

1

�

c:p:

�

2

, then (i) if �

2

is a read operation, then �(�

1

) �

lex

�(�

2

), and (ii) if �

2

is a write operation, then �(�

1

) <

lex

�(�

2

).

Proof: Using Lemma 5.14(I3) and Lemma 5.2. 2

We now use by Lemma 4.1 of [8]. (In what follows, we let � stand for some read operation, and

! stand for some write operation as needed.)

Let � be any sequence of read and write operations � containing no incomplete operations.

We de�ne the (irre
exive) partial order PO = h�;� i on the operations by letting: �

1

� �

2

for

�

1

; �

2

2 �, if

(a) �(�

1

) <

lex

�(�

2

), or

(b) �

1

is a write and �

2

is a read such that �(�

1

) =

lex

�(�

2

).

Theorem 5.16 � satis�es the atomicity property.

Proof: Follows the proof of Theorem 4.5. 2

30

