
What Good are Models and What
Models are Good?

Fred B. Schneider

Huygens Systems Research Laboratory
Universiteit Twente
Enschede

1

Understanding Complex Systems

Understanding complex systems or complex phenomena is
hard.

Our intuition does not help when things become too
complicated.

The scientific approach to understanding complex phenomena
is

� Experimental Observation
� Modelling and Analysis

2

Computer Science is an Engineering Discipline

Is Computer Science really science?

If science is — as the OED says – ‘the systematic study [� � �] of
substances, animal and vegetable life, and natural laws,’ then
computer science isn’t.

Computer science is an engineering discipline and involves
the systematic study of building information-processing
machines.

3

Engineering Method

A specification describes what has to be built.

The engineering process needs to produce an implementation
and it needs to validate the implementation; i.e., check
whether it conforms to the specification.

4

Specification

A specification describes what has to be built in terms of
functionality — the functional specification describes what the
system must do.

It can also describe constraints on the process of building the
system (e.g., it has to be finished in a week), or on the cost of
the system, or on the environment (e.g., total dummies have
to be able to operate it).

5

Specifications

Some specifications are very exact, others are very vague.

Often, exact specifications can only be given for very small
systems, such as, for instance, systems that do sorting or
solve the travelling salesman problem.

Large problems, such as file servers, may have parts of the
specification described in exact terms (e.g., correctness), but
other parts can be described very vaguely (e.g., performance
or fault tolerance).

6

Exact Specifications

Systems with an exact specification can be and should be
designed using rigourously formal design processes.

In distributed operating systems research, however, such
systems are rarely encountered.

7

Design

A design describes how a system will meet its specifications.

An implementation is a realization of a design.

8

Experimental Observation

Validation can be done by testing, by using formal-proof
methods, by code inspection, etc.

Testing in engineering can be likened to experimental
observation in science. It is an essential step in validating
a design.

9

Synchronous and Asynchronous Systems

A distributed system is synchronous if

� Bounded relative processing speeds
� Bounded message transmission delays

It is asynchronous if no bounds exist

In a synchronized system it is possible to synchronize clocks

10

The Role of Failure

Independent failure ignored:

“You know you have a distributed system when the
crash of a computer you’ve never heard of stops you from
getting any work done.” L. Lamport, 1987

Independent failure exploited:

� increased availability
� increased reliability
� increased autonomy

11

The Role of Failure

Unreliable Connections:

Cannot distinguish down from disconnected

12

The Two Army Problem

Army A

Army B

Army C

� Messengers can be intercepted
� Either both armies attack or both armies retreat

Is there a protocol?

13

A Shortest Protocol

A to B:: “Attack!”

B to A:: “Got Message ‘Attack!’ ”

A to B:: “Got Message ‘Got Message “Attack!” ’ ”

...:

A to B:: Last Message ...

14

Failure Classification

Crash Failures: Processor crashes (and is rebooted)

Omission Failures: Message loss, bad CRC on disk blocks

Performance Failures: Overloaded operating system, network
congestion

Timing Failures: Fast or slow clock, response comes too early
or too late

Response Failures: Wrong response (2 � 2 � 5), message
altered on the wire

15

Processor Failure Classification

Byzantine: Arbitrary (or even malicious) failures

Fail Silent: System stops responding

Fail Stop: System stops responding and other systems can
tell

Failure masking: If a depends on b and a provides service
despite b’s failure, then a masks b’s failure.

Fail-stop failures are easier to mask than fail-silent ones and
fail-silent failures are easier to mask than Byzantine failures.

16

Crash Failure Classification

Amnesia Crash: All state is lost

Partial Amnesia Crash: Some state is lost

Pause Crash: Finite compact sequence of omissions

Halting Crash: Infinite sequence of omissions

17

Fault Tolerance

A system is t fault tolerant if it satisfies its specification,
provided that no more than t of those components becaome
faulty during some interval of interest. Fred Schneider

18

Example: Transactions with Two-Phase Commit

Coordinator Participant 1 Participant 2

Prepare(T)
Prepare(T)

Force T’s updates Force T’s updates

Yes/No
Yes/No

All Yes --> Commit
 else Abort

Force Decision

Commit/Abort
Commit/Abort

Force Decision Force Decision

Ack
Ack

19

Two Phase Commit

� Participants lose autonomy after prepare — must wait for a
decision from coordinator.

� Cannot abort uncommitted transactions after a crash; must
restore locks and versions.

� Vulnarable to partitions and crash of coordinator: correct
but blocks.

� Alternative: three-phase commit (and variations)

20

