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SUMMARY

Most methodsfor programmingloosely-coupledsystems are based on message-passitecently,
however,methodshave emerged based on “virtually” sharing data. Thesethodssimplify distri-
buted programming, but are hard to implement efficientlyloasely-coupledsystems do not contain
physicalshared memory. Wantroducea new modelthe shared data-object model, that eases the
implementation of parallel applications tosely-couplegystems, but castill be implemented effi-
ciently.

In our model, shared data are encapsulated in passive data-objects, which are variables of user-
defined abstract data types. To speedaapesgo shared data, data objects are replicated. This abil-
ity to replicate objects is a significant difference with other object-based models (e.g., Emerald and
Amber). Also, by replicating logical objects rather thalmysicalpages, our model has many advan-
tages over shared virtual memory systems.

This paper discusses the design choice®lved in replicating objects and their effect on per-
formance. Important issues are: how to maintain consistamegngdifferent copies of an object;
how to implement changes to objects; and which strategy for object replication to use. We have
implemented several options to determine which ones are most efficient.

1. INTRODUCTION

Distributed systems are becoming increasingbpularfor runninglarge-grain parallel
applications. These systems are easy to build and extend, and offer a good price/performance
ratio. The issue of how to program parallel applications that use nhaosely-coupled
machines isstill open. Traditional programming methodsare based on some form of
message-passing [1]. Morecently, methodshave emerged based on sharing data. Since
distributed systems lack shared memory, this sharing of data is logicgdhgsical.

For many applicationssupportfor shared data makes programming easier, since it
allows processes on different machines to share state information. The main problem, how-
ever, is how to implement it efficiently on memory-disjunct architectures. In this paper we
introducea new model providing shared data and we discuss efficient implementation tech-
niques for this model, based data replication.

Several systems exist that use replication for implementing shared data. Probably the
bestknown example is Kai Li's Shared Virtual Memory (SVM) [2]. This system gives the
user thdllusion of a shared memory. It stor@sultiple read-only copies of the same page on
different processors. Each processor havingay can read the page as if it were in normal
local memory. Other systems providing replicated shared data are surveyed in [3, 4].

The model studied in this paper is called t@red data-object model. It is intended
for implementing parallel applications on distributed systems. The unit of replication in our
model is not dictated by the system (as in the SVM), but is determined by the programmer.
Shared data are encapsulated in pasdata-objects*, which are variables of user-defined
abstract data types. An abstract data type has two parts:

e A specification of the operations that can be applied to objects of this type.

e The implementation, consisting of declarations for the local variables of the
object and code implementing the operations.

Instances (objects) of an abstract data type can be crelgtemically,eachencapsulating
the variables defined in the implementation part. These objects can be simaoadmulti-
ple processes, typicallsunningon different machines. Each process can apply operations to

* We will sometimes use the term “object” as a shorthand notation for data-objects. Note, however, that unlike in most parallel object-based sys-
tems, objects in our model are purely passive.
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the object, which are listed in the specification part of the abstract type. In this way, the
object becomes a communication channel between the processes that share it.

The shared data-object model uses two important principles related to operations on
objects:

1. All operations on a given object are executatbmically (i.e., indivisibly).
To be more precise, the model guarantsesalizability [5] of operation
invocations:f two operations are executed simultaneously, then the result is
as if one of them is executed before the other; the ordémwafcation,how-
ever, isnondeterministic.

2. All operations apply t@ingle objects, so an operatianvocationcan modify
at most one object. Makingequences of operations on different objects
indivisible is theresponsibilityof the programmer.

These two principles make the model easyutalerstandand efficient. The first principle
makes our modelundamentallydifferent from Agora [6] and the problem-oriented shared
memory [7], which do not have this consistency constraint. Jé@ndprinciple makes the
model efficient to implement, since it avoids expensive atomic transactionsidtiple
objects stored on different processors.

In our experience thus far, the model provides sufficisapportfor many parallel
applications. Distributed applications like banking and airline reservation systems can profit
from moresupport(e.g., atomicmulti-objectoperations), but such applications are not our
major concern here. Also, parallel applicationsabwsely-coupled (shared-memory) systems
can use a finer grain of parallelism (e.g., parallelism within objects), but again these are not
the type of applications we are interested in here. These issues are addressed by other
models, such as atomic transactions and concurrent object-oriented programming and are not
the topic of this paper.

Our model also differs from thebject-based models supportedby Emerald [8] and
Amber [9]. Objects in theséanguagesare migrated between processors, but are not repli-
cated. An Emerald object, for example, can be active—it may contain a processhauld
not be replicated. As another important difference, our model completely hides the distribu-
tion of objects and lets the implementation determine where to store (and replicate) objects.
Emerald and Ambeultimatelyrely on the programmer to specify the most efficient location
for an object.

We have designed a new programmilapguagecalled Orca, based on this model.
Orca is intended for implementing distributeder applications. In particular, thenguage
is intended for parallel, high-performance applications. Orcands an object-oriented
language.Rather, it is a simple, procedural, type-seclameguage.It supportsabstract data
types, processes, a variety of data structumesjulesand generics.

Various implementations of Orca on different hardware configurations have been in use
for three years. Thelanguage, its implementation, and use are described else-
where [10, 11, 12].

In the rest of this paper weill studyreplication techniques for the shared data-object
model. In Section 2, wevill describe thespaceof possible design choices. The most impor-
tant issues are (IYpdatingversus invalidation of copies, (2) the protocols usedupdating
or invalidating copies, and (3) the degree of replication. Aswik see, the best choice
depends on the communicatigmimitives supportedby the underlyingdistributed system.
We will studytwo important cases. In Section 3, well look at an implementation of the
model using point-to-point message passing. In Section 4yilediscuss asecondimple-
mentation, based on reliablaulticastmessages. The two implementations cover a broad
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spectrum of design choices. In Section 5,wi# measure the performance of the two imple-
mentations on distributed hardware. In Section 6,wilé present our conclusions and com-
pare our work with that of others.

2. DESIGN SPACE

The technique of data replication in distributed systems is typically used to increase the
availability andreliability of the data in the presence of processor failures and network parti-
tions [13, 14, 15,16, 17]. For example,nfultiple copies of the same logical data are stored
on different processors, the data il be accessed some of the processors are down.

In contrast, we use replication primarily for speedingageesdo shared data and for
decreasing the communication overhdadolved in sharing data. The general idea is to
replicate an object on those processors that frequacttgsst. A copy may beaccessedby
all processesunningon the same processavjthout sending any messages, as shown in Fig-
ure 1.

CPU1 CPU 2

process-1 process-1

copy copy
of of

- / X : / X
process-I process-I

network

Figure 1. Replication of data objects in a distributed system. Each processor comtaltigle processes
runningin pseudo-parallel.These processdslongto a single job and run in a single addresgmce so
they can share copies of objects.

It is useful todistinguishbetweenread operations andvrite operations on replicated
data: a read operation does not modify the data, while a write operation (potentially)
does [15]. For our model, we define a read operation as an operation that does not change
the internal data of the object it is applied to.

The primary goal of replicating shared data-objects is to apply read operations to a local
copy of the object, if availablewithout doing any interprocess communication. On a write
operation, all copies of the object except the one just modified must be invalidated or
updated. To deal with this problem, communicationill be needed, so write operations
involve communication.

This scheme is a departure from techniques that replicatavaitability. These tech-
niques in general need interprocess communication for every read and write operation. With
our approach, read operations are executed locally. Since, for many parallel applications,
read operations far outnumber write operations [18], this is a significant advantage.

The secondgoal of replication is to increase parallelism. If an object is stored on only
one processokachoperation must be executed by that processor. This processor may easily
become a sequentidottieneck. With replicated objects, on the other hand, all processors
can simultaneously read their own copies. Since a read operation does not change its object,
it can be executed concurrently with other read operatwitisout violating the serializabil-
ity principle.
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The effectiveness of replication depends on many factors. One important factor is the
ratio of read and write operations on objects, which is determined by the user application.
Another factor is the overhead in execution time for readingvioting objects. These costs
are determined by the implementation of the model. They depend on:

e The actionundertakerafter eachwrite. If eachwrite operationinvalidates
all copies, a subsequent read operatoth need to do communication. If, on
the other hand, all copies avpdated, this disadvantage disappears, but write
operationswill become more expensive

e The protocol used for invalidating arpdatingcopies. Many protocols exist
(e.g., owner protocols, two-phasedateprotocols), eachwith their own
advantages and disadvantages.

e The replication strategy. If an object is replicated everywheaghread
operation can be applied to a loapy, which is much cheaper than doing
the operation remotely. On the other hamditing an object that has many
copieswill be more expensive thamiting a non-replicateabject.

In the following subsections waill studythese design choices in more detail.

2.1. Invalidation versus Updating of Copies

If a write operation is applied to a replicated object, its copus no longerbe up-to-
date. There are two different approaches for dealing with this problem. The first scheme is
to invalidate all-but-one copies of the object. Tlsecondscheme is tapdate all copies in a
consistent way.

With invalidation (orwrite-once), eachobject isinitially stored on only one processor,
sayP. If another processor wants to do a read operation on the object, it fetclogy af the
object fromP. In this way, the object automatically gets replicated. On a write operation,
all-but-one copies are thrown away.

The alternative scheme is tppdate(or write-through) all copies of an object aftezach
write operation. A problem here is how tpdateall copiesin a consistent way. The shared
data-object model guarantees that all operations on objects are executed indivisibly. Hence,
updatingof all copiesshouldappear as one indivisible action. On systesnpportingonly
point-to-point communication, this is hard to do. In essencphase protocol is needed, as
we will see. If reliable indivisiblanulticastmessages are availabl@datesbecome much
simpler, as wawill discuss in Section 4.

There are several important differences between invalidatiorupddteschemes. For
one thing, keeping copies up-to-date is more complicated than invalidating copies, so the
updatescheme may require more messages to implement a write operation. ubdate
messagewvill be larger than invalidation messages. An invalidation message merely needs
to specify the object to be invalidated. Ampdatemessagevill either contain the new value
of the object or the parameters of the write operation, whichever is more efficient.

On the other hand, thepdatescheme also has several advantages. If an object is read
after it has beenvritten, the invalidation schemwill have to fetch the current value of the
object from a remote processor. With thipdatescheme, this valuevill still be stored
locally, so no messages need be sent at all.

In conclusion, which of the two schemes is most efficient depends on:
1. The costs of thepdateprotocol.

2. The size of the object.

3. The size of the parameters of the write operation.



-6 -

4. Whether the write operation is followed by a read operation or by another
write operation.

Kai Li argues that, for the Shared Virtual Memory system,ugdatescheme is inappropri-

ate [19]. Inadditionto being almost impossible to implementwitll cause a page fault on
every write instruction. In our model, however, this disadvantage is far less severe. Users
can define write operations of any complexity on shared objects. As replicaspdeted

after eachoperation—rather thaeachmachineinstruction—updatingvill be less expensive

than in the SVM. Inaddition,the SVM would require a whole page to brensmittedafter

every write. With our approach, shared objects frequently are much smaller than a page;
furthermore, large objects can usually bpdatedefficiently by transmittingthe operation

and its parameters, instead of the new value of the object.

2.2. Invalidation and Update Protocols

The protocol used for invalidating arpdatingcopies of objects must make sure that
simultaneous operations on the same object are executed indivisibly. The simplest way to
implement this is to serialize all write operations (i.e., to execute them one at a time, in a
mutually exclusive way). This is the approach taken by all our implementations.

In an invalidation scheme, mutual exclusion can be achieved by selectingopy®f
eachobject as thgrimary copy. In the simplest scheme, all write operations are directed to
the processor containing the primacppy. On receivinga write operation, the processor
first invalidates allsecondarycopies and then applies the operation to the prinzopy.

When a processor executes a read operation, it locates the praopyyand asks for the

value of the object. A morsophisticatedcheme allows the primagopyto move from one
processor to another. Kai Li compares several of these schemes and analyzes their perfor-
mance [19].

In anupdatescheme, mutual exclusion can be achieved in at least two ways. One way
is to appointone copy of eachobject asprimary copy and direct all write operations to the
processor containing the primacppy. This nodewill execute the write operations one by
one and propagate their effects to all other copies, catedndary copies. An alternative
approach is to treat all copies as equals and usestabuted protocol that takes care of
mutual exclusion. With such a protoc@achprocessor camitiate a write operation on an
object. Coordination is needed to prevent interference of simultaneous write operations on
the same object.

2.3. Replication Strategies

Replicating a shared data-object is only useful if it is read relatively often. Thus, simply
replicating all objects on all processors is unlikely to be efficient. In general, we can distin-
guish between severdirategies for replication:

No replication: Each object is stored on one specific processor.

Full replication: Each object is replicated on all processors.

Partial replication: Each object is replicated on some of the processors, based on
(@) compile-time information,
(b) run-time information, or
(c) acombination of both.

The first approach is used in most parallel object-bdseduages.In this case, all opera-
tions on a given object are executed by the same processor. For many applications, this may
easily lead to sequentiibttienecksand high communication overhead.
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The secondapproach indiscriminately replicates all shared objects on all processors. It
will be most effective for architecturesupportingfast reliable multicast messages, since
thesewill allow efficientupdatingor invalidation of all copies.

The third strategy selectively replicates objects, based on information gathered by either
the compiler, the run time system (RTS), or both. With this approach, several scenarios are
possible. For example, the compiler may disable replication of objects that do not have any
read operations at all. Also, if a processor does not contain any processes that share a given
object, it isunnecessario store acopyof the object on that processor.

The most advanced scheme based on partial replication is to let the RTS dgcaiai-
cally where to replicateachobject. For example, the RTS may keep track of read and write
operations on an object issued bgchprocessor, to determine which processors frequently
read the object. If the read/write ratexceedsa certain threshold, a replica of the object is
createddynamicallyon that processor. This strategy is most suitable if communication is
slow, so the overhead of maintaining statistics is worthwhile.

2.4. Discussion

We have discussed several design choices related to replication of objects. In general, it
is hard to determine which onesgll give the best overall performance. Furthermore, dif-
ferent types of distributed systems may require different design decisions. In particular, the
communicatiorprimitivesprovided by the system are very important.

In the next two sections weill examine two existing implementations of the shared
data-object model. Each implementation is a run time system for Orca. Both RTSs use the
same hardware: a collection of MC68030CPUsconnectecby a 10Mbit/sec Ethernet®,
but use different communicatigerimitivesand consistency protocols.

The first RTS uses a ratheonventionakoftware organization, based on point-to-point
message passing and 2-phagpelateprotocols. Itsnoveltyis its dynamicreplication strategy
based on run-time statisticlthough statistics are used frequently in distributed data bases,
they are uncommon in distributed programmiagguagegthe only exception wé&now of
is [20]).

ThesecondRTS is based on movelmulticastprotocol [21]. This protocol provides the
necessargemantics for keeping all copies @achobject consistent. Also, it is optimized for
parallel applications, in which processes communicate fairly often.

Both run time systems are implemented on top of the Amoeba distributed operating sys-
tem [22] and use the FLIP routing protocol [23], whishpportspoint-to-point communica-
tion as well asnulticast.

3. ANIMPLEMENTATION USING POINT-TO-POINT COMMUNICATION

The first run time system we describe uses only point-to-point messages (Amoeba
Remote Procedure Call) for interprocess communication. BelowyNdook at eachof the
three design issues discussed in Section 2 and motivate our choices. In Sectionvilll we
describe the performance of this system.

3.1. Invalidation versus Updating

The first issue is the choice between an invalidation oupdatescheme. With point-
to-point messages it is expensiveujadateall copies of an object in a consistent way. Simul-
taneous write operations on the same object can be serialized using a pecopayrotocol,
as described in Section 2.2. A harder problem is how to achsevializabilityif a sequence
of operations omnlifferent objects is executed.
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Supposea program uses two objects, X and Y, that have their primary copies on dif-
ferent processors. If X and Y areritten simultaneously, either all processostould
observe the change to X first or all processsi®uldobserve the change to Y first. Under
no circumstanceshouldthese two events be mixed, since that would viokealizability.
Becausef this restriction, it doesot suffice to implement a write operation by sending it to
the primary-copysite and having this site forward it to tisecondary-copgites [12].

The problem can be solved using a more complicated and expenpil&te proto-
col [12]. Therefore,updatingcopieswill be expensive, so it is not clear whethgrdating
will be more efficient than invalidation. We have decided to implement both options and to
determine experimentally which of the two is best.

3.2. TheProtocols

In this section wewill discuss the protocols for invalidating apdatingcopies, using
point-to-point messages.

TheInvalidation Protocol

The invalidation protocol is quite simple. A process that wantgwoke a write operation

on a shared object sends the operation and the parameters to the processor containing the pri-
mary copy of the object. This processor locks the object and sends point-to-jmvedidate
messages to all processors containingeaondarycopy. If a secondary-copgite receives

this message, it throws away its locadpy of the object and sends back aoknowledge-

ment. Assoonas theprimary-copysite hasreceivedall acknowledgementst updatesand

unlocks the primaryopy. This protocol requires two messages éachsecondarycopy. In

addition, if the primary copy is not on theinvoker’s processor, two more messages are
needed foupdatingthe primarycopy.

CPU-1 CPU-2
primary copy
initially
CPU-1 CPU-2

primary copy |_fetch object | secondargopy
A

CPU-1 CPU-2
invalidate X

CPU-2 reads X

primary copy

okay

CPU-1 writes X

Figure 2. The invalidation protocollnitially, only CPU-1 contains aopy of X, the primarycopy. When
CPU-2 wants to read X, it sendsfetch-object message to thprimary-copysite to obtain gsecondary)
copy.Upona write operation, theecondarygopies are deleted.

If a process? wants to do a read operation on an object of which it doelngerhave
a localcopy, it sends detch-object message to thprimary-copysite (see Figure 2). If this
processor has not yetceivedall acknowledgementshe primarycopywill be locked and®
will temporarily be blocked. When the object is unlocked,ghmary-copysite sends a new
copyto P.



The Update Protocol

Updating all copies of an object in a consistent way is more difficult than invalidating them.
The real problem is to guarantserializability,as discussedbove. We solve this problem
using a2-phase primary copy updateprotocol. The protocoupdatescopies by sending the
operation and its parameters to tbecondary-copgites. For most programs, this is more
efficient thantransmittingthe new value of the object.

During the first phase, the primagopy of the object is locked and lack-and-update
message is sent to aecondary-copgites. This message specifies an object, an operation to
be applied to the object, and the parameters of the operation. Whenracgteeshe lock-
and-update, it locks the localcopy of the object and applies the operation to it. Next, it sends
an acknowledgemento the primary-copysite, while still keeping its localcopy locked. In
the mean time, th@rimary-copysite waits for allacknowledgementand then sends an
unlock message to all sites. Thanlock message causes all copies of the object to be
unlocked.

The 2-phaseipdateprotocol guarantees that no process uses the new value of an object
while other processes aséll using the old value. The new value is not usedil the second
phase. When thesecondphase begins, all copies contain the new value. Simultaneous
write-operations on the same object are serialized by locking the pricapy. The next
write-operation may start before alecondarycopies are unlocked. New requestsl|dok-
and-update a secondarycopyare not servicedintil the unlock message generated by the pre-
vious write has been handled.

This protocol requires three reliable messagesdachsecondarycopy. In the first
phase, one request tock-and-update the object is sent plus amcknowledgementor this
request. In thesecondphase, amnlock message is sent. Tupdatean object whose primary
copy is located on a remote processor, two extra reliable messages are needed. Since our
implementation uses Amoeba RPC rather than l-asynchronousnessages, there is also
some overhead in sending reply messages for the RPCs. The implementation is optimized,
however, to overlap regular computations with sending reply messages, so the latter overhead
is small.

The usage of a 2-phasepdate protocol in alanguageRTS is certainly not new.
Languagedased on atomic transaction (e.g., Argus [24]) also use 2-phase protocols. In our
model, however, a 2-phase protocol is usedudpdatingcopies of thesame object, rather
than forupdatingmany different objects. Our implementation does not have to deal with the
case that part of the objects are locked or that part of the operations fail. In particular, our
RTS does not have to maintamultiple versions of objects. Therefore, our implementation
is much simpler than that of transaction systems.

3.3. Replication Strategy

With the aboveprotocols, the costs of invalidating apdatingN copies of an object
will grow linearly withN. As a result, itwill be expensive to replicate all objects on all pro-
cessors. Our implementation therefore uses a partial replication strategy, based on run time
statistics. Although this incurs some overhead on operations, communication costs can be
reduced significantly. As communication in distributed systesti$ is expensive (on the
order ofmilliseconds)this approach is attractive.

Initially the system contains orepy for eachobject: the primarycopy. If some pro-
cessor frequently tries to read the primarysexcondarycopy will be created, so that future
read operations can be applied to the laagby without sending any messages. Write opera-
tions are always directed to the primagpy.
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In the invalidation scheme the owner of the primamgpy invalidates allsecondary
copies before performing the write operation. A subsequent read operation on the same
object always has to go to the processor containing the priroapy. So, the number of
secondaryopies of a given object is determined by its read/write pattern.

In the updatescheme, the processor containing the primeopy of an object keeps
track of the number of remote read and write operations issue@blyprocessor. The over-
head of maintaining these statistics is negligible compared to the total costs of remote opera-
tions. Assoonas the read/write ratio of a remote processeceedsa certain threshold, the
RTS creates aopyof the object on that processor.

Each processor havingsecondarycopykeeps track of the ratio of local read operations
and (global) write operations. If the overheadupdatingthe copy exceedghe time saved in
doing read operations locally, the RTS discards the loogly. From then on, all operations
on the objecwill bedoneremotely.

With both the invalidation andpdateprotocol, all write operations are forwarded to the
processor containing the primacppy of the object. If the RTS discovers that an object is
written frequently by a machine different from the one containing the princapy,the RTS
may decide tamigrate the primarycopyto that machine. Again, statistics are used to deter-
mine to best location for an object. If an object is migraj@ecautionsare taken for dealing
with machines that are unaware of the object’s new location.

4. AN IMPLEMENTATION USING MULTICAST COMMUNICATION

The secondRTS uses Amoeba’s indivisible reliablmulticast protocol described
in [21]. This protocol is highly efficient and usually only requires two packets (one point-
to-point and onemulticast) per reliablemulticast. Sending a short message reliably to 10
processors, for example, takes 2.7 msec on the hardware desabbeel

In a distributed systersupportingonly point-to-point messageserializabilityis diffi-
cult to achieve becausemessages sent to different destinations may arrive with arbitrary
delays. Some distributed systems (e.g., Ethernet-based systems) provide haayaoe
for sending a single messageniltiple destinations simultaneously. More precisely, we are
interested in systemsupportingindivisible reliable multicasts, which have the following
properties:

e A message is sent reliably from one source to a set of destinations.

* If two processors simultaneoushyulticasttwo messages (say yrand ),
then either all destinations firseceivem,, or they allreceivem, first, but
not a mixture with someeceivingm, first and othergeceivingm, first.

With this multicastfacility, it becomes much easier to implement a protocol for consistent
updatingof all copies of an object. Basically, if a process wantiimke a write operation

on a shared object, multicaststhe operation to all processors. Since all processersive

all messages in the same order, all operations on shared objects are executed in the same
order everywhere.

We have implemented an indivisible reliabieulticastprotocol in software on top of
Ethernet. The basic idea behind the protocol is that one ohttkesbe designated as the
sequencer. If a node wants to multicasta message, it first sends this message to the
sequencer, using point-to-point communication. The sequencer assigns the message the next
global sequence number and thenlticaststhe message and its sequence number. When a
nodereceivessuch amulticastmessage, it checks the sequence number to see if it has missed
any multicasts. If so, it requests the sequencer to provide it with the missing message (the
sequencer stores these in order to provide this recovery service).
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The aboveprotocol sendgachmessage over the network twice. For large messages it
is more efficient to let the sender broadcast the message itself, and have the sequencer broad-
cast a (small)acknowledgemeniessage containing the sequence number. The protocol
therefore uses the first approach for small messages argbtmmdapproach for large mes-
sages. For all examples discussed in this paper, theniethhodis used.

Of course, there are many more issueslvedin the protocol, such as buffer manage-
ment of messagegroupmanagement, and crashes of the sequencer or regudi@s. These
issues are described in [21].

With the protocol outlined above, programs need not worrabout lost messages.
Recovery of communication failures is handled automatically and transparently by the proto-
col. Efficiency is obtained by optimizing the protocol for no communication failures, as
these rarely happen with current state of microprocessor and netearikology.

4.1. Invalidation versus Updating

Reliablemulticastingis useful for invalidation as well agpdating. In both cases, a sin-
gle reliablemulticastmessage is needed for a write operation. If an objegtriten very
frequently and hardly ever read, the invalidation schewilk be more efficient, since fewer
messages are needed and invalidation messages are shortgpdhteamessages.

In general, however, thepdateschemewill be more efficient. Supposefor example,
that every processor reads a given object exactly once after it hasuoim. With P pro-
cessors, the invalidation scheme requires a single (short) relmblécast message for
invalidating the copies andP2point-to-point messages for fetching the object (or doing the
read operation remotely). As a relialbmeulticastusually costs twghysicalmessages, in
total there are R + 2 messages. In contrast, thpdatescheme requires only one reliable
multicastmessage. So, even in the case thathwrite is followed by only a single read
operation, thaipdatingperforms better than invalidation.

With the reliablemulticastprotocol we use, aulticastmessage is hardly more expen-
sive than an RPC. So, unless the read/write ratio of operations is close to zeupdtte
schemewill have a better performance. We have therefore only implementedpithate
scheme.

4.2. The Update Protocol

As in the RPC run time systermdivisibility of write operations is obtained by execut-
ing them in a mutually exclusive way. With indivisiblaulticast,mutual exclusion comes
for free. The communicatioprimitive imposes a single system-wide global ordering on all
write operations. Unlike the point-to-point scheme, there is no risk of different processors
updatingtheir copies in an inconsistent way. Also, there is no needigbnguishbetween
primary andsecondaryopies of an object.

The distributedupdateprotocol we use works as follows. Each processor maintains a
gueue of messages that have arrived on the processor but that have not yet been handled. As
all processorseceiveall messages in the same order, the queues on all processors are basi-
cally the same, except that some processors may be ahead of others in handling the messages
at the head of the queue.

If a process wants to execute a write operation on a shared okjecimulticastsan
update message to all processors (including its own processor) and then blocks. The message
contains the name of the object, the operation, and its parametersup@iagemessagevill
be appended to the tail eachqueue.

Each processor handles incoming messages in its queue in strict FIFO order. A
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message may be handledsaonas it appears at the head of the queue. To handigdate
message, the message is removed from the queue, thetmabf X is locked, the operation
is applied to the locatopy, and finally the localcopyis unlocked. If the message was sent
by a process on the same processor, that process is made active again.

The protocol describedbovecorrectly implements theerializabilityrequirement. The
protocol guarantees that all processors observe changes to shared iobjeetsame order.
Note that it does not provide a totalenporal) ordering [25]amongoperations. Suppose
Processor Pihitiatesa write operation on obje¢t and, a fewmicrosecondsater, Processor
P2 reads the value . Theupdate message foK sent by P1 need not have evesrached2
yet, so P2 maygtill use the old value oX. This scenario is imccordancevith the semantics
of our model, however, which merely requiresrializabilityof operations.

4.3. Replication Strategy

The multicastRTS replicates all objects on all processors. In other words, it uses the
full replication strategy. This strategy was choseecauset simplifies the implementation.
The RTS does not have to keep track of which object is used by which processor.

In some cases, full replication may be less efficient than partial replicatBuppose,
for example, process P1 wants to send information to another procassdeghan object
shared between them. As the objeali be replicated everywhere, all processors in the sys-
temwill receiveP1’supdatemessage, evaihoughonly P2 is really interested in it.

The overhead of sending the message everywhere usually is not dramatic, however.
With our reliablemulticastprotocol, the elapsed time formulticastmessage hardly depends
on the number of destinations. The main disadvantage of full replication then is the fact that
eachprocessomwill be interrupted once foeachwrite operation. With partial replication,
this CPU overhead would be less.

5. PERFORMANCE

There are several ways to measure the performances of the replication techniques. The
approach taken in [12] is to implement several user applications in Orca, execute them on the
different run time systems, and measure $peedups.Applications we havdookedat are
matrix multiplication, the all-pairs shortest paths probletranch-and-boundalpha-beta
search, anduccessiveverrelaxation.

In this paper wewill first look at the basic times for readingyriting, updating,and
invalidating shared objects. In this way we can deternunderwhich circumstances a tech-
nique is most effective. Next, waill look at theaccesgatterns used by real programs and
use the basic times for determining the efficiency of the different strategies for these applica-
tions.

To determine the performance improvements due to replication, we have performed two
experiments. In the first experiment, we have measured the costs of incrementing a replicated
4 byte integer object as a function of the number of replicas. Irsd@®ndexperiment we
measured the cost fapdatingan entire 1 Kb array object. These two types of objects occur
frequently in application programs [12].

5.1. Performance of the RPC Run Time System

Figure 3 shows the basic execution times for the run time system that uses Amoeba
RPC. The figure shows the costs for invalidatiNgcopies of an object and farpdating4-
byte and 1 Kb objects. Invalidating @py involvessending a short message containing an
object identifier, so the invalidation costs do not depend on the size of the object.
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Figure 3. Time for updatingreplicated objects using invalidation and 2-phapédateprotocol.

We have also measured the costs for doing a read or write operation on a remote object.
For a 4-byte object, remote reads cost 5.3 msec and remote writes costs 4.2 msec; for a 1Kb
object, the costs are 12.7 msec and 7.6 respectively. The reason why writes are cheaper than
reads is that, due to inefficiencies in the current compiler, read operatmmstheir data
more often.

As expected, the costs topdateor invalidate copies after a write operation grow
linearly with the number of copies. Therefore, selective replication is worth while.

For a small (4-byte) objectjpdating10 copies costs 58.0 msec. Invalidating 10 copies
takes 27.8 msec; iaddition,re-installingcopies costs 5.3 msec peopy (i.e., the costs of a
remote read operation). If the object is read by 6 or more processors immediately after it has
beenwritten, updatingwill outperform invalidation, since 27.8 + 6*5.3 > 58.0.

In contrast, if a small object mritten twice without being read, the invalidation scheme
is more efficient. In this case, thgdatecosts are 2*58.0 = 116.0 msec. Invalidating and re-
installingall 9 secondarygopies takes 27.8 + 9*5.3 = 75.5 msec.

For large (1 Kb) objectspdating10 copies takes 63.4 msec. If 3 processors re-install
the object after a write operation, the invalidation scheme costs 27.8 + 3*12.7 = 65.9, which
is slower tharupdating.If fewer than 3 processors read the object, invalidation is more effi-
cient.

If a large object iswritten twice and then read by all processoupdatingall copies
costs 2*63.4 = 126.8 msec; invalidating the copies oncerandstallingthem takes 27.8 +
9*12.7 = 142.1 msec, sopdatingis still cheaper. If a large object written three or more
timessuccessivelyinvalidationwill be more efficient.

A case that occurs frequently in user programs is a large object tiaitisen through
an operation with only a few bytes of parameters (e.g., a 1Kb array of which only 1 element
is changed). In this casepdatingwill often be more effective. For examplepdatingl10
such copiewill take about58.0 msec, while invalidating anek-installingthe entire array
will cost 142.1 msec. Even if the object is changed twice before being ugadtingis
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significantly more efficient.

The performance measurements also show that the partial replication scheme is more
efficient than a scheme that does not replicate objects, if the object is read relatively fre-
quently. If, for example, a given 4-byte object is not replicaeah(remote) read operation
will take 5.3 msec, so partial replication clearly pays off.

5.2. Performance of the Multicast Run Time System

The cost forupdatingreplicated objects using the distributegdateprotocol described
in Section 4 are depicted in Figure 4. As can be seen, the costs are almost independent of the
number of replicas. This is what we would expect, since inmutticastprotocol sending a
reliable multicastmessage costs only twghysicalmessages, independent of the number of
receivers. The only overhead is sending oste message after a processor hagceiveda
certain number of messages. (This state message is only required if a processor does not
multicastmessages itself; if it dognulticastmessages, the state messagaggybacked.)

16— _ ,
A—~A—A Time for 1Kb operation

14 o—o——n Time for 4-byte operation

12—

10—

Time
(in msec)” |

rr 11T 1T 1T T T "7 ]
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Figure 4. Time for updatingreplicated objects using the distributepdateprotocol.

For both 4 byte and 1 Kb objects, tlhypdatecosts are lower than or equal to the costs
for remote read and write operations in the RPC run time system (see Section 5.1). The rea-
son is that the RPC system has a higher overhead. In particular, it does more context switch-
ing, becauset usesauxiliary threads for queuing messages.

Since updatesare cheap, replication usually reduces the communication costs. One
exception is an object with a low read/write ratio. In this case, the overheapdattingthe
replicas aftereachwrite will invalidate the gains of replication. Thsecondexception is an
object that is hardly eveaccessethy remote processors. In both cases, it would be better not
to replicate the object at all. In conclusion, a good strategy for small objects would be to
either replicate a given object everywhere or not at all.
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5.3. Access patterns of example applications

Which replication strategy is most efficient for a given application depends not only on the
basic performance figures presentdibve but also on theaccesgpatterns of the application.

In this section, wewill look at how real Orca applications read and write shared objects.
Using the measurements givabove,we can determine the effectivenesseafchstrategy.

The applications wevill look at are the traveling salesman problem and the all-pairs shortest
paths problem. In our examples, wél assume that we use 10 CPUs.

The Traveling Salesman Problem

In the Traveling Salesman Problem (TSP) it is required to find the shortest route for a sales-
man to visiteachcity in a given set exactly once. The problem is solved in Orca using a
master/slave type of program based doranch-and-boundlgorithm. The master generates
partial routes and stores them in a job queue. Each slave repeatedly takes a job (route) from
the queue and generates all possible full paths starting witmiti@ route. All slaves keep

track of the current shortest full route. Asonas a slave finds a better route, it gives the
length of the route to all the other slaves. This value is used to prune part of the search tree.

This application uses two shared objects that are important to our discussion. First, the
master and slaves shargab queue object. All operations applied to this object are write-
operations, since both adding a job to the queue and deleting a job from the queue modify the
gueue’s data structures. Hence, the best strategy is not to replicate this object at all. The
RPC RTSwill store the object only on the master processor; the slave procegifioescess
the object doing remote write operations.

As a typical example, consider a TSP problem withcli#es, where the master gen-
eratednitial routes containing 2ities. So, the master generates 11*10 = 110 jobs. Each job
description is only a few bytes. ThaulticastRTS will thus do 110multicaststo 10 CPUs,
which takes 110*4.2 = 462 msec. The RPC RTS (bothugp@atingand invalidating version)
will do 110 remote write operations, also taking 110*4.2 = 462 msec. So, the communication
costs are the same in both systems, butigticastsystem has the disadvantage of generat-
ing more interrupts foupdatingcopies.

TSP uses another object (theund)for keeping track of the current best solution. This
object is share@mongall slave processes. Measurements of the program for a 12-city prob-
lem show that this object may be readrallion times andupdatedonly a few times [12].

After the object has been changed (i.e., a slavddasd a better route for the salesman), this
new value is read many times by all the slaves. Thus the best strategy is to replicate the vari-
able everywhere angpdateall copies whenever the variable changes.

Here, themulticastRTS has a performance advantage. If the objeaipdatedten
times, this RTSwill multicastten write operations, which takes only 10*4.2 = 42 msec. The
RPC RTS using theipdateprotocol will take 10*58.0 = 580 msec. The invalidating RTS
will invalidate the object ten times and then re-install it everywhere, talifiR7.8+ 9*5.3)
=755 msec. The total execution time of the TSP program on 10 CP&lsoist90 seconds,
so the impact of this communication overhead is relatively smatlll, the multicastRTS
achieves slightly bettespeedups.The secondproblem wewill discuss has a much higher
communication overhead.

The All-Pairs Shortest Paths Problem

In the All-pairs Shortest Paths (ASP) problem it is desired to find the length of the shortest
path from anynodei to any othemodej in a given graph witiN nodes. The parallel algo-
rithm we use is similar to the one given in [26], which is a parallel versioRloyd’s algo-

rithm.
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The distances between thedesare represented in a matrix. Each processor contains a
worker process that computes part of the result matrix. The parallel algorithm perférms
iterations. Beforeeachiteration, one of the workers sendgpiaot row of the matrix to all the
other workers. Since the pivot row contaiNgntegers and is needed by all processors, this
requires anontrivialamountof communication.

The workers share an object containing all the pivot rows used for different iterations.
Initially, this object is empty; after the final iteration,will contain all the pivot rows used
during the computation. ThaulticastRTSwill replicate this object everywhere. N=256,
all copies of the objeawvill be updated256 times,eachupdateoperation taking a row of 256
integers (i.e., 1 Kb) as parameters. Tmdl take 256*8.9 = 2278.4 msec.

The RPC RTS using thepdateprotocolwill likewise have 256*63.4 = 16230.4 msec of
communication overhead. The total execution time of the program is on the order of 90
secondsso this is a significant overhead. The invalidating RTS performs much worse, how-
ever. Re-installingthe shared object would grohibitively expensive, since the object may
ultimately contain 256*256 integers, or 256 Kb data. We have measured that such an opera-
tion would costabout16400 msec. On the other hanelkting eachworker process obtain the
pivot row from one processor also is very inefficient, since it requires 9 remote read opera-
tions of 1 Kb, taking 9*12.7 = 114.3 msec per iteration, or 114.3*256 = 29260.8 msec in
total, which is almost twice as bad as for tinedateprotocol. In conclusion, the invalidation
protocol is not appropriate for ASP. With tlipdateprotocol, it is possible to obtain reason-
able speedup§12], althoughfar from linear. To obtain good (close to lineapeedupsthe
multicastprotocol is required.

6. CONCLUSIONS

The model discussed in this paper allows programmers to define operations of arbitrary
complexity on shared data-objects. Inamsely-coupledsystem, the model is implemented
by replicating objects in the local memories of the processors. @hibty to replicate
objects is a significant difference with other object-based models, such as Emerald [8] and
Amber [9]. We have studied several protocols for keeping all these copies consistent and we
havelookedat replication strategies.

We have described two implementations of the model. One implementation replicates
objects everywhere angpdatescopiesthrougha fastmulticastprotocol. The other imple-
mentation uses only point-to-point messages. In this case, partial replication and migration
may be useful.

Which protocol or strategy for replication is most efficient depends on many factors,
such as the costs of thgydateprotocols, the size of the object and the parameters of the
operations, and the read/write pattern of the application. In the future we intend to do a more
detailed analysis of our protocols and strategies, using a large set of user applications. Also,
we will look at the differences and resemblances between protocols for replication and
coherence protocols for CPthched18, 27], non-uniformmemoryacces§YNUMA) archi-
tectures [28, 29], filecached30, 31, 32], and distributed database systems [14]. Based on
this analysis, wavill try to improve our implementations.

Our model has several advantages over other models based on logically shared data. It
provides a higher level of abstraction and, in many cases, is more efficient. Belowillwe
compare our model with several related ones.

Some systems provide the programmer a shared addpss=without guaranteeing
coherency or consistency. In Agora [6] and the problem-oriented shared memory [7], for
example, read operations can retgtale data. Therefore, these systems do not make repli-
cation transparent to the usehlthoughthese relaxations of the semantics make the systems
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more efficient to implement, we feel that they do not providsoandbasis for a general-
purpose parallel programmirignguage.We prefer to have simple and easy-to-use seman-
tics and thereforsupportconsistency of replicated shared data.

Kai Li's Shared Virtual Memorysupportsnemory coherency, but it has other disadvan-

tages [33]. For example, it can only invalidate but nptlatecopies of data. Also, the SVM
will perform verypoorly if processes on many different processors repeatedly write on the
same page. This situation arisesmiltiple processors write the same variable, or if they
write different variableplacedon the same page.

Linda’s TupleSpacd34] is another model that hides replication from the programmer.

It provides a fixed number of low-level operations on shared data (tuples) [35]. Logical
operations on shared data structures frequently consist of several low-level operesicms,

of which can requirgophysicalcommunication. In our model, the programmer can define a
single high-level operation that does the job with lower communication costs.
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