
REPLICATION TECHNIQUES FOR SPEEDING UP
PARALLEL APPLICATIONS ON DISTRIBUTED

SYSTEMS

Henri E. Bal *
M. Frans Kaashoek

Andrew S. Tanenbaum

Dept. of Mathematics and Computer Science
Vrije Universiteit

De Boelelaan1081a
1081 HV Amsterdam

The Netherlands

Jack Jansen

Centrumvoor Wiskundeen Informatica
Kruislaan 413

1098 SJ Amsterdam
The Netherlands

Email: bal@cs.vu.nl

333333333333333333
*This research wassupportedin part by the Netherlands organization for scientific research (N.W.O.)undergrant
125-30-10.



- 2 -

SUMMARY

Most methodsfor programmingloosely-coupledsystems are based on message-passing.Recently,
however,methodshave emerged based on ‘‘virtually’’ sharing data. Thesemethodssimplify distri-
buted programming, but are hard to implement efficiently, asloosely-coupledsystems do not contain
physicalshared memory. Weintroducea new model,the shared data-object model, that eases the
implementation of parallel applications onloosely-coupledsystems, but canstill be implemented effi-
ciently.

In our model, shared data are encapsulated in passive data-objects, which are variables of user-
defined abstract data types. To speed upaccessto shared data, data objects are replicated. This abil-
ity to replicate objects is a significant difference with other object-based models (e.g., Emerald and
Amber). Also, by replicating logical objects rather thanphysicalpages, our model has many advan-
tages over shared virtual memory systems.

This paper discusses the design choicesinvolved in replicating objects and their effect on per-
formance. Important issues are: how to maintain consistencyamongdifferent copies of an object;
how to implement changes to objects; and which strategy for object replication to use. We have
implemented several options to determine which ones are most efficient.

1. INTRODUCTION

Distributed systems are becoming increasinglypopularfor running large-grain parallel
applications. These systems are easy to build and extend, and offer a good price/performance
ratio. The issue of how to program parallel applications that use manyloosely-coupled
machines isstill open. Traditional programmingmethodsare based on some form of
message-passing [1]. Morerecently,methodshave emerged based on sharing data. Since
distributed systems lack shared memory, this sharing of data is logical, notphysical.

For many applications,support for shared data makes programming easier, since it
allows processes on different machines to share state information. The main problem, how-
ever, is how to implement it efficiently on memory-disjunct architectures. In this paper we
introducea new model providing shared data and we discuss efficient implementation tech-
niques for this model, based ondata replication.

Several systems exist that use replication for implementing shared data. Probably the
bestknown example is Kai Li’s Shared Virtual Memory (SVM) [2]. This system gives the
user theillusion of a shared memory. It storesmultiple read-only copies of the same page on
different processors. Each processor having acopycan read the page as if it were in normal
local memory. Other systems providing replicated shared data are surveyed in [3, 4].

The model studied in this paper is called theshared data-object model. It is intended
for implementing parallel applications on distributed systems. The unit of replication in our
model is not dictated by the system (as in the SVM), but is determined by the programmer.
Shared data are encapsulated in passivedata-objects*, which are variables of user-defined
abstract data types. An abstract data type has two parts:

d A specification of the operations that can be applied to objects of this type.

d The implementation, consisting of declarations for the local variables of the
object and code implementing the operations.

Instances (objects) of an abstract data type can be createddynamically,eachencapsulating
the variables defined in the implementation part. These objects can be sharedamongmulti-
ple processes, typicallyrunningon different machines. Each process can apply operations to
3333333333333333
* We will sometimes use the term “object” as a shorthand notation for data-objects. Note, however, that unlike in most parallel object-based sys-

tems, objects in our model are purely passive.



- 3 -

the object, which are listed in the specification part of the abstract type. In this way, the
object becomes a communication channel between the processes that share it.

The shared data-object model uses two important principles related to operations on
objects:

1. All operations on a given object are executedatomically (i.e., indivisibly).
To be more precise, the model guaranteesserializability [5] of operation
invocations:if two operations are executed simultaneously, then the result is
as if one of them is executed before the other; the order ofinvocation,how-
ever, isnondeterministic.

2. All operations apply tosingle objects, so an operationinvocationcan modify
at most one object. Makingsequences of operations on different objects
indivisible is theresponsibilityof the programmer.

These two principles make the model easy tounderstandand efficient. The first principle
makes our modelfundamentallydifferent from Agora [6] and the problem-oriented shared
memory [7], which do not have this consistency constraint. Thesecondprinciple makes the
model efficient to implement, since it avoids expensive atomic transactions onmultiple
objects stored on different processors.

In our experience thus far, the model provides sufficientsupport for many parallel
applications. Distributed applications like banking and airline reservation systems can profit
from moresupport(e.g., atomicmulti-objectoperations), but such applications are not our
major concern here. Also, parallel applications onclosely-coupled (shared-memory) systems
can use a finer grain of parallelism (e.g., parallelism within objects), but again these are not
the type of applications we are interested in here. These issues are addressed by other
models, such as atomic transactions and concurrent object-oriented programming and are not
the topic of this paper.

Our model also differs from theobject-based modelssupportedby Emerald [8] and
Amber [9]. Objects in theselanguagesare migrated between processors, but are not repli-
cated. An Emerald object, for example, can be active—it may contain a process—andshould
not be replicated. As another important difference, our model completely hides the distribu-
tion of objects and lets the implementation determine where to store (and replicate) objects.
Emerald and Amberultimately rely on the programmer to specify the most efficient location
for an object.

We have designed a new programminglanguagecalled Orca, based on this model.
Orca is intended for implementing distributeduser applications. In particular, thelanguage
is intended for parallel, high-performance applications. Orca isnot an object-oriented
language.Rather, it is a simple, procedural, type-securelanguage.It supportsabstract data
types, processes, a variety of data structures,modules,and generics.

Various implementations of Orca on different hardware configurations have been in use
for three years. Thelanguage, its implementation, and use are described else-
where [10, 11, 12].

In the rest of this paper wewill studyreplication techniques for the shared data-object
model. In Section 2, wewill describe thespaceof possible design choices. The most impor-
tant issues are (1)updatingversus invalidation of copies, (2) the protocols used forupdating
or invalidating copies, and (3) the degree of replication. As wewill see, the best choice
depends on the communicationprimitives supportedby the underlyingdistributed system.
We will studytwo important cases. In Section 3, wewill look at an implementation of the
model using point-to-point message passing. In Section 4, wewill discuss asecondimple-
mentation, based on reliablemulticastmessages. The two implementations cover a broad



- 4 -

spectrum of design choices. In Section 5, wewill measure the performance of the two imple-
mentations on distributed hardware. In Section 6, wewill present our conclusions and com-
pare our work with that of others.

2. DESIGN SPACE

The technique of data replication in distributed systems is typically used to increase the
availability andreliability of the data in the presence of processor failures and network parti-
tions [13, 14, 15, 16, 17]. For example, ifmultiple copies of the same logical data are stored
on different processors, the data canstill beaccessedif some of the processors are down.

In contrast, we use replication primarily for speeding upaccessto shared data and for
decreasing the communication overheadinvolved in sharing data. The general idea is to
replicate an object on those processors that frequentlyaccessit. A copymay beaccessedby
all processesrunningon the same processor,without sending any messages, as shown in Fig-
ure 1.

process-1

process-n

copy
of
X

.

.

.

CPU 1

process-1

process-n

copy
of
X

.

.

.

CPU 2

n e t w o r k

Figure 1. Replication of data objects in a distributed system. Each processor containsmultiple processes
runningin pseudo-parallel.These processesbelongto a single job and run in a single addressspace,so
they can share copies of objects.

It is useful todistinguishbetweenread operations andwrite operations on replicated
data: a read operation does not modify the data, while a write operation (potentially)
does [15]. For our model, we define a read operation as an operation that does not change
the internal data of the object it is applied to.

The primary goal of replicating shared data-objects is to apply read operations to a local
copy of the object, if available,without doing any interprocess communication. On a write
operation, all copies of the object except the one just modified must be invalidated or
updated. To deal with this problem, communicationwill be needed, so write operations
involve communication.

This scheme is a departure from techniques that replicate foravailability. These tech-
niques in general need interprocess communication for every read and write operation. With
our approach, read operations are executed locally. Since, for many parallel applications,
read operations far outnumber write operations [18], this is a significant advantage.

The secondgoal of replication is to increase parallelism. If an object is stored on only
one processor,eachoperation must be executed by that processor. This processor may easily
become a sequentialbottleneck. With replicated objects, on the other hand, all processors
can simultaneously read their own copies. Since a read operation does not change its object,
it can be executed concurrently with other read operationswithout violating the serializabil-
ity principle.



- 5 -

The effectiveness of replication depends on many factors. One important factor is the
ratio of read and write operations on objects, which is determined by the user application.
Another factor is the overhead in execution time for reading orwriting objects. These costs
are determined by the implementation of the model. They depend on:

d The actionundertakenafter eachwrite. If eachwrite operationinvalidates
all copies, a subsequent read operationwill need to do communication. If, on
the other hand, all copies areupdated, this disadvantage disappears, but write
operationswill become more expensive

d The protocol used for invalidating orupdatingcopies. Many protocols exist
(e.g., owner protocols, two-phaseupdateprotocols), each with their own
advantages and disadvantages.

d The replication strategy. If an object is replicated everywhere,eachread
operation can be applied to a localcopy,which is much cheaper than doing
the operation remotely. On the other hand,writing an object that has many
copieswill be more expensive thanwriting a non-replicatedobject.

In the following subsections wewill studythese design choices in more detail.

2.1. Invalidation versus Updating of Copies

If a write operation is applied to a replicated object, its copieswill no longerbe up-to-
date. There are two different approaches for dealing with this problem. The first scheme is
to invalidate all-but-one copies of the object. Thesecondscheme is toupdate all copies in a
consistent way.

With invalidation (orwrite-once), eachobject isinitially stored on only one processor,
sayP. If another processor wants to do a read operation on the object, it fetches acopyof the
object fromP. In this way, the object automatically gets replicated. On a write operation,
all-but-one copies are thrown away.

The alternative scheme is toupdate(or write-through) all copies of an object aftereach
write operation. A problem here is how toupdateall copiesin a consistent way. The shared
data-object model guarantees that all operations on objects are executed indivisibly. Hence,
updatingof all copiesshouldappear as one indivisible action. On systemssupportingonly
point-to-point communication, this is hard to do. In essence, a2-phase protocol is needed, as
we will see. If reliable indivisiblemulticastmessages are available,updatesbecome much
simpler, as wewill discuss in Section 4.

There are several important differences between invalidation andupdateschemes. For
one thing, keeping copies up-to-date is more complicated than invalidating copies, so the
updatescheme may require more messages to implement a write operation. Also,update
messageswill be larger than invalidation messages. An invalidation message merely needs
to specify the object to be invalidated. Anupdatemessagewill either contain the new value
of the object or the parameters of the write operation, whichever is more efficient.

On the other hand, theupdatescheme also has several advantages. If an object is read
after it has beenwritten, the invalidation schemewill have to fetch the current value of the
object from a remote processor. With theupdatescheme, this valuewill still be stored
locally, so no messages need be sent at all.

In conclusion, which of the two schemes is most efficient depends on:

1. The costs of theupdateprotocol.

2. The size of the object.

3. The size of the parameters of the write operation.



- 6 -

4. Whether the write operation is followed by a read operation or by another
write operation.

Kai Li argues that, for the Shared Virtual Memory system, anupdatescheme is inappropri-
ate [19]. Inadditionto being almost impossible to implement, itwill cause a page fault on
every write instruction. In our model, however, this disadvantage is far less severe. Users
can define write operations of any complexity on shared objects. As replicas areupdated
after eachoperation—rather thaneachmachineinstruction—updatingwill be less expensive
than in the SVM. Inaddition,the SVM would require a whole page to betransmittedafter
every write. With our approach, shared objects frequently are much smaller than a page;
furthermore, large objects can usually beupdatedefficiently by transmittingthe operation
and its parameters, instead of the new value of the object.

2.2. Invalidation and Update Protocols

The protocol used for invalidating orupdatingcopies of objects must make sure that
simultaneous operations on the same object are executed indivisibly. The simplest way to
implement this is to serialize all write operations (i.e., to execute them one at a time, in a
mutually exclusive way). This is the approach taken by all our implementations.

In an invalidation scheme, mutual exclusion can be achieved by selecting onecopy of
eachobject as theprimary copy. In the simplest scheme, all write operations are directed to
the processor containing the primarycopy. On receivinga write operation, the processor
first invalidates allsecondarycopies and then applies the operation to the primarycopy.
When a processor executes a read operation, it locates the primarycopy and asks for the
value of the object. A moresophisticatedscheme allows the primarycopyto move from one
processor to another. Kai Li compares several of these schemes and analyzes their perfor-
mance [19].

In anupdatescheme, mutual exclusion can be achieved in at least two ways. One way
is to appointonecopy of eachobject asprimary copy and direct all write operations to the
processor containing the primarycopy. This nodewill execute the write operations one by
one and propagate their effects to all other copies, calledsecondary copies. An alternative
approach is to treat all copies as equals and use adistributed protocol that takes care of
mutual exclusion. With such a protocol,eachprocessor caninitiate a write operation on an
object. Coordination is needed to prevent interference of simultaneous write operations on
the same object.

2.3. Replication Strategies

Replicating a shared data-object is only useful if it is read relatively often. Thus, simply
replicating all objects on all processors is unlikely to be efficient. In general, we can distin-
guish between severalstrategies for replication:

No replication: Each object is stored on one specific processor.
Full replication: Each object is replicated on all processors.
Partial replication: Each object is replicated on some of the processors, based on

(a) compile-time information,
(b) run-time information, or
(c) a combination of both.

The first approach is used in most parallel object-basedlanguages.In this case, all opera-
tions on a given object are executed by the same processor. For many applications, this may
easily lead to sequentialbottlenecksand high communication overhead.



- 7 -

The secondapproach indiscriminately replicates all shared objects on all processors. It
will be most effective for architecturessupportingfast reliablemulticast messages, since
thesewill allow efficientupdatingor invalidation of all copies.

The third strategy selectively replicates objects, based on information gathered by either
the compiler, the run time system (RTS), or both. With this approach, several scenarios are
possible. For example, the compiler may disable replication of objects that do not have any
read operations at all. Also, if a processor does not contain any processes that share a given
object, it isunnecessaryto store acopyof the object on that processor.

The most advanced scheme based on partial replication is to let the RTS decidedynami-
cally where to replicateeachobject. For example, the RTS may keep track of read and write
operations on an object issued byeachprocessor, to determine which processors frequently
read the object. If the read/write ratioexceedsa certain threshold, a replica of the object is
createddynamicallyon that processor. This strategy is most suitable if communication is
slow, so the overhead of maintaining statistics is worthwhile.

2.4. Discussion

We have discussed several design choices related to replication of objects. In general, it
is hard to determine which oneswill give the best overall performance. Furthermore, dif-
ferent types of distributed systems may require different design decisions. In particular, the
communicationprimitivesprovided by the system are very important.

In the next two sections wewill examine two existing implementations of the shared
data-object model. Each implementation is a run time system for Orca. Both RTSs use the
same hardware: a collection of 10MC68030CPUsconnectedby a 10Mbit/secEthernet®,
but use different communicationprimitivesand consistency protocols.

The first RTS uses a ratherconventionalsoftware organization, based on point-to-point
message passing and 2-phaseupdateprotocols. Itsnovelty is its dynamicreplication strategy
based on run-time statistics.Althoughstatistics are used frequently in distributed data bases,
they are uncommon in distributed programminglanguages(the only exception weknow of
is [20]).

ThesecondRTS is based on anovelmulticastprotocol [21]. This protocol provides the
necessarysemantics for keeping all copies ofeachobject consistent. Also, it is optimized for
parallel applications, in which processes communicate fairly often.

Both run time systems are implemented on top of the Amoeba distributed operating sys-
tem [22] and use the FLIP routing protocol [23], whichsupportspoint-to-point communica-
tion as well asmulticast.

3. AN IMPLEMENTATION USING POINT-TO-POINT COMMUNICATION

The first run time system we describe uses only point-to-point messages (Amoeba
Remote Procedure Call) for interprocess communication. Below, wewill look at eachof the
three design issues discussed in Section 2 and motivate our choices. In Section 5.1 wewill
describe the performance of this system.

3.1. Invalidation versus Updating

The first issue is the choice between an invalidation or anupdatescheme. With point-
to-point messages it is expensive toupdateall copies of an object in a consistent way. Simul-
taneous write operations on the same object can be serialized using a primarycopyprotocol,
as described in Section 2.2. A harder problem is how to achieveserializabilityif a sequence
of operations ondifferent objects is executed.



- 8 -

Supposea program uses two objects, X and Y, that have their primary copies on dif-
ferent processors. If X and Y arewritten simultaneously, either all processorsshould
observe the change to X first or all processorsshouldobserve the change to Y first. Under
no circumstancesshouldthese two events be mixed, since that would violateserializability.
Becauseof this restriction, it doesnot suffice to implement a write operation by sending it to
theprimary-copysite and having this site forward it to thesecondary-copysites [12].

The problem can be solved using a more complicated and expensiveupdateproto-
col [12]. Therefore,updatingcopieswill be expensive, so it is not clear whetherupdating
will be more efficient than invalidation. We have decided to implement both options and to
determine experimentally which of the two is best.

3.2. The Protocols

In this section wewill discuss the protocols for invalidating orupdatingcopies, using
point-to-point messages.

The Invalidation Protocol

The invalidation protocol is quite simple. A process that wants toinvoke a write operation
on a shared object sends the operation and the parameters to the processor containing the pri-
mary copyof the object. This processor locks the object and sends point-to-pointinvalidate
messages to all processors containing asecondarycopy. If a secondary-copysite receives
this message, it throws away its localcopy of the object and sends back anacknowledge-
ment. Assoonas theprimary-copysite hasreceivedall acknowledgements,it updatesand
unlocks the primarycopy. This protocol requires two messages foreachsecondarycopy. In
addition, if the primary copy is not on theinvoker’s processor, two more messages are
needed forupdatingthe primarycopy.

CPU-1

X

primarycopy

CPU-2

initially

CPU-1

X

primarycopy

CPU-2

X

secondarycopyfetch object

X CPU-2 reads X

CPU-1

X

primarycopy

CPU-2
invalidate X

okay CPU-1 writes X

Figure 2. The invalidation protocol.Initially, only CPU-1 contains acopyof X, the primarycopy. When
CPU-2 wants to read X, it sends afetch-object message to theprimary-copysite to obtain a(secondary)
copy.Upona write operation, thesecondarycopies are deleted.

If a processP wants to do a read operation on an object of which it does nolongerhave
a localcopy, it sends afetch-object message to theprimary-copysite (see Figure 2). If this
processor has not yetreceivedall acknowledgements,the primarycopywill be locked andP
will temporarily be blocked. When the object is unlocked, theprimary-copysite sends a new
copyto P.



- 9 -

The Update Protocol

Updating all copies of an object in a consistent way is more difficult than invalidating them.
The real problem is to guaranteeserializability,as discussedabove. We solve this problem
using a2-phase primary copy updateprotocol. The protocolupdatescopies by sending the
operation and its parameters to thesecondary-copysites. For most programs, this is more
efficient thantransmittingthe new value of the object.

During the first phase, the primarycopy of the object is locked and alock-and-update
message is sent to allsecondary-copysites. This message specifies an object, an operation to
be applied to the object, and the parameters of the operation. When a sitereceivesthe lock-
and-update, it locks the localcopyof the object and applies the operation to it. Next, it sends
an acknowledgementto theprimary-copysite, whilestill keeping its localcopy locked. In
the mean time, theprimary-copysite waits for allacknowledgementsand then sends an
unlock message to all sites. Theunlock message causes all copies of the object to be
unlocked.

The 2-phaseupdateprotocol guarantees that no process uses the new value of an object
while other processes arestill using the old value. The new value is not useduntil thesecond
phase. When thesecondphase begins, all copies contain the new value. Simultaneous
write-operations on the same object are serialized by locking the primarycopy. The next
write-operation may start before allsecondarycopies are unlocked. New requests tolock-
and-update a secondarycopyare not serviceduntil theunlock message generated by the pre-
vious write has been handled.

This protocol requires three reliable messages foreachsecondarycopy. In the first
phase, one request tolock-and-update the object is sent plus anacknowledgementfor this
request. In thesecondphase, anunlock message is sent. Toupdatean object whose primary
copy is located on a remote processor, two extra reliable messages are needed. Since our
implementation uses Amoeba RPC rather than 1-wayasynchronousmessages, there is also
some overhead in sending reply messages for the RPCs. The implementation is optimized,
however, to overlap regular computations with sending reply messages, so the latter overhead
is small.

The usage of a 2-phaseupdateprotocol in a languageRTS is certainly not new.
Languagesbased on atomic transaction (e.g., Argus [24]) also use 2-phase protocols. In our
model, however, a 2-phase protocol is used forupdatingcopies of thesame object, rather
than forupdatingmany different objects. Our implementation does not have to deal with the
case that part of the objects are locked or that part of the operations fail. In particular, our
RTS does not have to maintainmultiple versions of objects. Therefore, our implementation
is much simpler than that of transaction systems.

3.3. Replication Strategy

With the aboveprotocols, the costs of invalidating orupdatingN copies of an object
will grow linearly withN. As a result, itwill be expensive to replicate all objects on all pro-
cessors. Our implementation therefore uses a partial replication strategy, based on run time
statistics. Although this incurs some overhead on operations, communication costs can be
reduced significantly. As communication in distributed systemsstill is expensive (on the
order ofmilliseconds),this approach is attractive.

Initially the system contains onecopy for eachobject: the primarycopy. If some pro-
cessor frequently tries to read the primary, asecondarycopy will be created, so that future
read operations can be applied to the localcopywithout sending any messages. Write opera-
tions are always directed to the primarycopy.



- 10 -

In the invalidation scheme the owner of the primarycopy invalidates allsecondary
copies before performing the write operation. A subsequent read operation on the same
object always has to go to the processor containing the primarycopy. So, the number of
secondarycopies of a given object is determined by its read/write pattern.

In the updatescheme, the processor containing the primarycopy of an object keeps
track of the number of remote read and write operations issued byeachprocessor. The over-
head of maintaining these statistics is negligible compared to the total costs of remote opera-
tions. Assoonas the read/write ratio of a remote processorexceedsa certain threshold, the
RTS creates acopyof the object on that processor.

Each processor having asecondarycopykeeps track of the ratio of local read operations
and (global) write operations. If the overhead inupdatingthecopyexceedsthe time saved in
doing read operations locally, the RTS discards the localcopy. From then on, all operations
on the objectwill bedoneremotely.

With both the invalidation andupdateprotocol, all write operations are forwarded to the
processor containing the primarycopy of the object. If the RTS discovers that an object is
written frequently by a machine different from the one containing the primarycopy,the RTS
may decide tomigrate the primarycopy to that machine. Again, statistics are used to deter-
mine to best location for an object. If an object is migrated,precautionsare taken for dealing
with machines that are unaware of the object’s new location.

4. AN IMPLEMENTATION USING MULTICAST COMMUNICATION

The second RTS uses Amoeba’s indivisible reliablemulticast protocol described
in [21]. This protocol is highly efficient and usually only requires two packets (one point-
to-point and onemulticast)per reliablemulticast. Sending a short message reliably to 10
processors, for example, takes 2.7 msec on the hardware describedabove.

In a distributed systemsupportingonly point-to-point messages,serializability is diffi-
cult to achieve,becausemessages sent to different destinations may arrive with arbitrary
delays. Some distributed systems (e.g., Ethernet-based systems) provide hardwaresupport
for sending a single message tomultiple destinations simultaneously. More precisely, we are
interested in systemssupportingindivisible reliable multicasts, which have the following
properties:

d A message is sent reliably from one source to a set of destinations.

d If two processors simultaneouslymulticasttwo messages (say m1 and m2),
then either all destinations firstreceivem1, or they all receivem2 first, but
not a mixture with somereceivingm1 first and othersreceivingm2 first.

With this multicastfacility, it becomes much easier to implement a protocol for consistent
updatingof all copies of an object. Basically, if a process wants toinvokea write operation
on a shared object, itmulticaststhe operation to all processors. Since all processorsreceive
all messages in the same order, all operations on shared objects are executed in the same
order everywhere.

We have implemented an indivisible reliablemulticastprotocol in software on top of
Ethernet. The basic idea behind the protocol is that one of thenodesbe designated as the
sequencer. If a node wants to multicast a message, it first sends this message to the
sequencer, using point-to-point communication. The sequencer assigns the message the next
global sequence number and thenmulticaststhe message and its sequence number. When a
nodereceivessuch amulticastmessage, it checks the sequence number to see if it has missed
any multicasts. If so, it requests the sequencer to provide it with the missing message (the
sequencer stores these in order to provide this recovery service).



- 11 -

The aboveprotocol sendseachmessage over the network twice. For large messages it
is more efficient to let the sender broadcast the message itself, and have the sequencer broad-
cast a (small)acknowledgementmessage containing the sequence number. The protocol
therefore uses the first approach for small messages and thesecondapproach for large mes-
sages. For all examples discussed in this paper, the firstmethodis used.

Of course, there are many more issuesinvolved in the protocol, such as buffer manage-
ment of messages,groupmanagement, and crashes of the sequencer or regularnodes.These
issues are described in [21].

With the protocol outlined above, programs need not worryabout lost messages.
Recovery of communication failures is handled automatically and transparently by the proto-
col. Efficiency is obtained by optimizing the protocol for no communication failures, as
these rarely happen with current state of microprocessor and networktechnology.

4.1. Invalidation versus Updating

Reliablemulticastingis useful for invalidation as well asupdating. In both cases, a sin-
gle reliablemulticastmessage is needed for a write operation. If an object iswritten very
frequently and hardly ever read, the invalidation schemewill be more efficient, since fewer
messages are needed and invalidation messages are shorter thanupdatemessages.

In general, however, theupdateschemewill be more efficient.Suppose,for example,
that every processor reads a given object exactly once after it has beenwritten. With P pro-
cessors, the invalidation scheme requires a single (short) reliablemulticast message for
invalidating the copies and 2P point-to-point messages for fetching the object (or doing the
read operation remotely). As a reliablemulticastusually costs twophysicalmessages, in
total there are 2P + 2 messages. In contrast, theupdatescheme requires only one reliable
multicastmessage. So, even in the case thateachwrite is followed by only a single read
operation, theupdatingperforms better than invalidation.

With the reliablemulticastprotocol we use, amulticastmessage is hardly more expen-
sive than an RPC. So, unless the read/write ratio of operations is close to zero, theupdate
schemewill have a better performance. We have therefore only implemented theupdate
scheme.

4.2. The Update Protocol

As in the RPC run time system,indivisibility of write operations is obtained by execut-
ing them in a mutually exclusive way. With indivisiblemulticast,mutual exclusion comes
for free. The communicationprimitive imposes a single system-wide global ordering on all
write operations. Unlike the point-to-point scheme, there is no risk of different processors
updatingtheir copies in an inconsistent way. Also, there is no need todistinguishbetween
primary andsecondarycopies of an object.

The distributedupdateprotocol we use works as follows. Each processor maintains a
queue of messages that have arrived on the processor but that have not yet been handled. As
all processorsreceiveall messages in the same order, the queues on all processors are basi-
cally the same, except that some processors may be ahead of others in handling the messages
at the head of the queue.

If a process wants to execute a write operation on a shared objectX, it multicastsan
update message to all processors (including its own processor) and then blocks. The message
contains the name of the object, the operation, and its parameters. Theupdatemessagewill
be appended to the tail ofeachqueue.

Each processor handles incoming messages in its queue in strict FIFO order. A



- 12 -

message may be handled assoonas it appears at the head of the queue. To handle anupdate
message, the message is removed from the queue, the localcopyof X is locked, the operation
is applied to the localcopy,and finally the localcopy is unlocked. If the message was sent
by a process on the same processor, that process is made active again.

The protocol describedabovecorrectly implements theserializabilityrequirement. The
protocol guarantees that all processors observe changes to shared objectsin the same order.
Note that it does not provide a total (temporal) ordering [25]amongoperations. Suppose
Processor P1initiatesa write operation on objectX and, a fewmicrosecondslater, Processor
P2 reads the value ofX. Theupdate message forX sent by P1 need not have evenreachedP2
yet, so P2 maystill use the old value ofX. This scenario is inaccordancewith the semantics
of our model, however, which merely requiresserializabilityof operations.

4.3. Replication Strategy

The multicastRTS replicates all objects on all processors. In other words, it uses the
full replication strategy. This strategy was chosen,becauseit simplifies the implementation.
The RTS does not have to keep track of which object is used by which processor.

In some cases, full replication may be less efficient than partial replication.Suppose,
for example, process P1 wants to send information to another process P2throughan object
shared between them. As the objectwill be replicated everywhere, all processors in the sys-
temwill receiveP1’supdatemessage, eventhoughonly P2 is really interested in it.

The overhead of sending the message everywhere usually is not dramatic, however.
With our reliablemulticastprotocol, the elapsed time for amulticastmessage hardly depends
on the number of destinations. The main disadvantage of full replication then is the fact that
eachprocessorwill be interrupted once foreachwrite operation. With partial replication,
this CPU overhead would be less.

5. PERFORMANCE

There are several ways to measure the performances of the replication techniques. The
approach taken in [12] is to implement several user applications in Orca, execute them on the
different run time systems, and measure thespeedups.Applications we havelookedat are
matrix multiplication, the all-pairs shortest paths problem,branch-and-bound,alpha-beta
search, andsuccessiveoverrelaxation.

In this paper wewill first look at the basic times for reading,writing, updating,and
invalidating shared objects. In this way we can determineunderwhich circumstances a tech-
nique is most effective. Next, wewill look at theaccesspatterns used by real programs and
use the basic times for determining the efficiency of the different strategies for these applica-
tions.

To determine the performance improvements due to replication, we have performed two
experiments. In the first experiment, we have measured the costs of incrementing a replicated
4 byte integer object as a function of the number of replicas. In thesecondexperiment we
measured the cost forupdatingan entire 1 Kb array object. These two types of objects occur
frequently in application programs [12].

5.1. Performance of the RPC Run Time System

Figure 3 shows the basic execution times for the run time system that uses Amoeba
RPC. The figure shows the costs for invalidatingN copies of an object and forupdating4-
byte and 1 Kb objects. Invalidating acopy involvessending a short message containing an
object identifier, so the invalidation costs do not depend on the size of the object.



- 13 -

Time
(in msec)

Number of copies

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

5

5
5

5

5

5

5

5

5

5

∆

∆
∆

∆

∆

∆

∆

∆

∆

∆

×
×

×
×

×
×

×
×

×
×

5 5 5 Time for 4-byteupdate
∆ ∆ ∆ Time for 1Kbupdate

× × × Time for invalidation

Figure 3. Time for updatingreplicated objects using invalidation and 2-phaseupdateprotocol.

We have also measured the costs for doing a read or write operation on a remote object.
For a 4-byte object, remote reads cost 5.3 msec and remote writes costs 4.2 msec; for a 1Kb
object, the costs are 12.7 msec and 7.6 respectively. The reason why writes are cheaper than
reads is that, due to inefficiencies in the current compiler, read operationscopy their data
more often.

As expected, the costs toupdateor invalidate copies after a write operation grow
linearly with the number of copies. Therefore, selective replication is worth while.

For a small (4-byte) object,updating10 copies costs 58.0 msec. Invalidating 10 copies
takes 27.8 msec; inaddition,re-installingcopies costs 5.3 msec percopy (i.e., the costs of a
remote read operation). If the object is read by 6 or more processors immediately after it has
beenwritten,updatingwill outperform invalidation, since 27.8 + 6*5.3 > 58.0.

In contrast, if a small object iswritten twice without being read, the invalidation scheme
is more efficient. In this case, theupdatecosts are 2*58.0 = 116.0 msec. Invalidating and re-
installingall 9 secondarycopies takes 27.8 + 9*5.3 = 75.5 msec.

For large (1 Kb) objects,updating10 copies takes 63.4 msec. If 3 processors re-install
the object after a write operation, the invalidation scheme costs 27.8 + 3*12.7 = 65.9, which
is slower thanupdating.If fewer than 3 processors read the object, invalidation is more effi-
cient.

If a large object iswritten twice and then read by all processors,updatingall copies
costs 2*63.4 = 126.8 msec; invalidating the copies once andre-installingthem takes 27.8 +
9*12.7 = 142.1 msec, soupdatingis still cheaper. If a large object iswritten three or more
timessuccessively,invalidationwill be more efficient.

A case that occurs frequently in user programs is a large object that iswritten through
an operation with only a few bytes of parameters (e.g., a 1Kb array of which only 1 element
is changed). In this case,updatingwill often be more effective. For example,updating10
such copieswill take about58.0 msec, while invalidating andre-installingthe entire array
will cost 142.1 msec. Even if the object is changed twice before being read,updatingis



- 14 -

significantly more efficient.

The performance measurements also show that the partial replication scheme is more
efficient than a scheme that does not replicate objects, if the object is read relatively fre-
quently. If, for example, a given 4-byte object is not replicated,each(remote) read operation
will take 5.3 msec, so partial replication clearly pays off.

5.2. Performance of the Multicast Run Time System

The cost forupdatingreplicated objects using the distributedupdateprotocol described
in Section 4 are depicted in Figure 4. As can be seen, the costs are almost independent of the
number of replicas. This is what we would expect, since in ourmulticastprotocol sending a
reliable multicastmessage costs only twophysicalmessages, independent of the number of
receivers.The only overhead is sending onestate message after a processor hasreceiveda
certain number of messages. (This state message is only required if a processor does not
multicastmessages itself; if it doesmulticastmessages, the state message ispiggybacked.)

Time
(in msec)

Number of copies

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

5

5 5 5 5 5 5 5 5 5

∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

5 5 5 Time for 4-byte operation

∆ ∆ ∆ Time for 1Kb operation

Figure 4. Time for updatingreplicated objects using the distributedupdateprotocol.

For both 4 byte and 1 Kb objects, theupdatecosts are lower than or equal to the costs
for remote read and write operations in the RPC run time system (see Section 5.1). The rea-
son is that the RPC system has a higher overhead. In particular, it does more context switch-
ing, becauseit usesauxiliary threads for queuing messages.

Since updatesare cheap, replication usually reduces the communication costs. One
exception is an object with a low read/write ratio. In this case, the overhead ofupdatingthe
replicas aftereachwrite will invalidate the gains of replication. Thesecondexception is an
object that is hardly everaccessedby remote processors. In both cases, it would be better not
to replicate the object at all. In conclusion, a good strategy for small objects would be to
either replicate a given object everywhere or not at all.



- 15 -

5.3. Access patterns of example applications

Which replication strategy is most efficient for a given application depends not only on the
basic performance figures presentedabove,but also on theaccesspatterns of the application.
In this section, wewill look at how real Orca applications read and write shared objects.
Using the measurements givenabove,we can determine the effectiveness ofeachstrategy.
The applications wewill look at are the traveling salesman problem and the all-pairs shortest
paths problem. In our examples, wewill assume that we use 10 CPUs.

The Traveling Salesman Problem

In the Traveling Salesman Problem (TSP) it is required to find the shortest route for a sales-
man to visiteachcity in a given set exactly once. The problem is solved in Orca using a
master/slave type of program based on abranch-and-boundalgorithm. The master generates
partial routes and stores them in a job queue. Each slave repeatedly takes a job (route) from
the queue and generates all possible full paths starting with theinitial route. All slaves keep
track of the current shortest full route. Assoonas a slave finds a better route, it gives the
length of the route to all the other slaves. This value is used to prune part of the search tree.

This application uses two shared objects that are important to our discussion. First, the
master and slaves share ajob queue object. All operations applied to this object are write-
operations, since both adding a job to the queue and deleting a job from the queue modify the
queue’s data structures. Hence, the best strategy is not to replicate this object at all. The
RPC RTSwill store the object only on the master processor; the slave processorswill access
the object doing remote write operations.

As a typical example, consider a TSP problem with 12cities, where the master gen-
eratesinitial routes containing 2cities. So, the master generates 11*10 = 110 jobs. Each job
description is only a few bytes. ThemulticastRTS will thus do 110multicaststo 10 CPUs,
which takes 110*4.2 = 462 msec. The RPC RTS (both theupdatingand invalidating version)
will do 110 remote write operations, also taking 110*4.2 = 462 msec. So, the communication
costs are the same in both systems, but themulticastsystem has the disadvantage of generat-
ing more interrupts forupdatingcopies.

TSP uses another object (thebound)for keeping track of the current best solution. This
object is sharedamongall slave processes. Measurements of the program for a 12-city prob-
lem show that this object may be read amillion times andupdatedonly a few times [12].
After the object has been changed (i.e., a slave hasfounda better route for the salesman), this
new value is read many times by all the slaves. Thus the best strategy is to replicate the vari-
able everywhere andupdateall copies whenever the variable changes.

Here, themulticast RTS has a performance advantage. If the object isupdatedten
times, this RTSwill multicastten write operations, which takes only 10*4.2 = 42 msec. The
RPC RTS using theupdateprotocol will take 10*58.0 = 580 msec. The invalidating RTS
will invalidate the object ten times and then re-install it everywhere, taking10*(27.8+ 9*5.3)
= 755 msec. The total execution time of the TSP program on 10 CPUs isabout90 seconds,
so the impact of this communication overhead is relatively small.Still, the multicastRTS
achieves slightly betterspeedups.The secondproblem wewill discuss has a much higher
communication overhead.

The All-Pairs Shortest Paths Problem

In the All-pairs Shortest Paths (ASP) problem it is desired to find the length of the shortest
path from anynodei to any othernodej in a given graph withN nodes. The parallel algo-
rithm we use is similar to the one given in [26], which is a parallel version ofFloyd’s algo-
rithm.



- 16 -

The distances between thenodesare represented in a matrix. Each processor contains a
worker process that computes part of the result matrix. The parallel algorithm performsN
iterations. Beforeeachiteration, one of the workers sends apivot row of the matrix to all the
other workers. Since the pivot row containsN integers and is needed by all processors, this
requires anontrivial amountof communication.

The workers share an object containing all the pivot rows used for different iterations.
Initially, this object is empty; after the final iteration, itwill contain all the pivot rows used
during the computation. ThemulticastRTSwill replicate this object everywhere. IfN=256,
all copies of the objectwill beupdated256 times,eachupdateoperation taking a row of 256
integers (i.e., 1 Kb) as parameters. Thiswill take 256*8.9 = 2278.4 msec.

The RPC RTS using theupdateprotocolwill likewise have 256*63.4 = 16230.4 msec of
communication overhead. The total execution time of the program is on the order of 90
seconds,so this is a significant overhead. The invalidating RTS performs much worse, how-
ever. Re-installingthe shared object would beprohibitively expensive, since the object may
ultimatelycontain 256*256 integers, or 256 Kb data. We have measured that such an opera-
tion would costabout16400 msec. On the other hand,letting eachworker process obtain the
pivot row from one processor also is very inefficient, since it requires 9 remote read opera-
tions of 1 Kb, taking 9*12.7 = 114.3 msec per iteration, or 114.3*256 = 29260.8 msec in
total, which is almost twice as bad as for theupdateprotocol. In conclusion, the invalidation
protocol is not appropriate for ASP. With theupdateprotocol, it is possible to obtain reason-
ablespeedups[12], althoughfar from linear. To obtain good (close to linear)speedups,the
multicastprotocol is required.

6. CONCLUSIONS

The model discussed in this paper allows programmers to define operations of arbitrary
complexity on shared data-objects. In aloosely-coupledsystem, the model is implemented
by replicating objects in the local memories of the processors. Thisability to replicate
objects is a significant difference with other object-based models, such as Emerald [8] and
Amber [9]. We have studied several protocols for keeping all these copies consistent and we
havelookedat replication strategies.

We have described two implementations of the model. One implementation replicates
objects everywhere andupdatescopiesthrougha fastmulticastprotocol. The other imple-
mentation uses only point-to-point messages. In this case, partial replication and migration
may be useful.

Which protocol or strategy for replication is most efficient depends on many factors,
such as the costs of theupdateprotocols, the size of the object and the parameters of the
operations, and the read/write pattern of the application. In the future we intend to do a more
detailed analysis of our protocols and strategies, using a large set of user applications. Also,
we will look at the differences and resemblances between protocols for replication and
coherence protocols for CPUcaches[18, 27], non-uniformmemoryaccess(NUMA) archi-
tectures [28, 29], filecaches[30, 31, 32], and distributed database systems [14]. Based on
this analysis, wewill try to improve our implementations.

Our model has several advantages over other models based on logically shared data. It
provides a higher level of abstraction and, in many cases, is more efficient. Below, wewill
compare our model with several related ones.

Some systems provide the programmer a shared addressspacewithout guaranteeing
coherency or consistency. In Agora [6] and the problem-oriented shared memory [7], for
example, read operations can returnstale data. Therefore, these systems do not make repli-
cation transparent to the user.Althoughthese relaxations of the semantics make the systems



- 17 -

more efficient to implement, we feel that they do not provide asoundbasis for a general-
purpose parallel programminglanguage.We prefer to have simple and easy-to-use seman-
tics and thereforesupportconsistency of replicated shared data.

Kai Li’s Shared Virtual Memorysupportsmemory coherency, but it has other disadvan-
tages [33]. For example, it can only invalidate but notupdatecopies of data. Also, the SVM
will perform verypoorly if processes on many different processors repeatedly write on the
same page. This situation arises ifmultiple processors write the same variable, or if they
write different variablesplacedon the same page.

Linda’s TupleSpace[34] is another model that hides replication from the programmer.
It provides a fixed number of low-level operations on shared data (tuples) [35]. Logical
operations on shared data structures frequently consist of several low-level operations,each
of which can requirephysicalcommunication. In our model, the programmer can define a
single high-level operation that does the job with lower communication costs.

7. REFERENCES

1. H.E. Bal, J.G. Steiner, and A.S. Tanenbaum, ‘‘ProgrammingLanguagesfor Distributed
Computing Systems,’’ACM Computing Surveys 21(3), pp.261-322(Sept.1989).

2. K. Li, ‘‘IVY: A Shared Virtual Memory System for Parallel Computing,’’Proceedings
1988 International Conference Parallel Processing (Vol. II), St. Charles, Ill., pp.94-101
(Aug. 1988).

3. M. Stumm and S.Zhou, ‘‘Algorithms Implementing Distributed Shared Memory,’’
IEEE Computer 23(5), pp. 54-64 (May1990).

4. B. Nitzberg and V. Lo, ‘‘Distributed Shared Memory: a Survey of Issues and Algo-
rithms,’’ IEEE Computer 24(8), pp. 52-60 (Aug.1991).

5. K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, ‘‘The Notions of Consistency
and Predicate Locks in a Database System,’’Communications of the ACM 19(11),
pp.624-633(Nov. 1976).

6. R. Bisiani and A. Forin,‘‘Multilanguage Parallel Programming of Heterogeneous
Machines,’’IEEE Transactions on Computers 37(8), pp.930-945(Aug. 1988).

7. D.R. Cheriton, ‘‘PreliminaryThoughtson Problem-oriented Shared Memory: ADecen-
tralized Approach to Distributed Systems,’’ACM Operating Systems Review 19(4),
pp. 26-33 (Oct.1985).

8. E. Jul, H. Levy, N. Hutchinson, and A. Black, ‘‘Fine-GrainedMobility in the Emerald
System,’’ACM Transactions on Computer Systems 6(1), pp.109-133(Feb.1988).

9. J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J.Littlefield, ‘‘The Amber
System: Parallel Programming on a Network ofMultiprocessors,’’Proceedings of the
12th ACM Symposium on Operating System Principles, Litchfield Park, AZ, pp.147-
158 (Dec.1989).

10. H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, ‘‘Orca: ALanguagefor Parallel Pro-
gramming of Distributed Systems,’’IEEE Transactions on Software Engineering (1992,
to appear).

11. A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal, ‘‘Parallel Programming using Shared
Objects and Broadcasting,’’IEEE Computer (1992,to appear).

12. H.E. Bal,Programming Distributed Systems, Prentice Hall International, Hemel Hemp-
stead, England(1991).

13. D.K. Gifford, ‘‘Weighted Voting for Replicated Data,’’Proceedings 7th Symposium



- 18 -

Operating Systems Principles, Pacific Grove, CA, pp.150-162,ACM SIGOPS (Dec.
1979).

14. P.A. Bernstein and N.Goodman,‘‘Concurrency Control in Distributed Database sys-
tems,’’ ACM Comping Surveys 13(2), pp.185-221(June1981).

15. T.A. Joseph and K.P. Birman, ‘‘Low Cost Management of Replicated Data in Fault-
Tolerant Distributed Systems,’’ACM Transactions on Computer Systems 4(1) (Feb.
1987).

16. R. van Renesse and A.S. Tanenbaum, ‘‘Voting with Ghosts,’’Proceedings of the 8th
International Conference on Distributed Computing Systems, San Jose, CA, pp.456-462
(June1988).

17. S.B. Davidson, H. Garcia-Molina, and D. Skeen, ‘‘Consistency inPartitionedNet-
works,’’ ACM Comping Surveys 17(3), pp.341-370(Sept.1985).

18. S.J. Eggers and R.H. Katz, ‘‘A Characterization of Sharing in Parallel Programs and Its
Application to Coherency Protocol Evaluation,’’15th International Symposium on
Computer Architecture, Jerusalem, Israel, pp.373-382(May 1989).

19. K. Li and P. Hudak, ‘‘Memory Coherence in Shared Virtual Memory Systems,’’ACM
Transactions on Computer Systems 7(4) (Nov.1989).

20. S.E. Lucco, ‘‘A Heuristic Linda Kernel for HypercubeMultiprocessors,’’Conf. on
Hypercube Multiprocessors, pp. 32-38(1987).

21. M.F. Kaashoek and A.S. Tanenbaum,‘‘Group Communication in the Amoeba Distri-
buted Operating System,’’11th Int’l Conf. on Distributed Computing Systems, Arling-
ton, Texas, pp.222-230(20-24 May1991).

22. A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J. Jan-
sen, and G. van Rossum, ‘‘Experiences with the Amoeba Distributed Operating Sys-
tem,’’ Comm. ACM 33(2), pp. 46-63 (Dec.1990).

23. M.F. Kaashoek, R. van Renesse, H. van Staveren, and A.S. Tanenbaum, ‘‘FLIP: an
Internet Protocol forSupportingDistributed Systems,’’ ReportIR-251, Vrije Universi-
teit, Amsterdam, The Netherlands (June1991).

24. B. Liskov, ‘‘Distributed Programming in Argus,’’Communications of the ACM 31(3),
pp.300-312(March1988).

25. L. Lamport, ‘‘Time, Clocks, and the Ordering of Events in a Distributed System,’’
Communications of the ACM 21(7), pp.558-565(July 1978).

26. J.-F. Jenq and S. Sahni, ‘‘All Pairs Shortest Paths on a HypercubeMultiprocessor,’’
Proceedings of the 1987 International Conference on Parallel Processing, St. Charles,
Ill., pp. 713-716(Aug. 1987).

27. S. Owicki and A. Agarwal, ‘‘Evaluating the Performance of Software Cache Coher-
ence,’’ Proceedings 3nd International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Boston, MA, pp.230-242(April 1989).

28. A.L. Cox and R.J. Fowler, ‘‘The Implementation of a Coherent Memory Abstraction on
a NUMA Multiprocessor:Experience with PLATINUM,’’ Proceedings 12th Sympo-
sium Operating System Principles, Litchfield Park, AZ, pp. 32-44, Rochester (Dec.
1989).

29. M.L. Scott, T.J. Leblanc, and B.D. Marsh, ‘‘Design Rationale for Psyche, a General-
PurposeMultiprocessorOperating System,’’International Conference on Parallel Pro-
cessing, St. Charles, Ill., pp.255-261(Aug. 1988).

30. J.D. Noe, A.B.Proudfoot,and C. Pu, ‘‘Replication in Distributed Systems: The Eden



- 19 -

Experience,’’ TR-85-08-06, Dept. of Computer Science, University of Washington,
Seattle(Sept.1985).

31. J.H. Morris, M. Satyanarayan, M.H.Conner,J.H. Howard, D.S.H. Rosenthal, and F.D.
Smith, ‘‘Andrew a Distributed Personal Computing Environment,’’Communications of
the ACM 29(3), pp.184-201(March1986).

32. J.K. Ousterhout,A.R. Cherenson, F.Douglis, M.N. Nelson, and B.B. Welch, ‘‘The
Sprite Network Operating System,’’IEEE Computer 21(2), pp. 23-37 (Feb.1988).

33. W.G. Levelt, M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum, ‘‘A Comparison of Two
Paradigms for Distributed Shared Memory,’’Software—Practice and Experience (1992,
to appear).

34. S. Ahuja, N. Carriero, and D. Gelernter, ‘‘Linda and Friends,’’IEEE Computer 19(8),
pp. 26-34 (Aug.1986).

35. M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum, ‘‘Experience with the Distributed Data
Structure Paradigm in Linda,’’First USENIX/SERC Workshop on Experiences with
Building Distributed and Multiprocessor Systems, Ft. Lauderdale, FL, pp.175-191(Oct.
1989).


