
A Modular Approach to

Fault-Tolerant Broadcasts

and Related Problems

Vassos Hadzilacos

�

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada M5S 1A1

Sam Toueg

y

Department of Computer Science

Cornell University

Ithaca, New York 14853, USA

1 Introduction

The design and veri�cation of fault-tolerant distributed applications is widely viewed as a

complex endeavor. To a large extent this is due to the fact that the communication prim-

itives available in distributed systems are too weak. For example, many systems support

primitives that allow a process to send a message to only one other process. If a process p

wishes to send a message m to all processes, it must do so by sending m to each one sepa-

rately. Should p fail in the middle of this activity, it is possible that some of the processes

receive m while others do not. Similar inconsistencies may arise even in networks such

as Ethernet that support broadcast as a low-level communication primitive: failures can

cause a message to be received by some processes but not by others. Such inconsistencies

complicate the task of building fault-tolerant distributed software.

Fault-tolerant broadcasts are communication primitives that facilitate the development

of fault-tolerant applications. The weakest among these is Reliable Broadcast. Roughly

speaking, this allows processes to broadcast messages such that all processes agree on the set

of messages they deliver, despite failures. Stronger variants of Reliable Broadcast impose ad-

ditional requirements on the order in which messages are delivered. For example, processes

may have to deliver all messages in the same order. Systems and applications based on fault-

tolerant broadcasts include SIFT [WLG

+

78], State Machines [Lam78a,Sch90], Atomic Com-

mitment [BT93], Isis [BJ87,BCJ

+

90], Psync [PBS89], Amoeba [Kaa92], Delta-4 [VM90],

Transis [ADKM92], Highly Available System [Cri87], and Advanced Automation System

[CDD90].

Another paradigm that simpli�es the task of designing fault-tolerant distributed ap-

plications is Consensus. Roughly speaking, Consensus allows processes to reach a common

�

Supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

y

Supported in part by NSF grants CCR-8901780 and CCR-9102231.

1

decision that depends on their initial inputs, despite failures. Consensus algorithms can

be used to solve many problems such as electing a leader or agreeing on the value of a

replicated sensor. Theoretical research on fault-tolerant distributed computing has largely

centered on Consensus, while applied research has focused on Reliable Broadcast and its

variants. In fact, as we shall see in this paper, the two problems are closely related.

Given their wide applicability, fault-tolerant broadcasts and Consensus have been ex-

tensively studied for over a decade. This has resulted in a voluminous literature which,

unfortunately, is not distinguished for its coherence. The di�erences in notation and the

haphazard nature of the assumptions obfuscates the close relationship among these prob-

lems.

Our primary goal here is to develop this material in a coherent way so as to expose its

intrinsic unity. We also strive to make it as simple as possible, without sacri�cing precision

or rigor. Our approach consists of the following elements. First, we draw a sharp line

between the speci�cation of problems and the algorithms that solve them. Second, we

give modular speci�cations of the various types of fault-tolerant broadcasts: Starting with

Reliable Broadcast we de�ne progressively stronger types of broadcasts by adding one or

more requirements on the order of message delivery. Third, we also derive algorithms for

each of these broadcasts in a modular way: We �rst give an algorithm for Reliable Broadcast,

and then describe a set of transformations that can be used to convert weaker broadcast

algorithms into stronger ones. Each of the transformations enforces one of the message

delivery order requirements. In this way, the modular derivation of algorithms parallels our

modular speci�cation of broadcasts. A crucial and novel feature of our methodology is that

these transformations are generic: they work for a large class of failures, and regardless of

the type or synchrony of the communication network.

The rest of this paper is organized as follows. In Section 2 we describe commonly used

models of computation. In Section 3 we give modular speci�cations for Reliable Broadcast

and its variants. Our development of broadcast algorithms follows a particular methodology,

explained in Section 4. In Section 5 we exhibit our generic transformations that can be

used to convert weaker broadcast algorithms into stronger ones. In Section 6 we focus on a

particular type of system, namely point-to-point networks, and derive Reliable Broadcast

algorithms for such a system. Applying the transformations of Section 5 to these algorithms

results in a suite of broadcast algorithms of various strengths for point-to-point networks. In

Section 7, we �rst de�ne the Consensus problem, and then determine its relation to Atomic

Broadcast, one of the broadcasts that we consider here. In Section 8 we de�ne a variant

of Reliable Broadcast and explain its relation to the Consensus problem. A variation of

broadcast where a process can target its messages to a speci�ed subset of the processes is

called a multicast. In Section 9, we give modular speci�cations for various types of fault-

tolerant multicasts.

To enhance the readability of this paper, many references, historical notes, and other

tangential and potentially distracting material are collected at the end of each section. Given

the vastness of the literature on this subject, the bibliographic references are extensive, but

incomplete. A more comprehensive treatment of the subject matter of this paper, including

many results that are not presented here, will be found in the forthcoming book [HJT].

2

2 Preliminaries

Several computational models of distributed computing have been studied. Such models fall

into two broad categories, message-passing and shared-memory. In the former, processes

communicate by exchanging messages; in the latter, they communicate by accessing shared

objects, such as registers, queues, etc. In this paper we focus on message-passing models.

The chief characteristics of a message-passing model are: the type of communication

network, the model of process and communication failures that may occur, and the syn-

chrony of the system.

2.1 Types of Communication Networks

The type of network determines how processes communicate. In a point-to-point network

communication takes place over links that connect pairs of processes. In this type of network

a process can send a message to a single process through a link. In a broadcast channel

network communication takes place over a single shared channel that connects all processes.

In such a network a process can broadcast a message to all other processes. Examples are

Ethernet, Token Bus, Token Ring, and FDDI networks. Other types of networks include

redundant broadcast channel networks (e.g., Delta-4 [VM90] and [Cri90b]), packet radio

networks (e.g., ALOHA [Abr85]), switch-based networks (e.g., AN2 [Owi93]), etc.

Many of the results in this paper are independent of the type of communication network.

When we need to focus on a particular type of network we concentrate on point-to-point

ones. This is because this is the most basic type, in the sense that it supports the most

limited communication primitives and can be easily emulated by the other types of networks.

We now turn our attention to the remaining characteristics of a message-passing system,

namely types of failure and synchrony. Since these depend on the network type, we focus on

point-to-point networks (similar de�nitions exist for other types of networks as well). Our

treatment in this section is informal; a more precise and detailed exposition of point-to-point

networks is given in the Appendix.

2.2 Point-to-Point Networks

A point-to-point network can be modeled as a directed graph, with nodes representing pro-

cesses, and edges representing communication links between processes. In such a network,

any pair of processes that are connected by a link can communicate with each other by

sending and receiving messages, as described below.

Consider the link from a process p to a process q. Associated with this link are two

communication primitives, called send and receive. If p invokes send with a message m

as a parameter, we say that p sends m to q; when it returns from that invocation we say

that p completes the sending of m to q. When a process q returns from the execution of

receive with message m as the returned value, we say that q receives m (from p).

Also associated with the link from p to q are an outgoing message bu�er at p and an

3

incoming message bu�er at q. Informally, when p sends a message m to q, p inserts m into

its outgoing message bu�er, the link transports m to q's incoming message bu�er, and m

is then removed and received by q. Thus, we assume that:

1. If p sends a message m to q then q eventually receives m.

1

Every process p executes a sequence of steps, where each step is the execution of an

operation such as the writing of a local variable, or the sending or receipt of a message. As-

sociated with p is an automaton, whose transition relation de�nes the set of legal sequences

of steps that p can execute. We assume that:

2. Every process executes an in�nite sequence of steps.

2

The preceding description of a point-to-point network assumes that no failures occur.

In the next section we consider some of the failures that can a�ect processes and links.

2.3 Some Failure Types

Failures can be de�ned as deviations from correct behavior. To model the violation of

Property 2, we introduce a special step called crash. Every process p can execute a crash

at any time, and after doing so it stops executing further steps. This is modeled by the

addition of a new terminal state to the automaton associated with p, and a transition from

every other state of p to that terminal state. The step associated with such a transition is

de�ned as a crash.

Following is a list of some types of process failures that have been studied:

� A process commits a crash failure if it executes a crash step.

� A process commits a send-omission failure on a message m if it completes the sending

of m but m is not inserted into its outgoing message bu�er.

� A process commits a receive-omission failure on a message m if m is inserted into its

incoming message bu�er but it does not receive m.

� A process commits an arbitrary (sometimes called Byzantine or malicious) failure if

the sequence of steps that it executes deviates arbitrarily from the sequence prescribed

by its associated automaton. Thus, it can exhibit any behavior whatsoever.

We also consider the following type of link failure:

1

Note that messages are not necessarily received in the order in which they are sent.

2

A distributed system in which a process p can terminate (i.e., p's automaton has a terminal state), can

be modeled by replacing each terminal state of p by a state with a single \no-op" transition to itself.

4

� A link l from a process p to a process q commits an omission failure on a message

m if m is inserted into p's outgoing bu�er bu�er but l does not transport m into q's

incoming bu�er.

If a process or a link commits a failure, we say that it is faulty ; otherwise it is correct.

In a network with failures, Properties 1 and 2 hold only for correct processes and for correct

links that connect correct processes. In other words, they hold only in the subnetwork that

consists entirely of correct processes and links.

2.4 Synchronous and Asynchronous Networks

A point-to-point network is synchronous if it has the following properties (in addition to

the ones stated in Section 2.2):

3. There is a known upper bound on the time required by any process to execute a step.

4. Every process has a local clock with known bounded rate of drift with respect to real

time.

5. There is a known upper bound on message delay; this consists of the time it takes to

send, transport, and receive a message over any link.

It is important to realize that all of the above properties are necessary for the use of

timeouts to detect crash failures. If any of the three properties is violated, and a process p

times-out on a message expected from a process q, p cannot conclude that q has crashed:

The message delay could have been longer than expected, the clock used by p to measure

the timeout could have been running too fast, or q could be executing steps slower than

expected.

A point-to-point network is asynchronous if there are no timing assumptions whatso-

ever. In particular, there are no assumptions on the maximum message delay, clock drift, or

the time needed to execute a step. This model is attractive and has recently gained much

currency for several reasons: It has simple semantics; applications programmed on the basis

of this model are easier to port than those incorporating speci�c timing assumptions; and

in practice, variable or unexpected workloads are sources of asynchrony | thus synchrony

assumptions are at best probabilistic.

Synchronous and asynchronous point-to-point networks are the two extremes of a spec-

trum of possible models. Many intermediate models of partial synchrony have also been

studied. For example, there may be known bounds on clock drift and step execution time,

but message delays could be unbounded. Or there may be bounds on clock drift, step

execution time and message delay, but these bounds may be unknown.

2.5 Clock and Performance Failures in Synchronous Networks

The failure types described in Section 2.3 apply to both synchronous and asynchronous

networks. Certain failures, however, are only pertinent to synchronous networks; these

5

occur when the assumed bounds on clock drift, message delay, or the time needed to execute

a step are violated. Such failures are de�ned below.

Consider a synchronous network, i.e., one where processes and links are supposed to

satisfy timing Properties 3{5 (of Section 2.4). A process commits a clock failure if it violates

Property 4; i.e., there is some interval of time during which its clock drifts with respect to

real time at a rate that exceeds the speci�ed maximum. A process commits a performance

failure if it violates Property 3; i.e., it completes a step in more time than the speci�ed

maximum. Similarly, a link commits a performance failure if it transports some message

in more time than its speci�ed bound. Recall that the message delay consists of the time

needed for the sender to send the message, the link to transport it, and the receiver to

receive it. Thus, a violation of Property 5 may be due to a performance failure of the

sender, the receiver, or the link between them.

In a synchronous network with clock and performance failures, the bounds on the time

to execute a step and on clock drift apply only to correct processes. Similarly, the bound on

message delay applies only to messages sent between correct processes over correct links. In

other words, only the subnetwork consisting entirely of correct processes and links is really

synchronous.

2.6 Classi�cation of Failures and Terminology

It is convenient to group failures into two classes that include both process and link failures:

� omission failures consist of crash, send-omission, and receive-omission failures of pro-

cesses, as well as link omission failures.

� timing failures consist of omission, clock and performance failures.

A network with a certain class of failures, is one where processes and links may commit any

of the failures included in that class, but no other failures. Thus, a network with omission

failures is not subject to clock, performance, or arbitrary failures. Similarly, one with timing

failures is not subject to arbitrary failures.

Benign failures is synonymous to omission failures in asynchronous networks and to

timing failures in synchronous networks. In a system with benign failures, processes do not

commit arbitrary failures. Thus, the sequence of steps executed by every process, whether

correct or faulty, is always consistent with the automaton associated with that process. In

particular, a faulty process does not change its state arbitrarily, or send a message that it

was not supposed to send | two behaviors allowed by arbitrary failures. Benign failures

are the most common in practice, and in this paper we focus almost exclusively on them.

2.7 Causal Precedence

We can view the computation of a distributed system as a partial order on a set of steps

that processes execute, including communication steps. For example, consider systems

6

where processes communicate by broadcasting and delivering messages. In such systems, a

step is any operation executed by a process, such as the writing of a local variable, or the

broadcast or delivery of a message. A given subset of steps (\the steps of interest") induces

a partial order as follows. Step e causally precedes step f , denoted e! f , if and only if:

1. the same process executes both e and f , in that order, or

2. e is the broadcast of some message m and f is the delivery of m, or

3. there is a step h, such that e! h and h! f .

The causal precedence relation ! is acyclic because the broadcast of a message always

precedes (in real time) the delivery of that message. By Clause 3, ! is also transitive, and

hence a partial order.

This causal precedence relation plays a central role in distributed computing: In asyn-

chronous message-passing systems, step e can \inuence" step f only if there is a sequence

of steps starting with e and ending with f such that consecutive steps are related as in (1)

or (2) above, i.e., only if e! f .

2.8 Properties of clocks

Even in asynchronous systems, processes may have access to local clocks. Although such

clocks do not measure real time, they can still be useful by capturing some temporal infor-

mation. The minimum requirement for a local clock is that its values are non-decreasing in

real time. Of course, to be useful, local clocks must satisfy stronger properties. One such

property is:

� Clock Monotonicity: The local clock of a process p (whether correct or faulty) never

decreases or skips values. Furthermore, if p is correct then its clock eventually reaches

c, for any time c.

Another useful property for clocks is that they be consistent with the causal precedence

relation ! de�ned in Section 2.7. More precisely, let p be any process and e be a step that

occurs at p; let C

p

(e) denote the value of p's local clock when e occurs. We say that the

local clocks are consistent with ! if they satisfy the following property:

� Logical Clocks: For any processes p and q, and any steps e and f that occur at p and

q, respectively, if e! f then C

p

(e) < C

q

(f).

In other words, if e can inuence f then the time at which e occurs is before the time at

which f occurs according to the local clocks.

Recall that in a synchronous system the clocks of correct processes have a bounded

rate of drift with respect to real time. As time progresses, however, the actual values of

7

the clocks may drift arbitrarily far apart. It turns out that in synchronous systems it is

possible to implement approximately synchronized clocks, which not only have a bounded

rate of drift with respect to real time, but also satisfy the following property:

� �-Synchronized Clocks: The clock values of correct processes at any real time t di�er

by at most a known constant �.

Note that such clocks may violate the Clock Monotonicity and Logical Clock properties. It

is possible, however, to implement approximately synchronized clocks that satisfy both of

these properties.

Bibliographic Notes

Crash failures, in the context of broadcast and Consensus problems, were �rst considered

in [LF82]. [SS83] de�ned a more restricted type of process failure, referred to as fail-stop.

A fail-stop process fails by crashing but, in addition, all correct processes are informed of

the crash, and they have access to any information written by the faulty process in its

stable storage before it crashed. Send-omission failures were introduced in [Had84]. [PT86]

introduced the class of general-omission failures consisting of crash, send- and receive-

omission failures. Timing failures were �rst considered in [CASD85], and arbitrary failures

in [PSL80,LSP82]. [PSL80,LSP82] also consider message authentication, a mechanism that

restricts the faulty behavior of processes that are subject to arbitrary failures. A precise

de�nition of the properties of message authentication, and a mechanism for providing them

without digital signatures in point-to-point networks appears in [ST87b].

There are methods for automatically increasing the fault-tolerance of algorithms. This

is achieved by translations that transform any given algorithm tolerant of a certain type of

failure into an algorithm that tolerates a more severe type of failure. Such translations are

given in [Bra87,Coa87,ST87b,NT90,BN91,BN92]. They can be used to transform any algo-

rithm tolerant of crash failures into one tolerant of arbitrary failures, in both synchronous

and asynchronous systems.

Much of the theoretical work on fault-tolerant algorithms focused on synchronous mod-

els, including the so-called \synchronous round model" where processes execute in lock-step

fashion. The asynchronous model has been adopted by many systems, such as those de-

scribed in [BJ87,PBS89,ADKM92]. Theoretical investigation of this model was spurred by

the surprising result of Fischer, Lynch and Paterson, stating that Consensus cannot be

solved deterministically in this model [FLP85]. A variety of models of partial synchrony

are studied in [DDS87,DLS88].

The causal precedence relation, which is widely viewed as one of the most fundamental

concepts in distributed computing, was introduced by Lamport in a seminal paper [Lam78b].

(The relation was called \happens-before" in [Lam78b], and was de�ned in terms of send and

receive communication primitives, instead of the broadcast and deliver primitives we used in

our de�nition.) In that paper Lamport also de�ned logical clocks and showed how to imple-

ment them. [NT87,Wel87] show that, for a large class of problems, access to logical clocks

8

is as good as access to real-time clocks. Many clock synchronization algorithms are known,

including [Lam78b,HSSD84,LM85,CAS86,DHS86,BD87,KO87,ST87a,WL88,Cri89].

3 Broadcast Speci�cations

Roughly speaking, Reliable Broadcast | the weakest type of of fault-tolerant broadcast

that we consider | guarantees three properties: (1) all correct processes agree on the set of

messages they deliver, (2) all messages broadcast by correct processes are delivered, and (3)

no spurious messages are ever delivered. While these properties may be su�cient for some

applications, Reliable Broadcast imposes no restriction on the order in which the messages

are delivered. In some applications this order is important. Thus, we de�ne a collection of

stronger broadcasts, di�ering in the guarantees they provide on message delivery order.

Informally, FIFO Broadcast is a Reliable Broadcast that guarantees that messages

broadcast by the same sender are delivered in the order they were broadcast. Causal

Broadcast, a strengthening of FIFO Broadcast, requires that messages be delivered according

to the causal precedence relation discussed in Section 2.7: Roughly speaking, if the broadcast

of m causally precedes the broadcast of m

0

, then m must be delivered before m

0

. If two

messages are not causally related, however, di�erent processes can deliver them in di�erent

orders. Atomic Broadcast prevents this undesirable behavior by requiring processes to

deliver all messages in the same order. Finally, FIFO Atomic Broadcast combines the

requirements of FIFO Broadcast and Atomic Broadcast, and Causal Atomic Broadcast

combines the requirements of Causal Broadcast and Atomic Broadcast.

In our de�nitions of the various types of broadcast, we assume that we are only dealing

with benign failures. This not only simpli�es the de�nitions, but also makes it possible

to strengthen the properties of broadcasts in ways that are important in practice. In

Section 3.10, we shall describe the few modi�cations necessary for arbitrary failures.

3.1 Reliable Broadcast

Informally, Reliable Broadcast requires that all correct processes deliver the same set of

messages (Agreement), and that this set include all the messages broadcast by correct

processes (Validity) but no spurious messages (Integrity). Formally, Reliable Broadcast is

de�ned in terms of two primitives: broadcast and deliver. When a process p invokes

broadcast with a message m as a parameter, we say that p broadcasts m. We assume that

m is taken from a set a set M of possible messages. When a process q returns from the

execution of deliver with message m as the returned value, we say that q delivers m.

Since every process can broadcast several messages, it is important to be able to deter-

mine the identity of a message's sender, and to distinguish the di�erent messages broadcast

by a particular sender. Thus, we assume that every message m includes the following �elds:

the identity of its sender, denoted sender(m), and a sequence number, denoted seq#(m).

If sender(m) = p and seq#(m) = i, then m is the ith message broadcast by p. These �elds

make every message unique.

9

Reliable Broadcast is a broadcast that satis�es the following three properties:

� Validity: If a correct process broadcasts a message m, then it eventually delivers m.

� Agreement: If a correct process delivers a message m, then all correct processes even-

tually deliver m.

� Integrity: For any message m, every correct process delivers m at most once, and only

if m was previously broadcast by sender(m).

Validity together with Agreement ensures that a message broadcast by a correct process

is delivered by all correct processes. It is important to realize that if the sender of a

message m is faulty, the speci�cation of Reliable Broadcast allows two possible outcomes:

either m is delivered by all correct processes or by none. For example, if a process p

crashes immediately after invoking broadcast(m), correct processes will never be aware

of p's intention to broadcast m, and thus cannot deliver anything. On the other hand, if

p invokes broadcast(m) and fails during the execution of this primitive after having sent

enough information about m, then correct processes may be able to deliver m.

3.2 FIFO Broadcast

In general, each message has a context without which it may be misinterpreted. Such a

message should not be delivered by a process that does not know its context. In some

applications, the context of a message m consists of the messages previously broadcast by

the sender of m. For example, in an airline reservation system, the context of a message

cancelling a reservation consists of the message that previously established that reservation:

the cancellation message should not be delivered at a site that has not yet \seen" the

reservation message. Such applications require the semantics of FIFO Broadcast, a Reliable

Broadcast that satis�es the following requirement on message delivery:

� FIFO Order: If a process broadcasts a message m before it broadcasts a message m

0

,

then no correct process delivers m

0

unless it has previously delivered m.

Our de�nition of FIFO Order is subtler than meets the eye. Some alternative formu-

lations of FIFO Broadcast which have appeared in the literature have a similar avor, but

are ambiguous or do not fully capture the desirable property described above. For example,

consider the following de�nition: \all messages broadcast by the same process are delivered

to all processes in the order they are sent." Suppose process p broadcasts messages m

1

, m

2

,

and m

3

in that order, and correct process q delivers m

1

and then m

3

(but never delivers

m

2

). This scenario could happen if p su�ers a transient failure while broadcasting m

2

. Note

that m

3

was delivered without its proper context, namely m

2

. This undesirable behavior

is allowed by the alternative de�nition (since m

1

and m

3

are indeed delivered in the order

they are broadcast), but not by our de�nition of FIFO Order.

3

3

This alternative de�nition, taken from the literature, is also awed in another way: it requires messages

be delivered by all processes. Clearly, this is impossible, since a faulty process cannot be forced to deliver

any message.

10

3.3 Causal Broadcast

FIFO Order is adequate when the context of a messagem consists only of the messages that

the sender of m broadcast before m. A message m, however, may also depend on messages

that the sender of m delivered before broadcasting m. In this case, the message delivery

order guaranteed by FIFO Broadcast is not su�cient. For example, in a network news

application, if users distribute their articles with FIFO Broadcast, the following undesirable

scenario could occur. User A broadcasts an article. User B, at a di�erent site, delivers that

article and broadcasts a response that can only be understood by a user who has already seen

the original article. User C delivers B's response before delivering the original article from A

and so misinterprets the response. Causal Broadcast is a strengthening of FIFO Broadcast

that prevents the above problem by generalizing the notion of a message \depending" on

another one, and ensuring that a message is not delivered until all the messages it depends

on have been delivered. We capture this more general notion of dependence with the causal

precedence relation on message broadcasts and deliveries de�ned in Section 2.7.

Given a causal precedence relation (induced by broadcasts and deliveries), we de�ne

Causal Broadcast to be a Reliable Broadcast that satis�es:

� Causal Order: If the broadcast of a message m causally precedes the broadcast of a

message m

0

, then no correct process delivers m

0

unless it has previously delivered m.

The following alternative formulation of Causal Order has appeared in the literature:

if the broadcast of m causally precedes the broadcast of m

0

, then every correct process that

delivers both messages must deliver m before m

0

. In a system with failures, this de�nition

of Causal Order is awed. In fact, it allows the same non-FIFO execution described in the

previous section, where a faulty process broadcasts m

1

, m

2

, and m

3

, and a correct process

delivers m

1

and then m

3

. This alternative de�nition also allows the following undesirable

scenario from our network news example. Faulty user A broadcasts an article; faulty user

B, who is the only one to deliver that message, broadcasts a response. Correct user C

delivers B's response, although it never delivers A's original article. It is easy to see that

this scenario satis�es all the properties of Reliable Broadcast, namely Validity, Agreement

and Integrity, as well as the alternative de�nition of Causal Order (but not our de�nition

of Causal Order). Note that de�ning Causal Order as \messages that are causally related

are delivered in the causal order" is also awed.

Causal Order is a generalization of FIFO Order; in fact, as we show below it is equivalent

to the conjunction of FIFO Order and the following property:

� Local Order: If a process broadcasts a message m and a process delivers m before

broadcasting m

0

, then no correct process delivers m

0

unless it has previously delivered

m.

Theorem 1 Causal Order is equivalent to FIFO Order and Local Order.

Proof: It is obvious that Causal Order implies FIFO Order and Local Order. We now show

that FIFO Order and Local Order imply Causal Order. Let m and m

0

be messages such

11

that the broadcast ofm causally precedes the broadcast ofm

0

. Consider any correct process

p that delivers m

0

. We must show that p delivers m before m

0

. If m and m

0

are broadcast

by the same process, this follows immediately by FIFO Order. Now assume that m and m

0

are broadcast by di�erent processes. From the de�nition of the causal precedence relation

it is easy to see that there exist processes p

1

; p

2

; : : : ; p

k

and messages m

1

; m

2

; : : : ; m

k

= m

0

(k � 2) such that:

� p

1

= sender(m);

� p

i

broadcasts m

i

, for all 1 � i � k;

� either m = m

1

or p

1

broadcasts m before it broadcasts m

1

; and

� p

i

delivers m

i�1

before it broadcasts m

i

, for all 2 � i � k;

By Local Order (applied to p

k

, m

k�1

, m

k

and p), p delivers m

k�1

before m

k

= m

0

. By

applying Local Order again (to p

k�1

, m

k�2

, m

k�1

and p), p delivers m

k�2

before m

k�1

. In

general, an easy induction shows that p delivers m

i�1

before m

i

for all 1 < i � k. Thus p

delivers m

1

before m

k

= m

0

. Recall that either m = m

1

, or p

1

broadcasts m before m

1

. In

the former case, we immediately have that p delivers m before m

0

. In the latter case, FIFO

Order ensures that p delivers m before m

1

. Thus, in both cases, p delivers m before m

0

, as

we wanted to show. 2

By Theorem 1, we can show that a broadcast algorithm satis�es Causal Order by prov-

ing that it satis�es FIFO Order and Local Order. This is easier than proving Causal Order

directly: in general, the causal precedence between two broadcasts involves an arbitrarily

long chain of intermediate broadcasts and deliveries. A direct proof of Causal Order requires

a tedious induction on the length of this chain analogous to that in the proof of Theorem 1.

In contrast, FIFO and Local Order involve chains of length one and two, respectively. Their

proofs do not require induction, and so they are simpler. This is illustrated in the proofs

of Theorems 3, 5, 6, 7, and 9.

3.4 Atomic Broadcast

If the broadcasts of two messages are not related by causal precedence, Causal Broadcast

does not impose any requirement on the order they can be delivered. In particular, two

correct processes may deliver them in di�erent orders. This disagreement on message deliv-

ery order is undesirable in some applications. For example, consider a replicated database

with two copies of a bank account x residing at di�erent sites. Initially, x has a value of

$100. A user deposits $20, triggering a broadcast of \add $20 to x" to the two copies of x.

At the same time, at a di�erent site, the bank initiates a broadcast of \add 10% interest

to x". Because these two broadcasts are not causally related, Causal Broadcast allows the

two copies of x to deliver these update messages in di�erent orders. This results in the two

copies of x having di�erent values, creating an inconsistency in the database.

To prevent such problems, Atomic Broadcast requires that all correct processes deliver

all messages in the same order. This total order on message delivery ensures that all correct

12

processes have the same \view" of the system; hence they can act consistently without any

additional communication. Formally, an Atomic Broadcast is a Reliable Broadcast that

satis�es the following requirement:

� Total Order: If correct processes p and q both deliver messages m and m

0

, then p

delivers m before m

0

if and only if q delivers m before m

0

.

The Agreement and Total Order requirements of Atomic Broadcast imply that correct

processes eventually deliver the same sequence of messages.

3.5 FIFO Atomic Broadcast

Atomic Broadcast does not require that messages be delivered in FIFO Order. For example,

Atomic Broadcast allows the following scenario: a process su�ers a transient failure during

the broadcast of a message m, and then broadcasts m

0

, and correct processes only deliver

m

0

. Thus, Atomic Broadcast is not stronger than FIFO Broadcast.

We therefore de�ne FIFO Atomic Broadcast which is a Reliable Broadcast that satis�es

both FIFO Order and Total Order. FIFO Atomic Broadcast is stronger than both Atomic

Broadcast and FIFO Broadcast.

3.6 Causal Atomic Broadcast

FIFO Atomic Broadcast does not require that messages be delivered in Causal Order. Re-

consider the earlier network news example, and suppose FIFO Atomic Broadcast is used to

disseminate articles. The following undesirable scenario is possible. Faulty user A broad-

casts an article; faulty user B, who is the only one to deliver that message, broadcasts a

response and then immediately crashes (before delivering its own response). Correct user

C delivers the response, although it never delivers the original article. Thus, FIFO Atomic

Broadcast does not necessarily satisfy Causal Order.

We therefore de�ne Causal Atomic Broadcast which is a Reliable Broadcast that sat-

is�es both Causal Order and Total Order. Causal Atomic Broadcast is stronger than both

FIFO Atomic Broadcast and Causal Broadcast. This type of broadcast is the key mecha-

nism of the State Machine approach to fault-tolerance [Lam78a,Sch90].

3.7 Timed Broadcasts

Many applications require that if a message is delivered at all, it is delivered within a

bounded time after it was broadcast. This property is called �-Timeliness. As usual,

in a distributed system elapsed time can be interpreted in two di�erent ways: real time,

as measured by an external observer, or local time, as measured by the local clocks of

processes. This gives rise to two di�erent ways of de�ning the �-Timeliness property. The

one corresponding to real time is:

13

� Real-Time �-Timeliness: There is a known constant � such that if a message m is

broadcast at real time t, then no correct process delivers m after real time t+ �.

On the other hand, the de�nition of �-Timeliness in terms of local clocks bounds

the di�erence between the local broadcasting time and the local delivery time. To formally

specify such a bound, we assume that each messagem contains a timestamp ts(m) denoting

the local time at which m was broadcast according to the sender's clock. That is, if a

process p wishes to broadcast a message m when its local clock shows c, then p tags m with

ts(m) = c. The de�nition of �-Timeliness that corresponds to local time is:

� Local-Time �-Timeliness: There is a known constant � such that no correct process

p delivers a message m after local time ts(m) + � on p's clock.

A broadcast that satis�es either version of the �-Timeliness property is called a Timed

Broadcast. For example, Timed Reliable Broadcast is a Reliable Broadcast that satis�es

Local- or Real-Time �-Timeliness. When referring to a Timed Broadcast, one must explic-

itly state which of the two Timeliness properties is assumed. The parameter � is called the

latency of the Timed Broadcast.

3.8 Uniform Broadcasts

The Agreement, Integrity, Order, and �-Timeliness properties of the broadcasts de�ned

so far place no restrictions on the messages delivered by faulty processes. Since we are

dealing with benign failures, such restrictions are desirable and achievable. For example,

the Agreement property states that if a correct process delivers a messagem, then all correct

processes eventually deliverm. This requirement allows a faulty process to deliver a message

that is never delivered by the correct processes. This behavior is undesirable in many

applications, such as Atomic Commitment in distributed databases [Gra78,BHG87,BT93],

and can be avoided if the failures are benign. For such failures, we can strengthen the

Agreement property to:

� Uniform Agreement: If a process (whether correct or faulty) delivers a message m,

then all correct processes eventually deliver m.

Similarly, Integrity allows a faulty process to deliver a message more than once, and to

deliver messages \out of thin air" (i.e., messages that were not previously broadcast). If

failures are benign, this behavior can be avoided and we can strengthen the Integrity prop-

erty as follows:

� Uniform Integrity: For any message m, every process (whether correct or faulty)

delivers m at most once, and only if m was previously broadcast by sender(m).

We can also strengthen each version of the �-Timeliness property by requiring that even

faulty processes respect the bound on the broadcast latency:

14

� Uniform Real-Time�-Timeliness: There is a known constant � such that if a message

m is broadcast at real time t, then no process (whether correct or faulty) delivers m

after real time t +�.

� Uniform Local-Time�-Timeliness: There is a known constant � such that no process

p (whether correct or faulty) delivers a message m after local time ts(m) + � on p's

clock.

Likewise, we can strengthen each of the Order properties, by requiring that even faulty

processes do not violate them. Speci�cally, we de�ne:

� Uniform FIFO Order: If a process broadcasts a message m before it broadcasts a

message m

0

, then no process (whether correct or faulty) delivers m

0

unless it has

previously delivered m.

� Uniform Local Order: If a process broadcasts a message m and a process delivers m

before broadcasting m

0

, then no process (whether correct or faulty) delivers m

0

unless

it has previously delivered m.

� Uniform Causal Order: If the broadcast of a message m causally precedes the broad-

cast of a message m

0

, then no process (whether correct or faulty) delivers m

0

unless

it has previously delivered m.

� Uniform Total Order: If any processes p and q (whether correct or faulty) both deliver

messages m and m

0

, then p delivers m before m

0

if and only if q delivers m before m

0

.

We can now state the uniform counterpart of Theorem 1 (the proof is omitted as it is almost

identical to that of Theorem 1):

Theorem 2 Uniform Causal Order is equivalent to Uniform FIFO Order and Uniform

Local Order.

Each broadcast type T has a Uniform counterpart obtained by replacing every one of

the properties of T (except Validity) with the corresponding uniform version. For example,

Uniform Reliable Broadcast satis�es Validity, Uniform Agreement, and Uniform Integrity.

3.9 Summary of Broadcast Speci�cations

All the broadcasts that we de�ned satisfy the properties of Reliable Broadcast, namely:

� Validity: If a correct process broadcasts a message m, then it eventually delivers m.

� Agreement: If a correct process delivers a message m, then all correct processes even-

tually deliver m.

15

� Integrity: For any message m, every correct process delivers m at most once, and only

if m was previously broadcast by sender(m).

They only di�er by the strength of their requirements for message delivery order. There

are three such requirements:

� FIFO Order: If a process broadcasts a message m before it broadcasts a message m

0

,

then no correct process delivers m

0

unless it has previously delivered m.

� Causal Order: If the broadcast of a message m causally precedes the broadcast of a

message m

0

, then no correct process delivers m

0

unless it has previously delivered m.

� Total Order: If correct processes p and q both deliver messages m and m

0

, then p

delivers m before m

0

if and only if q delivers m before m

0

.

Thus we have:

� Reliable Broadcast = Validity + Agreement + Integrity

� FIFO Broadcast = Reliable Broadcast + FIFO Order

� Causal Broadcast = Reliable Broadcast + Causal Order

Each of these broadcast types has an Atomic counterpart:

� Atomic Broadcast = Reliable Broadcast + Total Order

� FIFO Atomic Broadcast = FIFO Broadcast + Total Order

� Causal Atomic Broadcast = Causal Broadcast + Total Order

The relations among these six types of broadcasts, in terms of their order properties, is

illustrated in Figure 1.

The above broadcasts do not place any bound on message delivery time. A Timed

broadcast requires such a bound by having one of the following two properties:

� Real-Time �-Timeliness: There is a known constant � such that if a message m is

broadcast at real time t, then no correct process delivers m after real time t+ �.

� Local-Time �-Timeliness: There is a known constant � such that no correct process

p delivers a message m after local time ts(m) + � on p's clock.

Finally, we saw that every broadcast property (except Validity) has a uniform coun-

terpart, which is de�ned by imposing the corresponding requirement even on messages

delivered by faulty processes. A broadcast is Uniform if all its properties (except Validity)

are uniform.

In the next section, we consider the above broadcast speci�cations in the context of

arbitrary failures. This section can be skipped without loss of continuity.

16

Total Order

Total Order

Total Order

Broadcast

AtomicReliable

Broadcast

Causal Order

FIFO Order

Causal Order

FIFO Order

Broadcast

Causal Atomic

Broadcast

Causal

Broadcast

FIFO Atomic

Broadcast

FIFO

Figure 1: Relationship among Broadcast Primitives

3.10 Broadcast Speci�cations for Arbitrary Failures

The broadcast speci�cations given so far, were written with the assumption that only benign

failures occur. When dealing with arbitrary failures, some minor modi�cations to these

speci�cations are required.

Recall that any message m 2 M that processes are allowed to broadcast and deliver

must include some �elds, such as a sender's id, sender(m), a sequence number, seq#(m),

and possibly a timestamp, ts(m). In a system with arbitrary failures, we cannot assume

that messages broadcast by processes that commit arbitrary failures are in M; for example

they may not have the appropriate �elds. We assume that correct processes ignore (and

thus never deliver) such messages. With this assumption, a correct process can always

extract sender(m), seq#(m), and when appropriate, ts(m), from any message m that it

delivers. It is important to realize that a process p that commits arbitrary failures may

broadcast a message m with sender(m) 6= p, or with the wrong sequence number, or with

a totally arbitrary timestamp.

Now consider Reliable Broadcast with arbitrary failures. The de�nitions of Validity

and Agreement only refer to messages broadcast and delivered by correct processes. Since

the meaning of such broadcasts and deliveries is unambiguous no matter what the failure

model is, the de�nitions of these two properties do not change. The same is true about

the �rst clause of Integrity. The second clause of Integrity, however, is problematic: Since

sender(m) may commit arbitrary failures, the meaning of \m was previously broadcast by

sender(m)" is not clear. Even if the sender invokes broadcast(m), the external behavior of

this invocation may look like an invocation of broadcast(m

0

) to some or all other processes.

The natural way to circumvent this problem is to rede�ne Integrity (for arbitrary failures)

as follows:

17

� Integrity: For any message m, every correct process delivers m at most once, and if

sender(m) is correct then m was previously broadcast by sender(m).

Integrity now refers only to broadcast and deliveries of correct processes.

4

This de�nition

preserves the intended meaning of Integrity, restricted to the broadcasts of correct processes:

No correct process can deliver a message m \out of thin air" if its �eld sender(m) contains

the identity of a correct process. In other words, faulty processes cannot \fool" correct

ones into delivering a message m from a correct process that has not (yet) broadcast m.

Thus, this formulation of Integrity guarantees the authentication of broadcasts. This is

the broadcast/deliver counterpart of the send/receive message authentication discussed in

Section 2.3.

Now consider FIFO Broadcast. The benign failure version of FIFO Order imposes an

order on the delivery of messages broadcast by a process p that may be faulty. However, if

p commits arbitrary failures, such an order is not meaningful. Thus, in the case of arbitrary

failures, we weaken the order requirement by restricting its application only to messages

broadcast by correct processes:

� FIFO Order: If a correct process broadcasts a message m before it broadcasts a

message m

0

, then no correct process delivers m

0

unless it has previously delivered m.

5

A proper de�nition of Causal Broadcast in the presence of arbitrary failures is subtle

and more complex. Moreover, the utility of such a broadcast is questionable: The context

of a message broadcast by a correct process, i.e., its \causal past", may include the delivery

of a message from a process that committed arbitrary failures. Thus, we do not pursue

Causal Broadcast with such failures.

Next consider Atomic Broadcast, i.e., Reliable Broadcast with Total Order, for arbi-

trary failures. We have already given the de�nition of Reliable Broadcast in that case. The

de�nition of Total Order refers only to deliveries by correct processes, and hence remains

unchanged.

Finally, we consider each version of �-Timeliness. The de�nition of Local-Time �-

Timeliness refers only to actions of correct processes, and remains unchanged. Real-Time

�-Timeliness, however, refers to the real time at which a message is broadcast; this is

now ambiguous as the sender of that message may be subject to arbitrary failures. We

circumvent this problem by restricting the requirement to messages broadcast by correct

processes only:

� Real-Time �-Timeliness: There is a known constant � such that if a message m is

broadcast by a correct process at real time t, then no correct process delivers m after

real time t+ �.

4

Instead of reformulating Integrity, we could use the original de�nition with the convention that if a

faulty process p is subject to arbitrary failures then the statement \p broadcasts m" is true for all m 2M.

5

This reformulation of FIFO Order allows correct processes to deliver messages broadcast by the same

faulty sender in di�erent orders. If desired, a stronger de�nition of FIFO Order can exclude this behavior.

18

With benign failures, every broadcast property (except Validity) has a uniform version

that imposes some requirements on the messages that faulty processes deliver. With arbi-

trary failures, however, it is not possible to enforce any such requirement, so uniformity is

a meaningless concept in this case.

3.11 Inconsistency and Contamination

Consider an application where processes communicate via fault-tolerant broadcasts (Fig-

ure 2). Assume that only benign failures may occur; thus, the current state of every process

(whether correct or faulty) depends on the messages that it has delivered so far. This

state, and the application protocol that the process executes, determines whether it should

broadcast a message, and if so, the contents of that message.

Delivery

Interface

Broadcast/

Application Protocol

Application Protocol

broadcast(m) deliver(m)

qp

Communications Subsystem

Figure 2: Application Protocol using Broadcasts

Suppose that a process p is faulty and omits to deliver a message that is delivered by

all the correct processes. The state of p may now be \inconsistent" with respect to the state

of correct processes. Suppose further that p continues to execute, and then, based on its

inconsistent state, p broadcasts a message m that is delivered by all the correct processes.

Note thatm is \corrupted", i.e., its contents reect p's erroneous state. Thus, by delivering

m and changing state accordingly, the correct processes incorporate p's inconsistency into

their own state | correct processes are now \contaminated." We come to the disconcerting

conclusion that, even with benign failures, broadcasts can easily lead to the corruption of

the entire system!

Unfortunately, the traditional speci�cations of most broadcasts, including Uniform

broadcasts, allow the inconsistency of faulty processes, and the subsequent contamination

of correct processes. For example, with Atomic Broadcast a faulty process may reach an

inconsistent state in several ways: e.g., by omitting to deliver a message m that is delivered

by all correct processes, or by delivering an extra message m that is not delivered by any

19

correct process, or by delivering messages out-of-order. With Uniform Atomic Broadcast,

inconsistency may only result from skipping a message that is delivered by all correct

processes. Once a faulty process becomes inconsistent, contamination can then follow. An

example of inconsistency with respect to (Uniform) Atomic Broadcast is explained below.

A variable x with initial value 5 is replicated at three processes, p, q, and r. Process

p atomically broadcasts an instruction to increment x, and q atomically broadcasts an

instruction to double x. Processes p and q are correct, and they deliver the instructions to

increment x and to double x, in that order. Their value of x is now 12. However, r is faulty:

it �rst omits to deliver p's instruction to increment x, and then delivers q's instruction to

double x. By skipping the increment x instruction, r becomes inconsistent | its new value

of x (namely, 10) is now incorrect. Note that since r is faulty, this execution does indeed

satisfy the usual speci�cation of Atomic Broadcast. In fact, this particular execution can

occur even with a Uniform Atomic Broadcast.

Once r is inconsistent, it can broadcast messages that are based on its erroneous state

and thus contaminate all the correct processes. For example, suppose process r uses its

new value of x to compute and broadcast the value of the replicated variable y, which is

supposed to be 3x everywhere. Since r is inconsistent and has incorrectly computed x to be

10, r broadcasts y := 30, instead of the correct y := 36. When p and q deliver the message

y := 30 and update their copies of y to be 30, they become contaminated.

Note that r becomes inconsistent by committing a simple \benign" failure | just

skipping the delivery of a single message. However, as a result of this undetected failure,

r subsequently broadcasts an incorrect message, and this broadcast \spreads" r's error to

the rest of the system. At this point, it is almost as if r commits an \arbitrary-like" failure,

even though it only fails by omission. Worse yet, r's failure corrupts the whole system.

It should be clear that preventing the inconsistency of faulty processes, or at least the

contamination of correct ones, is desirable in many situations. Fortunately, this is possi-

ble with all the broadcasts that we considered in this paper, and for all benign failures.

6

Intuitively, a process can prevent its contamination by refusing to deliver messages from

processes whose previous deliveries are not compatible with its own. The amount of infor-

mation that each message should carry, so that every process can determine whether it is

safe to deliver it, depends on the type of broadcast (e.g., FIFO Broadcast or Causal Atomic

Broadcast), and on the failure assumptions. Preventing inconsistency is, however, more

di�cult and costly. Roughly speaking, it requires techniques that allow a faulty process to

detect whether it is about to make a message delivery error, and, if so, to immediately stop.

A precise de�nition of inconsistency and contamination with respect to broadcasts is

beyond the scope of this paper. We also omit the description of algorithms that prevent

inconsistency and/or contamination. For a more complete treatment of this subject the

reader is referred to [GT91,Gop92].

6

With arbitrary failures, neither inconsistency nor contamination can be prevented. This is because the

state of a faulty process may be inconsistent even if it delivers all messages correctly. This proces may

then contaminate the rest of the system by broadcasting an erroneous message that seems correct to every

process.

20

3.12 Ampli�cation of Failures

A fault-tolerant broadcast is usually implemented by a broadcast algorithm that uses lower-

level communication primitives, such as send and receive (Figure 3). With such a broad-

cast algorithm, the broadcasting or delivery of a message requires the execution of several

instructions, and may include several sends and receives.

Send/

Receive

Interface

Interface

Delivery

Broadcast/

Application Protocol

Application Protocol

Broadcast AlgorithmBroadcast Algorithm

send(m)

receive(m)

broadcast(m) deliver(m)

qp

Communications Network

Figure 3: Application/Broadcast Layering

The models of failures commonly considered in the literature are de�ned in terms of

failures that occur at the level of send and receive primitives, e.g., omissions to receive

messages (Section 2.3). How do these failures a�ect the execution of higher-level primitives,

such as broadcasts and deliveries? In particular, can we assume that if a process su�ers

a certain type of failure at the send/receive level, then it will always su�er the same type

of failure at the broadcast/delivery level? For example, if a faulty process omits to receive

messages, will it simply omit to deliver messages? Unfortunately, this is not always so.

In general a broadcast algorithm is likely to amplify the severity of failures that occur at

the low level. For example, there are Atomic Broadcast algorithms where the omission to

receive messages causes a faulty process to deliver messages in the wrong order [Gop92].

But what if processes are only subject to crash failures? Can we assume that the

message deliveries that a process makes before crashing are always \correct" (i.e., consistent

with those of correct processes)? Intuitively, this seems very reasonable, since by de�nition

a process that crashes executes perfectly until the moment it crashes. In other words,

it seems impossible for such a process to make \mistakes" in its message deliveries before

21

crashing. However, this intuition is wrong. We illustrate this by a coordinator-based Atomic

Broadcast algorithm that exhibits a surprising behavior: even if a faulty process behaves

correctly until it crashes, it may still deliver messages out-of-order before it crashes! This

algorithm, which satis�es the speci�cation of Atomic Broadcast, is sketched below.

When a process intends to broadcast a message m, it �rst sends m to a coordinator.

The coordinator delivers messages in the order in which it receives them, and periodically

informs the other processes of this message delivery order. Other processes deliver messages

according to this order. If the coordinator crashes, another process takes over as coordinator.

Now, suppose a coordinator delivers m before m

0

, and then crashes before informing any

other process thatm should be delivered before m

0

. The new coordinator cannot determine

the order chosen by the faulty coordinator, and may decide that m

0

should be delivered

before m. In this scenario, all correct processes follow the new coordinator and deliver m

0

before m. Thus, the faulty coordinator delivered messages out-of-order before crashing,

even though it executed its protocol perfectly until it crashed.

The above example shows that even if a process is only subject to crash failures, it may

become inconsistent before crashing. In other words, crash failures just by themselves do

not guarantee reasonable behavior at the broadcast/delivery level. Furthermore, from the

time that such a process becomes inconsistent to the time that it crashes, it may broadcast

messages and thus contaminate all correct processes. Thus, even if processes can only fail

by crashing, inconsistency and contamination can occur.

7

These observations have subtle but important consequences. In particular, consider

the State Machine approach to fault-tolerance (cf. [Lam84,Sch90]). This is a client/server

system, where the server is replicated, and clients broadcast their requests to all servers

using Causal Atomic Broadcast. Thus, all correct servers deliver the same set of requests,

in the same causal order, and so they have identical state. When a server delivers a request

from a client, it computes the appropriate reply to that request, and sends it to the client.

Suppose that up to f servers are subject to general-omission failures. Clearly, the state of

such a server can be erroneous, and so it may send incorrect replies. How many servers

are needed to implement a fault-tolerant service? It is easy to see that 2f + 1 servers are

su�cient: a client is guaranteed to receive at least f + 1 identical replies (a majority) from

correct servers. This scheme works even when servers are subject to arbitrary failures.

However, requiring 2f + 1 servers and computing the majority reply is expensive. Can we

implement a fault-tolerant service with fewer servers if failures are less severe?

In particular, suppose that the f faulty servers are subject to crash failures only. In

that case, it seems that f + 1 servers would now su�ce: Since a faulty server executes

correctly until it crashes, it is tempting to conclude that if any server sends a reply, that

reply must be correct. And, since we have f + 1 servers, at least one of them will reply.

Unfortunately, this reasoning is awed. A reply may originate from a server s that will

later crash. As we saw in our previous example, the particular Causal Atomic Broadcast

algorithm used by clients to broadcast requests may be such that s delivers requests out-

of-order before crashing. In other words, s could be in an inconsistent state and send the

7

Of course, the prevention of inconsistency and contamination is much easier with crash failures, than

with omission or timing failures.

22

wrong reply before crashing! A single reply is guaranteed to be correct if and only if the

Causal Atomic Broadcast used is speci�cally designed to prevent inconsistency, as discussed

in the previous section.

Bibliographic Notes

The speci�cation of the various types of broadcasts given in this section was designed by the

authors with the help of Ajei Gopal. The origins of FIFO Broadcast and Causal Broadcast

are in the Isis system [BJ87], although many systems now provide such primitives, including

Psync [PBS89] and Transis [ADKM92]. Atomic Broadcast goes back to the early work

of Lamport on the State Machine approach to fault-tolerance [Lam78a], and is a central

mechanism in the HAS project [CASD85].

The concept of Uniformity was introduced by Neiger and Toueg in [NT87] in connection

to the Agreement property. The problems of inconsistency, contamination, and failure

ampli�cation, were �rst de�ned and studied in [GT91,Gop92].

4 Broadcast Algorithms I | Methodology

In the following two sections, we derive algorithms for the six types of broadcasts introduced

in Section 3: Reliable, FIFO, Causal Broadcast, and their three Atomic counterparts.

Our derivation and exposition of broadcast algorithms follows a particular methodology

which is made possible by the modularity of our broadcast speci�cations. In Section 3 we

de�ned six types of broadcasts by adding FIFO, Causal, or Total Order to the speci�cation

of Reliable Broadcast, the weakest type of broadcast that we consider (see Figure 1). We

derive broadcast algorithms by following the same modular paradigm: We start with any

given Reliable Broadcast algorithm, and show how to achieve each one of these three order

properties by a corresponding algorithmic transformation.

More precisely, we exhibit three transformations: one adds FIFO Order, i.e., it converts

any Reliable Broadcast algorithm into a FIFO Broadcast; one adds Causal Order, i.e., it

converts any FIFO Broadcast algorithm into a Causal Broadcast; and one adds Total Order,

i.e., it converts any Reliable, FIFO, or Causal Broadcast algorithm (that satis�es Local-

Time �-Timeliness) into its Atomic counterpart. These three transformations correspond

to the arrows of Figure 1: The �rst one corresponds to the two top vertical arrows, the

second one to the two bottom vertical arrows, and the last one to the three horizontal

arrows.

Given any Reliable Broadcast algorithm, we can now obtain algorithms for every other

type of broadcast by successively applying our transformations. For example, suppose we

want to derive a Causal Atomic Broadcast algorithm. To do so, we can select any path from

Reliable Broadcast to Causal Atomic Broadcast in Figure 1 (there are three such paths) and

apply to the given Reliable Broadcast algorithm the transformations that correspond to the

arrows along that path. Since for some of the arrows we actually give several alternative

23

transformations, there are many di�erent Causal Atomic Broadcast algorithms that we can

obtain from the given Reliable Broadcast in this manner.

8

It is important to note that all our transformations are generic, i.e., they do not require

any assumptions on the type or synchrony of the underlying communication network, and

they work for any type and number of benign failures. Furthermore, all transformations

preserve Uniform Agreement and, under certain assumptions, both versions of �-Timeliness:

If the given broadcast algorithm satis�es any of these desirable properties, then so does the

algorithm that results from the transformation.

This methodology of deriving broadcast algorithms by generic transformations has sev-

eral advantages. The algorithms are developed modularly | thus, they are smaller, simpler,

and easier to understand. The techniques required to achieve each one of the three order

properties (FIFO, Causal, and Total Order) are shown separately, and independently from

the characteristics of the underlying communication network. The proofs are also modular,

easier, and \safer": a broadcast algorithm that invokes a weaker broadcast primitive as a

\black box" can only rely on the speci�cation of that \box", so its proof cannot erroneously

rely on a property that is only true for a particular implementation of that \box".

A modular implementation of stronger broadcasts in terms of weaker ones also increases

the portability of the broadcast software. Whenever we wish to develop a suite of fault-

tolerant broadcast algorithms for a speci�c system S, all we have to do is provide an

implementation for Reliable Broadcast that works in S (this implementation must provide

�-Timeliness if we wish to obtain an Atomic Broadcast). Because all our transformations

work for any type and number of benign failures, and do not rely on any assumptions about

the underlying network, these will automatically yield broadcast algorithms that also work

in S. Thus, if we consider our suite of algorithms to be a software package for fault-tolerant

broadcasts, the layered construction allows us to port this package from one system to

another by reimplementing and �ne-tuning only Reliable Broadcast. On the other hand,

layered implementations do have a disadvantage: They may lead to a decrease in e�ciency,

because they hide speci�c features of the underlying communications network that may be

exploited by certain algorithms.

In Section 5 we present our system-independent transformations. In Section 6 we focus

on a particular type of system, namely point-to-point networks, and describe a Reliable

Broadcast algorithm for such a system. We also determine the conditions under which this

algorithm achieves Uniform Agreement and Real-Time �-Timeliness, and describe a simple

modi�cation to achieve Local-Time �-Timeliness. By applying our system-independent

transformations to this Reliable Broadcast algorithm, we immediately obtain broadcast

algorithms of all types for point-to-point networks.

8

In this example, the given Reliable Broadcast must satisfy Local-Time �-Timeliness. This is because

the transformation that adds Total Order requires the given broadcast algorithm to satisfy this property.

24

5 Broadcast Algorithms II | Transformations

5.1 Introduction

In this section we describe our transformations. These are based on a small number of

techniques, each of which enhances a given broadcast by adding FIFO, Causal, or Total

Order. Adding Total Order, which corresponds to the three horizontal arrows in Figure 1,

is e�ected by a single transformation (that works if the given broadcast satis�es Local-Time

�-Timeliness). Adding FIFO Order, which corresponds to the two top vertical arrows, is

also accomplished by one transformation. Adding Causal Order, which corresponds to the

two bottom vertical arrows, can be done by using either one of two transformations. We also

present a particularly e�cient transformation for adding Causal Order to a FIFO Atomic

Broadcast (this corresponds to the bottom right vertical arrow).

All our transformations preserve Uniform Agreement, and, under some conditions, both

versions of �-Timeliness. This means that if the given broadcast algorithm satis�es any of

these properties, then so does the resulting broadcast algorithm.

The transformations work for any type and number of benign failures, and regardless

of the type or synchrony of the network. Thus, the resulting algorithm works in whatever

system, and under whatever assumptions, the given algorithm works.

All the broadcasts that we consider here satisfy the Uniform version of Integrity. This

is important to our modular approach because to build stronger broadcast primitives from

weaker ones the latter are often required to satisfy Uniform Integrity. For the sake of brevity,

in the rest of this section, when we mention a type of broadcast we always assume that it

satis�es Uniform Integrity without explicitly saying so.

5.2 De�nitions and Notation

Since we build our broadcast primitives in a layered fashion, it is typical for a higher-level

broadcast primitive to invoke a lower-level one as a procedure. To disambiguate between

the di�erent broadcast primitives used in an algorithm, we introduce the following notation.

We �rst de�ne a short-hand notation for the type of a broadcast. In particular, R stands for

Reliable Broadcast, F for FIFO Broadcast, and C for Causal Broadcast. Similarly, A stands

for Atomic Broadcast, FA for FIFO Atomic Broadcast, and CA for Causal Atomic Broadcast.

We denote by broadcast(T,m) and deliver(T,m), the two primitives corresponding to a

broadcast of type T. When a process invokes broadcast(T,m), we say that it T-broadcasts

m. When it returns from the execution of deliver(T,m), we say that it T-delivers m.

For example, broadcast(R,m) is the broadcast primitive for Reliable Broadcast, and if a

process invokes broadcast(R,m), we say that it R-broadcastsm. Similarly, deliver(CA,m)

is the delivery primitive for Causal Atomic Broadcast, and if a process returns from the

execution of deliver(CA,m), we say that it CA-delivers m.

Consider two problems denoted A and B. A transformation from A to B is an algorithm

25

T

A!B

that converts any algorithm A that solves A into an algorithm B that solves B.

9

We

say that A is the given algorithm and B the resulting algorithm of the transformation.

Transformation T

A!B

preserves property P if it converts any algorithm for A that satis�es

P into an algorithm for B that also satis�es P .

For example, in Section 5.4 we present an algorithm that transforms any algorithm

for Reliable Broadcast into one for FIFO Broadcast. Roughly speaking it works as follows.

To F-broadcast a message, a process simply R-broadcasts it. When a process R-delivers

a message m, it delays the F-delivery of m, if necessary, until it has F-delivered all the

messages that the sender of m F-broadcast before m. As we will see, this transformation

also happens to preserve Total Order. This means that if the given Reliable Broadcast

satis�es Total Order, (i.e., it is actually an Atomic Broadcast), then so does the resulting

FIFO Broadcast (i.e., it is a FIFO Atomic Broadcast).

Informally, a transformation of one broadcast algorithm into another is blocking if the

resulting broadcast algorithm has an execution in which a process delays the delivery of

a message for a later time. For example, the transformation from Reliable Broadcast to

FIFO Broadcast outlined above is blocking: It is possible that when a process p R-delivers

a message m it has to delay the F-delivery of m while waiting for the F-delivery of some

earlier message from the sender of m. A transformation is non-blocking if it is not blocking.

When we present an algorithm we give the pseudo-code for a typical process. In

our algorithms every process executes the same code. Thus, di�erent processes have local

variables with the same name, and this can lead to ambiguity. In such cases, we avoid

this problem by subscripting a variable local to a process with the identity of that process.

Thus, var

p

denotes the value of local variable var at process p.

5.3 Achieving Total Order

In this section we describe a single algorithm that can be used to transform a Reliable, FIFO

or Causal Broadcast that satis�es Local-Time �-Timeliness into its Atomic counterpart,

i.e., an Atomic, FIFO Atomic or Causal Atomic Broadcast. Thus, this transformation

corresponds to the three horizontal arrows in Figure 1. It is based on a very simple idea

which exploits the Timeliness property to guarantee Total Order, while preserving all the

other properties of interest.

The algorithm in Figure 4 shows how to transform any broadcast algorithm that sat-

is�es Local-Time �-Timeliness into one that satis�es both Total Order and Local-Time

�-Timeliness. In this �gure, B denotes the type of the given broadcast, and BA denotes the

type of the broadcast that results from the transformation. This transformation preserves

Validity, Agreement, Integrity, FIFO Order and Causal Order (and their uniform counter-

parts): If the given broadcast algorithm satis�es any of these properties, then so does the

resulting broadcast algorithm.

The transformation works as follows. If p wishes to BA-broadcast m, it uses the given

broadcast primitive to B-broadcast m. When a process B-delivers m, it schedules the BA-

9

We also say that T

A!B

is a reduction of problem B to problem A.

26

delivery ofm at local-time ts(m)+� (recall that ts(m) is the sending time ofm according to

the sender's clock, and � is the bound on message latency guaranteed by the given broadcast

algorithm). If two or more messages are scheduled to be BA-delivered at the same local

time then they are BA-delivered in an a priori agreed order, e.g., in increasing order of the

senders' ids. If a process B-delivers m after local time ts(m)+�, then it never BA-delivers

m. This transformation assumes that local clocks satisfy the Clock Monotonicity property

(see Section 2.8).

Algorithm for process p:

To execute broadcast(BA,m):

broadcast(B,m)

deliver(BA,m) occurs as follows:

upon deliver(B,m) do

schedule deliver(BA,m) at time ts(m) + �

Figure 4: Adding Total Order to Timed Broadcast

Theorem 3 Suppose the Clock Monotonicity property holds. The algorithm in Figure 4

transforms any broadcast algorithm that satis�es Local-Time �-Timeliness into one that

satis�es (the uniform versions of) both Local-Time �-Timeliness and Total Order. This

transformation preserves Validity, Agreement, Integrity, FIFO Order and Causal Order,

and their uniform counterparts.

The signi�cance of this theorem lies in the following:

Corollary 1 Suppose the Clock Monotonicity property holds. The algorithm in Figure 4

transforms any Reliable, FIFO or Causal Broadcast algorithm that satis�es Local-Time �-

Timeliness into its Atomic counterpart.

Proof of Theorem 3: Assume that the given broadcast algorithm satis�es Local-Time �-

Timeliness. We �rst show that the broadcast algorithm that results from the transformation

satis�es the uniform versions of Local-Time �-Timeliness and Total Order.

Uniform Local-Time �-Timeliness: If any process (whether correct or faulty) BA-delivers

a message m, it does so at local time ts(m) + �.

Uniform Total Order: If any two processes p and q (whether correct or faulty) BA-deliver m

and m

0

, they do so at local times ts(m)+� and ts(m

0

)+�, respectively. If ts(m) < ts(m

0

),

by Clock Monotonicity, both p and q BA-deliver m before m

0

. Similarly, if ts(m

0

) < ts(m),

they both BA-deliver m

0

before m. Finally, if ts(m) = ts(m

0

), they both BA-deliver the

messages in order of increasing sender ids. In all cases, p and q BA-deliver m and m

0

in the

same order.

27

We now show that the transformation preserves each property listed in the theorem; i.e., if

the given broadcast satis�es any of these properties then so does the resulting broadcast.

Validity: If a correct process p BA-broadcasts m, it B-broadcasts m. By Validity and Local-

Time �-Timeliness of the given broadcast algorithm, p B-delivers m by local time ts(m)+�,

and schedules the BA-delivery of m for local time ts(m) + �. By Clock Monotonicity, p

eventually BA-delivers m.

Agreement: If any correct process BA-delivers a message m, then it must have B-delivered

m. By Agreement and Local-Time �-Timeliness of the given broadcast algorithm, every

correct process also B-delivers m, and does so by local time ts(m) + �. By Clock Mono-

tonicity, every correct process eventually BA-delivers m at local time ts(m) + �.

Integrity: Immediate from Integrity of the given broadcast algorithm.

FIFO Order: Suppose a process q BA-broadcasts m before m

0

. Consider a correct process

p that BA-delivers m

0

. We must show that p BA-delivers m before m

0

. By de�nition, q

BA-broadcast m and m

0

at local times ts(m) and ts(m

0

). By Clock Monotonicity, ts(m) <

ts(m

0

), so ts(m)+� < ts(m

0

)+�. From the algorithm and the hypothesis, it is clear that q

B-broadcasts m before m

0

, and that p B-delivers m

0

. By FIFO Order of the given broadcast

algorithm, p B-delivers m before m

0

. By the algorithm, p schedules the BA-deliveries of

m and m

0

at times ts(m) + � < ts(m

0

) + �. Since p BA-delivers m

0

, its clock reached

ts(m

0

) + �. By Clock Monotonicity, p's clock reached ts(m) + � before ts(m

0

) + �. Thus,

p BA-delivers m before m

0

.

By Theorem 1, Causal Order is equivalent to FIFO Order and Causal Order. Since we

already showed that the transformation preserves FIFO Order, to show that it also preserves

Causal Order it now su�ces prove that it preserves Local Order.

Local Order: Suppose a process q BA-delivers m before it BA-broadcasts m

0

. Consider a

correct process p that BA-delivers m

0

. We must show that p BA-delivers m before m

0

. By

the algorithm, q BA-delivered m at local time ts(m)+�, and later BA-broadcast m

0

at local

time ts(m

0

). By Clock Monotonicity, ts(m)+� < ts(m

0

), so ts(m)+� < ts(m

0

)+�. From

the algorithm and the hypothesis, it is clear that q B-delivers m before B-broadcasting m

0

,

and that p B-delivers m

0

. The proof now continues exactly as in the proof of FIFO Order.

It is easy to check that the transformation also preserves the uniform versions of Agreement,

Integrity, FIFO Order and Causal Order. 2

Note the absence of any induction argument in the proof of Causal Order, despite the

fact that two broadcasts can be causally related by arbitrarily long chains of broadcasts

and deliveries. This is the consequence of Theorem 1 whose proof factorized this induction.

5.4 Achieving FIFO Order

In this section we describe a simple algorithm that transforms any Reliable Broadcast

algorithm into a FIFO Broadcast that satis�es Uniform FIFO Order. This transformation

preserves Total Order; thus, if the given Reliable Broadcast is actually an Atomic Broadcast,

the resulting algorithm is a FIFO Atomic Broadcast. In other words, this transformation

28

corresponds to the two top vertical arrows in Figure 1.

The transformation, shown in Figure 5, works as follows. To F-broadcast a message

m, a process s simply R-broadcasts m. Recall that if m is the ith message F-broadcast by

s, then m is tagged with sender(m) = s and seq#(m) = i. Every process p maintains a

vector of counters next, such that next[s] is the sequence number of the next F-broadcast

from s that p is ready to F-deliver. When a process p R-delivers m with sender(m) = s,

p checks whether m is F-deliverable immediately, i.e., whether next[s] = seq#(m). If m

is not F-deliverable when it is R-delivered, p inserts m into a msgSet

p

for possible future

F-delivery: m is now blocked. Otherwise, p F-delivers m right away and increments next[s]

to reect that. This may cause previously blocked messages from s to become F-deliverable;

p scans msgSet

p

and F-delivers any such messages.

For example, suppose p already F-delivered messages tagged 1 and 2 from s (i.e.,

next[s] = 3), and p's msgSet already contains messages tagged 4 and 8 from s. If p R-

delivers message m tagged 3 from s (i.e., sender(m) = s and seq#(m) = 3), p F-delivers

m immediately, and increments next[s] to 4. Now message tagged 4 from s in msgSet also

becomes F-deliverable, and p delivers it.

Theorem 4 The algorithm in Figure 5 transforms any Reliable Broadcast algorithm into

a FIFO Broadcast algorithm that satis�es Uniform FIFO Order. Furthermore, this trans-

formation preserves [Uniform] Total Order.

Proof: First we establish some basic facts about the transformation.

Claim 1: For any process p (whether correct or faulty), if next

p

[s] = k then the sequence

of messages that p has F-delivered so far is the sequence of the �rst k � 1 messages F-

broadcast by s.

This claim can be easily shown by induction on k and using the Uniform Integrity of the

given Reliable Broadcast; the details are omited.

Claim 2: Suppose a correct process p R-delivers a message m and F-delivers all the

messages that sender(m) F-broadcast before m. Then p also F-delivers m.

Proof of Claim 2: Suppose that p and m satisfy the hypothesis of the claim, and let

sender(m) = s and seq#(m) = k. By hypothesis, p F-delivers all the k � 1 messages that

s F-broadcast before m. Since p increments next

p

[s] for each one of these F-deliveries,

eventually next

p

[s] � k. There are two possible cases. (i) Eventually next

p

[s] reaches the

value k + 1. By Claim 1, p F-delivers the �rst k messages F-broadcast by s, including m.

(ii) Eventually next

p

[s] reaches the value k and then remains forever stuck at that value.

Let m

0

be the message whose F-delivery by p makes next

p

[s] = k. By hypothesis, p R-

delivers m. If, when this occurs, m

0

has already been delivered, we have next

p

[s] = k and

thus p will F-deliver m right away. Otherwise, p will insert m into msgSet

p

and when it

later F-delivers m

0

and sets next

p

[s] = k, it will also F-deliver m. Thus, in both cases p

F-delivers m, as wanted. 2

Claim 2

Using the above claims, we �rst show that the algorithm that results from the transformation

satis�es the properties of FIFO Broadcast.

29

Variables of process p:

f msgSet: set of messages that p has R-delivered g

f next[s]: sequence number of the next F-broadcast by s that p is ready to F-deliver g

: :

Algorithm for process p:

Initialization:

msgSet := ;

next[s] := 1, for each process s

To execute broadcast(F,m):

broadcast(R,m)

deliver(F,�) occurs as follows:

upon deliver(R,m

0

) do

s := sender(m

0

)

if next[s] = seq#(m

0

)

then

deliver(F,m

0

)

next[s] := next[s] + 1

while (9m 2 msgSet : sender(m) = s and next[s] = seq#(m)) do

deliver(F,m)

next[s] := next[s] + 1

else

msgSet :=msgSet [fm

0

g

Figure 5: Transforming Reliable Broadcast into FIFO Broadcast

30

Validity: Suppose that a correct process p F-broadcasts a message that it never F-delivers.

Let m be the �rst such message that p F-broadcasts. Since p F-broadcasts m, it previously

R-broadcastm. By Validity of Reliable Broadcast, p eventually R-delivers m. By the choice

of m, p F-delivers all the messages that it F-broadcast before m. By Claim 2, p F-delivers

m, contradicting the de�nition of m. Thus, a correct process F-delivers every message that

it F-broadcasts.

Uniform FIFO Order: Suppose a process p F-delivers a message m. Let sender(m) = s

and seq#(m) = k. By the algorithm, just before p F-delivers m, next

p

[s] = k. By Claim 1,

p has already F-delivered all the k � 1 messages that s F-broadcast before m, as wanted.

Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are two

correct processes p and q such that p F-delivers a message that q does not. Let m be such a

message with the smallest possible sequence number. Since p F-delivers m, it previously R-

delivered m; by Agreement of Reliable Broadcast, q also R-delivers m. Furthermore, by the

Uniform FIFO Order property shown above, p previously F-delivered all the messages that

sender(m) F-broadcast before m. By the choice of m, q also F-delivers all these messages.

By Claim 2, q F-delivers m, a contradiction.

Uniform Integrity: Suppose p F-delivers m with sender(m) = s and seq#(m) = k. By

the algorithm, p previously R-delivered m. By Uniform Integrity of the given Reliable

Broadcast, s R-broadcasts m. Therefore, s must have F-broadcast m. Furthermore, when

p F-delivers m, it increments next

p

[s] from k to k + 1. Since next

p

[s] never decreases, and

must be k for m to be F-delivered, m is not F-delivered again.

Next we show that the transformation preserves [Uniform] Total Order.

Total Order: It is easy to see that the sequence of R-deliveries uniquely determines the

sequence of F-deliveries. By Agreement and Total Order of the given Reliable Broadcast,

all correct processes R-deliver the same sequence of messages. Hence, they all F-deliver the

same sequence of messages. Therefore, the resulting FIFO Broadcast satis�es Total Order.

Uniform Total Order: For any message m, de�ne Past(m) to be the set of messages F-

broadcast by sender(m) up to and including the F-broadcast of m. By Uniform FIFO

Order (shown above), if a process p F-delivers m then it must have previously F-delivered

and thus R-delivered all the messages in Past(m). Furthermore, it is clear that p F-delivers

m as soon as it has R-delivered those messages.

Consider any two processes p and q that F-deliver messages m

1

and m

2

. By the above

argument, p and q must each R-deliver all the messages in Past(m

1

) [Past(m

2

). Further-

more, the order in which each of p and q F-delivers messages m

1

and m

2

is determined by

the order in which they R-deliver the messages in Past(m

1

) [Past(m

2

). By Uniform Total

Order of the given Reliable Broadcast, p and q R-deliver these messages in the same order.

Since this order determines the order of F-delivering m

1

and m

2

, p and q F-deliver m

1

and

m

2

in the same order. This shows that the resulting FIFO Broadcast satis�es Uniform

Total Order. 2

Observation: This transformation also preserves Uniform Agreement and �-Timeliness

31

(both Real- and Local-Time, and their uniform versions).

10

The transformation has some straightforward optimizations. First, once p F-deliversm,

it can remove m from msgSet. This reduces the space needed for storing msgSet. Second,

since a message from s can become unblocked only as a result of the F-delivery of some

(earlier) message from s, it is more e�cient to keep a separate msgSet[s] for every process

s, containing the blocked messages F-broadcast by s.

5.5 Achieving Causal Order

In the next two sections we describe two transformations from FIFO Broadcast to Causal

Broadcast: one is blocking and the other not. Each of these preserves Total Order, i.e., if

the given FIFO Broadcast algorithm is Atomic, the resulting algorithm is a Causal Atomic

Broadcast. Thus, each transformation corresponds to the two bottom vertical arrows in

Figure 1.

Both transformations require that the given FIFO Broadcast algorithm satisfy Uniform

FIFO Order. Luckily, our transformation from Reliable Broadcast to FIFO Broadcast

does result in such an algorithm (see Theorem 4 in the previous section). Thus, these

transformations can be \chained" together.

5.5.1 Non-Blocking Transformation

In Figure 6, we give a non-blocking transformation of FIFO to Causal Broadcast. To C-

broadcast a messagem, a process p uses the given FIFO Broadcast algorithm to F-broadcast

the sequence of messages rcntDlvrsjjm, where rcntDlvrs is the sequence of messages that

p C-delivered since its previous C-broadcast (\jj" is the concatenation operator). When a

process q F-delivers such a sequence, q C-delivers all the messages in the sequence that it

did not previously C-deliver.

Theorem 5 The algorithm in Figure 6 transforms any FIFO Broadcast algorithm that

satis�es Uniform FIFO Order into a Causal Broadcast algorithm that satis�es Uniform

Causal Order. Furthermore, this transformation preserves Total Order.

Proof: We �rst show that the algorithm that results from the transformation satis�es the

properties of Causal Broadcast.

Validity: Suppose p is correct and C-broadcasts m. Thus, p F-broadcasts hrcntDlvrs jjmi,

and by Validity of FIFO Broadcast, p eventually F-delivers hrcntDlvrs jjmi. From the

algorithm, p C-delivers m.

Agreement: Suppose p is correct and C-delivers m. From the algorithm, it is clear that

p F-delivered some sequence hm

1

; m

2

; : : : ; m

l

i that contains m. From Agreement of FIFO

Broadcast, all correct processes eventually F-deliver hm

1

; m

2

; : : : ; m

l

i, and thus C-deliver

m.

10

The preservation of Local-Time �-Timeliness requires that local clocks never decrease (Section 2.8).

32

Variable of process p:

f rcntDlvrs: sequence of messages that p C-delivered since its previous C-broadcast g

: :

Algorithm for process p:

Initialization:

rcntDlvrs := ?

To execute broadcast(C,m):

broadcast(F,hrcntDlvrs jjmi)

rcntDlvrs := ?

deliver(C,�) occurs as follows:

upon deliver(F,hm

1

; m

2

; : : : ; m

l

i) for some l do

for i := 1::l do

if p has not previously executed deliver(C,m

i

)

then

deliver(C,m

i

)

rcntDlvrs := rcntDlvrs jjm

i

Figure 6: Transforming FIFO Broadcast into Causal Broadcast: Non-Blocking Version

33

Uniform Integrity: From the algorithm, a process C-delivers a message m only if it has

not previously executed deliver(C,m). Thus, a process delivers m at most once. Consider

the �rst process that C-delivers message m. It must have F-delivered hrcntDlvrs jjmi, for

some rcntDlvrs. By Uniform Integrity of FIFO Broadcast, some process p F-broadcast

hrcntDlvrs jjmi. This occurred when p C-broadcast m.

To prove Uniform Causal Order it su�ces to prove Uniform FIFO Order and Uniform Local

Order (see Theorem 2). To do so, we �rst show:

Claim: Suppose some process q F-broadcasts hrcntDlvrs

0

jjm

0

i, and either q previously

F-broadcast hrcntDlvrs jjmi or m is in rcntDlvrs

0

. Then no process (whether correct or

faulty) C-delivers m

0

unless it has previously C-delivered m.

Proof of Claim: The proof of this claim is by contradiction. Assume that the hypothesis

holds, and some process C-delivers m

0

but does not C-deliver m before m

0

. Let p be the

�rst process to do so (in real time). There are two cases depending on what caused p to

C-deliver m

0

:

1. p F-delivered hrcntDlvrs

0

jjm

0

i. By hypothesis, there are two possible subcases.

(a) Process q F-broadcast hrcntDlvrs jjmi before hrcntDlvrs

0

jjm

0

i. By Uniform

FIFO Order of FIFO Broadcast, p must have F-delivered hrcntDlvrs jjmi before

hrcntDlvrs

0

jjm

0

i. (b) m is in rcntDlvrs

0

. In both subcases, it is clear from the

algorithm that p C-delivered m before m

0

, a contradiction.

2. p F-delivered a message hrcntDlvrs

00

jjm

00

i, wherem

0

is in rcntDlvrs

00

andm is not be-

forem

0

in rcntDlvrs

00

. Let s = sender(hrcntDlvrs

00

jjm

00

i). Since m

0

is in rcntDlvrs

00

,

s C-delivered m

0

before F-broadcasting hrcntDlvrs

00

jjm

00

i. By Uniform FIFO Order

of FIFO Broadcast, p F-delivered all the previous F-broadcasts of s. Since p does not

C-deliver m before m

0

, m was not included in any of these F-broadcasts. Further-

more, m did not appear before m

0

in rcntDlvrs

00

. Thus, when s C-delivered m

0

, it

had not previously C-delivered m. Since s C-delivered m

0

before p, this contradicts

the de�nition of p.

Since both cases lead to a contradiction, the claim follows. 2

Claim

Uniform FIFO Order: Suppose a process q C-broadcastsm before m

0

. From the algorithm,

it is clear that q F-broadcast hrcntDlvrs jjmi before hrcntDlvrs

0

jjm

0

i, for some rcntDlvrs

and rcntDlvrs

0

, respectively. By the above claim, no process C-delivers m

0

unless it has

previously C-delivered m.

Uniform Local Order: Suppose a process q C-delivers m before it C-broadcasts m

0

, and a

process p C-delivers m

0

. We must show that p C-delivers m before m

0

. Let m

00

be the �rst

message that q C-broadcast after it C-delivered m (m

00

could be m

0

). When q C-broadcasts

m

00

, it F-broadcasts hrcntDlvrs

00

jjm

00

i for some rcntDlvrs

00

. By the de�nition of m

00

and

the algorithm, rcntDlvrs

00

contains m. Thus, by the above claim, p C-delivers m before m

00

.

If the C-broadcasts of m

00

and m

0

are actually the same, then we are done. Otherwise, q C-

broadcasts m

00

before m

0

. By the Uniform FIFO Order property shown above, p C-delivers

m

00

before m

0

. Thus, p C-delivers m before m

0

, as wanted.

34

Next we show that the transformation preserves Total Order (the argument is identical to

the one used in the corresponding result of Theorem 4).

Total Order: It is easy to see that the sequence of F-deliveries uniquely determines the

sequence of C-deliveries. By Agreement and Total Order of the given FIFO Broadcast, all

correct processes F-deliver the same sequence of messages. Hence, they all C-deliver the

same sequence of messages. Therefore, the resulting Causal Broadcast satis�es Total Order.

2

Observation: This transformation preserves Uniform Agreement. In general, it does not

preserve (Real- or Local-Time) �-Timeliness. If the given FIFO Broadcast satis�es Uni-

form Agreement, however, the transformation does preserve both versions of �-Timeliness.

Finally, although it preserves Total Order, it does not preserve Uniform Total Order.

5.5.2 Blocking Transformation

In Figure 7, we give a blocking transformation of FIFO to Causal Broadcast. Its advantage

over the non-blocking one just described is that it uses shorter messages. Like the non-

blocking transformation, this also requires that the given FIFO Broadcast satisfy Uniform

FIFO Order. It works as follows. Each process p maintains numOfAllDlvrs, a vector

of counters such that numOfAllDlvrs[s] is the number of C-broadcasts from s that p C-

delivered since the beginning. To C-broadcast a messagem, a process p uses the given FIFO

Broadcast algorithm to F-broadcast m together with numOfAllDlvrs. When p F-delivers

a message m

0

from s with its corresponding vector numOfAllDlvrs

0

, p checks whether m

0

is C-deliverable immediately. This is the case if p has already C-delivered every message

that s had C-delivered at the time it C-broadcast m

0

. Process p checks this by testing

whether numOfAllDlvrs � numOfAllDlvrs

0

.

11

If m

0

is not C-deliverable immediately, then p inserts m

0

and the associated vector

numOfAllDlvrs

0

in a msgList (where messages are kept in order of insertion) for possible

future C-delivery: The messagem

0

is now blocked. If, on the other hand,m

0

is C-deliverable,

then p C-delivers it right away and updates numOfAllDlvrs to reect this fact. Since a

C-delivery may cause some blocked messages to become C-deliverable, p scans msgList

to C-deliver the �rst C-deliverable message on that list. It then repeats the scanning of

msgList for as long as there is a C-deliverable message in the list.

Theorem 6 The algorithm in Figure 7 transforms any FIFO Broadcast algorithm that

satis�es Uniform FIFO Order into a Causal Broadcast algorithm that satis�es Uniform

Causal Order. Furthermore, this transformation preserves [Uniform] Total Order.

Proof: We �rst show that the algorithm that results from the transformation satis�es the

properties of Causal Broadcast.

11

Given two n-vectors V and V

0

, we say that V � V

0

if V [i] � V

0

[i] for all 1 � i � n. Similarly, V + V

0

denotes the vector whose i-th element is V [i] + V

0

[i].

35

Variables of process p:

f numOfAllDlvrs[s]: number of all the messages that p C-delivered from s g

f msgList: list of messages that p F-delivered but not yet C-delivered g

: :

Algorithm for process p:

Initialization:

numOfAllDlvrs[s] := 0, for each process s

msgList := ?

To execute broadcast(C,m):

broadcast(F,hm;numOfAllDlvrsi)

deliver(C,�) occurs as follows:

upon deliver(F,hm

0

; numOfAllDlvrs

0

i) do

s := sender(m

0

)

if numOfAllDlvrs � numOfAllDlvrs

0

then

deliver(C,m

0

)

numOfAllDlvrs[s] := numOfAllDlvrs[s] + 1

while (9hm;Ni 2 msgList : numOfAllDlvrs � N) do

let hm;Ni be the �rst message in msgList s.t. numOfAllDlvrs � N

deliver(C,m)

numOfAllDlvrs[sender(m)] := numOfAllDlvrs[sender(m)] + 1

msgList := msgList� hm;Ni

else

msgList := msgList jj hm

0

; numOfAllDlvrs

0

i

Figure 7: Transforming FIFO Broadcast into Causal Broadcast: Blocking Version

36

Validity: Suppose p is correct and C-broadcastsm. Thus, p F-broadcasts hm;numOfAllDlvrsi,

and by Validity of FIFO Broadcast, p eventually F-delivers hm;numOfAllDlvrsi. Since

p's vector of counters numOfAllDlvrs

p

never decreases, p C-delivers m.

Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are two

correct processes p and q such that p C-delivers a message that q does not C-deliver.

Consider the sequence of messages that p C-delivers, in the order they are C-delivered. Letm

be the �rst message on that sequence that q does not C-deliver. From the algorithm, since p

C-deliveredm, it must have previously F-delivered hm;Ni for some vectorN . By Agreement

of FIFO Broadcast, q eventually F-delivers hm;Ni as well. If this F-delivery occurs when

numOfAllDlvrs

q

� N , then q immediately C-deliversm| a contradiction to the de�nition

of m. Thus, we may assume that when q F-delivers hm;Ni, numOfAllDlvrs

q

6� N and q

inserts hm;Ni in msgList

q

for possible future C-delivery.

Let N

p

be the value of p's vector numOfAllDlvrs when p C-delivered m. From the

algorithm, N

p

� N . Clearly, when p C-delivered m, it had previously C-delivered exactly

N

p

[r] messages that were C-broadcast by r, for every process r. By the de�nition of m, q

eventually C-delivers all these messages. Thus, q eventually has numOfAllDlvrs

q

� N

p

.

Consider the messagem

00

whose C-delivery by q causes for the �rst time numOfAllDlvrs

q

�

N

p

. When q C-delivers m

00

, hm;Ni is already in msgList

q

. Immediately after the C-delivery

of m

00

, numOfAllDlvrs

q

� N

p

� N , and thus q C-delivers m when it scans msgList

q

| a

contradiction to the de�nition of m.

Uniform Integrity: From the Uniform Integrity of the given FIFO Broadcast, it is easy to

see that a process C-delivers a message m only if sender(m) previously C-broadcast m. It

remains to show that no process p C-delivers m twice. To do so, we show that p does not

insert the messages hm;Ni and hm;N

0

i, for N

0

6= N , into msgList. This is true because,

otherwise, by the Uniform Integrity of the given FIFO Broadcast, both of these messages

would have been F-broadcast by the same process s, namely sender(m), at two di�erent

times. Thus, s would have C-broadcast m twice, which is impossible.

To prove Uniform Causal Order it su�ces to prove Uniform FIFO Order and Uniform Local

Order (see Theorem 2).

Uniform FIFO Order: Suppose that a process s C-broadcasts m before it C-broadcasts m

0

,

and a process p C-delivers m

0

. We show that p C-delivers m before m

0

.

From the algorithm, s F-broadcasts hm;Ni before it F-broadcasts hm

0

; N

0

i, and p must

have F-delivered hm

0

; N

0

i, for some vectors N and N

0

, with N

0

� N . By Uniform FIFO

Order of the given FIFO Broadcast, p must have F-delivered hm;Ni before hm

0

; N

0

i. If p

C-delivered m without blocking it, we are done. So we may assume that p inserted hm;Ni

in msgList

p

before it F-delivered hm

0

; N

0

i. There are two cases:

� When p F-delivers hm

0

; N

0

i it blocks m

0

. Thus, p inserts hm

0

; N

0

i in msgList

p

. Since

(a) p C-delivers all the C-deliverable messages in msgList

p

in the order of they appear

in that list, (b) hm;Ni is before hm

0

; N

0

i in msgList

p

, (c) if m

0

is C-deliverable, so is

m (because N

0

� N), and (d) p C-delivers m

0

, we conclude that p C-delivers m before

m

0

, as wanted.

37

� When p F-delivers hm

0

; N

0

i it C-delivers m

0

immediately. Thus, when this F-delivery

occurs numOfAllDlvrs

p

� N

0

. Consider the message m

00

whose C-delivery by p

�rst causes numOfAllDlvrs

p

� N

0

. The C-delivery of m

00

occurs after p F-delivered

hm;Ni (because p blocked m), and before p F-delivered hm

0

; N

0

i (because p did not

block m

0

). Thus, when p C-delivers m

00

, hm;Ni is already in msgList

p

. Since the

C-delivery of m

00

results in numOfAllDlvrs

p

� N

0

, and N

0

� N , p C-delivers m

when it scans msgList

p

immediately after it C-delivers of m

00

. Hence, p C-delivers m

before m

0

, as wanted.

Uniform Local Order: Suppose a process q C-delivers m before it C-broadcasts m

0

. By

Uniform Integrity shown above, m was C-broadcast by some process s. Suppose m was the

kth message C-broadcast by s. By Uniform FIFO shown above, when q C-delivers m, this

is the kth message q has C-delivered from s. Thus, immediately after the C-delivery of m,

q has numOfAllDlvrs

q

[s] = k. Therefore, when q later C-broadcasts m

0

, it F-broadcasts

hm

0

; N

0

i with N

0

[s] � k.

Suppose some process p C-delivers m

0

. This occurs after p F-delivers hm

0

; N

0

i and

numOfAllDlvrs

p

� N

0

. Thus, when p C-delivers m

0

it has numOfAllDlvrs

p

[s] � N

0

[s] �

k, and therefore p has already C-delivered at least k messages C-broadcast by s. By Uniform

FIFO shown above, these include the �rst k messages C-broadcast by s, and thus m. So p

C-delivers m before m

0

, as wanted.

Next we show that the transformation preserves [Uniform] Total Order.

Total Order: This proof is identical to the one given in the corresponding result of Theo-

rem 5.

Uniform Total Order: This proof is the same as the one given in the corresponding result of

Theorem 4, except that Past(m) must be rede�ned. Let

C

! be the causal precedence relation

induced by C-broadcasts and C-deliveries (see Section 2.7). We now de�ne Past(m) =

fm

0

j m

0

= m or broadcast(C; m

0

)

C

! broadcast(C; m)g; intuitively, Past(m) is the set of

messages in the \causal past" of m. With this de�nition, the argument follows along the

lines of the proof of Theorem 4. 2

Observation: This transformation also preserves Uniform Agreement and Real-Time �-

Timeliness. Moreover, under some assumptions explained below, the transformation also

preserves Local-Time �-Timeliness. In Section 2.7, we de�ned the causal precedence re-

lation ! induced by the broadcast and delivery events. In Section 2.8 we explained what

it means for local clocks to be consistent with !. When executing the transformation in

Figure 7, there are F-broadcasts and F-deliveries, which induce the causal precedence rela-

tion

F

!, and also C-broadcast and C-deliveries, which induce the relation

C

!. We can show

that if the local clocks are consistent with

F

! then they are also consistent with

C

!, and the

transformation in Figure 7 preserves Local-Time �-Timeliness.

This transformation can be improved in the following way. In its present form, each

process p keeps track of the number of all the messages it has C-delivered from every

process, and sends this information, in the form of a vector of counters, along with every

message it wishes to C-broadcast. Instead, p can send a vector containing only the number

38

of new messages that p C-delivered from each process since p's previous C-broadcast. These

vectors contain smaller numbers, so messages are shorter. By maintaining the right kind

of information, each process can use these vectors to determine if a message is immediately

C-deliverable or should be blocked. We desist from giving the details of this optimization,

as we shall describe in detail some transformations that use the same idea in Sections 5.6.2

and 5.6.3.

5.6 From FIFO Atomic to Causal Atomic Broadcast

In the previous section we described two di�erent ways of transforming FIFO Broadcast into

Causal Broadcast while preserving Total Order. Each of these transformations corresponds

to both bottom vertical arrows in Figure 1. In this section, we describe three e�cient

transformations that correspond to the right bottom arrow only: each of these add Causal

Order to a FIFO Atomic Broadcast. Surprisingly, these transformations are non-blocking

even though they tag each message with just a vector of counters (like the blocking algorithm

in Figure 7) rather than piggybacking a list of messages (like the non-blocking algorithm

in Figure 6). It is now possible to use vectors of counters to achieve Causal Order without

blocking because we start from a stronger broadcast algorithm | one that satis�es Total

Order.

5.6.1 Basic Transformation

In the blocking transformation from FIFO to Causal Broadcast that we saw in Figure 7,

if a process p F-delivers a message hm

0

;�i and cannot C-deliver m

0

immediately, it inserts

hm

0

;�i in msgList for possible future C-delivery: m

0

is now blocked. We can obtain a

non-blocking transformation from FIFO Atomic to Causal Atomic Broadcast with a simple

modi�cation (see Figure 8). When p FA-delivers hm

0

;�i such that it cannot CA-deliver m

0

immediately, p simply discardsm

0

and inserts sender(m

0

) into suspects

p

| a set of processes

that p suspects to be faulty. Process p routinely discards every subsequent message that

originates from any process in that set. Thus, now p never saves any message for future

delivery and messages are never blocked. This eliminates msgList and the need to scan

this list for possible deliveries.

Theorem 7 The algorithm in Figure 8 transforms any FIFO Atomic Broadcast algorithm

that satis�es Uniform FIFO Order into a Causal Atomic Broadcast algorithm that satis�es

Uniform Causal Order.

Proof: We show that the algorithm that results from the transformation satis�es the prop-

erties of Causal Atomic Broadcast.

Validity: We �rst claim that for all processes p (whether correct or faulty), p is never in

suspects

p

. The proof is by contradiction. Consider the �rst time t a process p inserts p into

suspects

p

. From the algorithm, it is clear that this occurs when p FA-delivers a message

hm

0

; N

0

i such that p = sender(m

0

) and N

p

6� N

0

, where N

p

is the value of numOfAllDlvrs

p

39

Variables of process p:

f numOfAllDlvrs[s]: number of all the messages that p C-delivered from s g

f suspects: set of processes that p suspects to be faulty g

: :

Algorithm for process p:

Initialization:

numOfAllDlvrs[s] := 0, for each process s

suspects := ;

To execute broadcast(CA,m):

broadcast(FA,hm;numOfAllDlvrsi)

deliver(CA,�) occurs as follows:

upon deliver(FA,hm

0

; numOfAllDlvrs

0

i) do

s := sender(m

0

)

if s =2 suspects and numOfAllDlvrs � numOfAllDlvrs

0

then

deliver(CA,m

0

)

numOfAllDlvrs[s] := numOfAllDlvrs[s] + 1

else

discard m

0

suspects := suspects [fsg

Figure 8: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: Basic

Version

40

at time t. By Uniform Integrity of FIFO Atomic Broadcast, p must have previously FA-

broadcast hm

0

; N

0

i. Thus, N

0

is the value of numOfAllDlvrs

p

at some time before t. Since

the elements of vector numOfAllDlvrs

p

never decrease, N

p

� N

0

, a contradiction.

We now show that if a correct process p CA-broadcastsm then it eventually CA-delivers

m. Suppose p CA-broadcasts m. By the algorithm, p FA-broadcasts hm;Ni for some N .

By Validity of FIFO Atomic Broadcast, p eventually FA-delivers hm;Ni. If p does not

CA-deliver m, it inserts p in suspects

p

. Our previous claim shows that this cannot occur.

Thus, p CA-delivers m, as wanted.

Agreement: Suppose, for contradiction, that Agreement is violated. Thus, there are two

correct processes p and q such that p CA-delivers a message that q does not CA-deliver.

Consider the sequence of messages that p CA-delivers, in the order in which p CA-delivers

them. Let m be the �rst message on that sequence that q does not CA-deliver. From

the algorithm, p CA-delivers m upon FA-delivering a message hm;Ni for some vector of

counters N . By Agreement of FIFO Atomic Broadcast, q eventually FA-delivers hm;Ni as

well.

Let s = sender(m). Let S

p

and N

p

be the values of suspects

p

and numOfAllDlvrs

p

,

respectively, when p FA-delivered hm;Ni. Similarly, S

q

and N

q

are the values of suspects

q

and numOfAllDlvrs

q

, respectively, when q FA-delivered hm;Ni. Since p CA-delivers m,

s =2 S

p

and N

p

� N . Since q does not CA-deliver m, s 2 S

q

or N

q

6� N (*).

Consider the (possibly empty) sequence � of messages that p FA-delivers before hm;Ni.

By Agreement and Total Order of FIFO Atomic Broadcast, � is also the sequence of mes-

sages that q FA-delivers before hm;Ni. For all i, let �

i

= fm

0

j hm

0

;�i is in � and

sender(m

0

) = ig. Note that N

p

[i] is the number of messages in �

i

that p CA-delivers.

Furthermore, i =2 S

p

if and only if p CA-delivers all the messages in �

i

. Symmetric remarks

hold for N

q

[i] and S

q

.

By the de�nition of m, for all i, every message in �

i

that p CA-delivers is also CA-

delivered by q. Thus, for all i, N

q

[i] � N

p

[i]. Since s =2 S

p

, p CA-delivered all the messages

in �

s

. Thus, q also CA-delivered all the messages in �

s

. So s =2 S

q

. In summary, s =2 S

q

and

N

q

� N

p

| a contradiction to (*).

Uniform Integrity: The proof is immediate from the Uniform Integrity of the given FIFO

Atomic Broadcast and the observation that a process CA-delivers a message m only if it

previously FA-delivers some message hm;�i.

To prove Uniform Causal Order it su�ces to prove Uniform FIFO Order and Uniform Local

Order (see Theorem 2).

Uniform FIFO Order: Suppose that a process s CA-broadcasts m before it CA-broadcasts

m

0

, and a process p CA-delivers m

0

. We show that p CA-delivers m before m

0

. From

the algorithm, s FA-broadcasts hm;Ni before it FA-broadcasts hm

0

; N

0

i, and p FA-delivers

hm

0

; N

0

i, for some vectors N and N

0

. By Uniform FIFO Order of the given FIFO Atomic

Broadcast, p FA-delivers hm;Ni before hm

0

; N

0

i. Assume, for contradiction, that when p FA-

delivers hm;Ni it does not CA-deliver m. In this case, p immediately inserts s = sender(m)

in suspects

p

. Since s is also the sender ofm

0

and it is now in suspects

p

, when p subsequently

FA-delivers hm

0

; N

0

i p does not CA-deliver m

0

| a contradiction to our initial assumption.

41

Thus, p CA-delivers m immediately after it FA-delivers hm;Ni. This occurs before p FA-

delivers hm

0

; N

0

i, and thus before it CA-delivers m

0

.

Uniform Local Order: The proof is the same as the one given in Theorem 6. 2

Observation: The transformation in Figure 8 preserves Uniform Agreement and both

versions of �-Timeliness.

5.6.2 First Optimization

In the basic transformation in Figure 8, when a process p wishes to CA-broadcast m, it FA-

broadcasts hm;numOfAllDlvrsi, where numOfAllDlvrs is a vector of counters indicating

the number of all the messages that p CA-delivered from each process since the beginning.

In our �rst optimization (Figure 9), we seek to reduce the size of these counters: When

a process p wishes to CA-broadcast m, it FA-broadcasts hm;numOfRcntDlvrsi, where

numOfRcntDlvrs is a vector indicating the number of messages that p CA-delivered from

each process since its previous CA-broadcast only. Clearly, numOfRcntDlvrs is smaller

than numOfAllDlvrs.

Unfortunately, in order to piggyback numOfRcntDlvrs rather than numOfAllDlvrs

onto messages, we need to increase the local space required by each process. Each process

p must now maintain a local matrix of counters, M

p

, which it uses to reconstruct the

information necessary to determine whether a message is CA-deliverable. The s-th row of

M

p

, denoted M

p

[s; �], is de�ned as follows. Let t be the time when s CA-broadcast the last

message that p CA-delivered from s. M

p

[s; �] is a vector of counters indicating the number

of messages that s CA-delivered from each process by time t.

The optimized transformation, shown in Figure 9, works as follows. When a pro-

cess p wishes to CA-broadcast m, it FA-broadcasts hm;numOfRcntDlvrsi, and resets

numOfRcntDlvrs to h0; 0; : : : ; 0i. When p FA-delivers a message hm

0

; numOfRcntDlvrs

0

i

from some process s, p uses the matrix M to reconstruct numOfAllDlvrs

0

| the vector

that s would have piggybacked onto m

0

in the basic version of the transformation. Specif-

ically, p computes numOfAllDlvrs

0

by adding numOfRcntDlvrs

0

to M [s; �]. Now p can

test whetherm

0

is CA-deliverable exactly as in the non-optimized version, namely by check-

ing whether s =2 suspects and numOfAllDlvrs � numOfAllDlvrs

0

. If p CA-delivers m

0

,

it updates its local vectors numOfAllDlvrs and numOfRcntDlvrs in the obvious way,

and sets M [s; �] to numOfAllDlvrs

0

.

The correctness of the optimized version (Figure 9), follows from the correctness of

the basic version (Figure 8), and the fact that the value of the vector numOfAllDlvrs

0

,

(piggybacked in the �rst version and reconstructed in the second one) is the same in both

versions. So, the \CA-deliverability test" is actually the same in both versions.

5.6.3 Second Optimization

The �rst optimization requires each process p to maintain the vector numOfAllDlvrs,

where numOfAllDlvrs[s] indicates the total number of messages that p CA-delivered from

42

Variables of process p:

f numOfAllDlvrs[s]: number of all the messages that p CA-delivered from s g

f numOfRcntDlvrs[s]: number of messages that p CA-delivered from s g

f since p's previous CA-broadcast g

f M [s; r]: number of messages that s CA-delivered from r by the time g

f s CA-broadcast the last message that p CA-delivered g

f suspects: set of processes that p suspects to be faulty g

: :

Algorithm for process p:

Initialization:

numOfAllDlvrs[s] := 0, for each process s

numOfRcntDlvrs[s] := 0, for each process s

M [s; r] := 0, for all processes s; r

suspects := ;

To execute broadcast(CA,m):

broadcast(FA,hm;numOfRcntDlvrsi)

numOfRcntDlvrs := h0; 0; : : : ; 0i

deliver(CA,�) occurs as follows:

upon deliver(FA,hm

0

; numOfRcntDlvrs

0

i) do

s := sender(m

0

)

numOfAllDlvrs

0

:=M [s; �] + numOfRcntDlvrs

0

if s =2 suspects and numOfAllDlvrs � numOfAllDlvrs

0

then

deliver(CA,m

0

)

numOfRcntDlvrs[s] := numOfRcntDlvrs[s] + 1

numOfAllDlvrs[s] := numOfAllDlvrs[s] + 1

M [s; �] := numOfAllDlvrs

0

else

discard m

0

suspects := suspects [fsg

Figure 9: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: First Op-

timization

43

s since the beginning. It also requires p to maintain a local matrix M , where, roughly

speaking, M [s; r] is a counter indicating the total number of messages that s CA-delivered

from r in p's causal's past. The elements of numOfAllDlvrs and M are monotonically

increasing, and may grow to be too large in practice. The second optimization replaces these

two data structures with a matrix that has smaller elements. More speci�cally, it maintains

the matrix numAhead, such that numAhead[s; r] = numOfAllDlvrs[r]�M [s; r].

We now describe how numAhead can be used to replace bothM and numOfAllDlvrs.

In Figure 9, we use M and numOfAllDlvrs only to test whether numOfAllDlvrs �

numOfAllDlvrs

0

. Since numOfAllDlvrs

0

is set toM [s; �]+numOfRcntDlvrs

0

just before

this test is executed, the test is equivalent to checking whether numOfAllDlvrs �M [s; �]+

numOfRcntDlvrs

0

. Since numAhead[s; �] = numOfAllDlvrs�M [s; �], the test is also

equivalent to checking whether numAhead[s; �] � numOfRcntDlvrs

0

. This is the test used

by our second optimization (Figure 10).

We now describe how p maintains numAhead. By de�nition, numAhead[s; r] =

numOfAllDlvrs[r]�M [s; r]. Thus, the second optimization must update numAhead ev-

ery time numOfAllDlvrs or M is updated in the �rst optimization. There are two such

updates (after the CA-delivery of a message m

0

in Figure 9):

� numOfAllDlvrs[s] is incremented by one. By de�nition, the corresponding update

is numAhead[�; s] := numAhead[�; s] + h1; 1; : : : ; 1i.

� M [s; �] is set toM [s; �]+numOfRcntDlvrs

0

. By de�nition, the corresponding update

is numAhead[s; �] := numAhead[s; �]� numOfRcntDlvrs

0

.

The correctness of the second optimization (Figure 10), follows directly from the cor-

rectness of the �rst optimization (Figure 9), and the fact that it correctly maintains the

invariant numAhead[s; �] = numOfAllDlvrs�M [s; �] that links the second optimization

to the �rst one.

6 Broadcast Algorithms III | Point-to-Point Networks

In the preceding section, we described a set of system-independent transformations that can

convert Reliable Broadcast algorithms into algorithms for every other type of broadcast.

In this section, we describe a simple Reliable Broadcast algorithm for a particular type

of system, namely, point-to-point networks with benign process and link failures that do

not disconnect correct processes. This algorithm satis�es Uniform Integrity, a necessary

requirement for our transformations. Under some additional assumptions on the type of

failures, it also satis�es Uniform Agreement. Moreover, if the system is synchronous, this

Reliable Broadcast algorithm satis�es Real-Time �-Timeliness, and, with a simple modi-

�cation, Local-Time �-Timeliness. Finally, if the links of the point-to-point network are

FIFO (an assumption that holds in many systems), it satis�es Causal Order, i.e., it is

actually a Causal Broadcast!

44

Variables of process p:

f numOfRcntDlvrs[s]: number of messages that p CA-delivered from s g

f since p's previous CA-broadcast g

f numAhead[s; r] = numOfAllDlvrs[r]�M [s; r] g

f suspects: set of processes that p suspects to be faulty g

: :

Algorithm for process p:

Initialization:

numOfRcntDlvrs[s] := 0, for each process s

numAhead[s; r] := 0, for all processes s; r

suspects := ;

To execute broadcast(CA,m):

broadcast(FA,hm;numOfRcntDlvrsi)

numOfRcntDlvrs := h0; 0; : : : ; 0i

deliver(CA,�) occurs as follows:

upon deliver(FA,hm

0

; numOfRcntDlvrs

0

i) do

s := sender(m

0

)

if s =2 suspects and numAhead[s; �] � numOfRcntDlvrs

0

then

deliver(CA,m

0

)

numOfRcntDlvrs[s] := numOfRcntDlvrs[s] + 1

numAhead[�; s] := numAhead[�; s] + h1; 1; : : : ; 1i

numAhead[s; �] := numAhead[s; �]� numOfRcntDlvrs

0

else

discard m

0

suspects := suspects [fsg

Figure 10: Transforming FIFO Atomic Broadcast into Causal Atomic Broadcast: Second

Optimization

45

In asynchronous point-to-point networks, we can apply our transformations to this Reli-

able Broadcast algorithm, and automatically obtain FIFO and Causal Broadcast algorithms

for such systems. In synchronous point-to-point networks, we can apply the transformations

to the version of the Reliable Broadcast algorithm that satis�es Local-Time �-Timeliness,

to obtain algorithms for every one of the six types of broadcast. Since our transformations

preserve Uniform Agreement and, under some assumptions, both versions of �-Timeliness,

if we start from the Reliable Broadcast algorithm that satisfy some of these properties, the

resulting broadcast algorithms satisfy the same properties.

Note that the above approach does not yield an Atomic Broadcast algorithm (and a

fortiori a FIFO Atomic or Causal Atomic Broadcast algorithm) in asynchronous point-

to-point networks. This is not a limitation of this particular approach: Atomic Broadcast

cannot be solved in such a system. In fact, this impossibility result holds even if the network

is completely connected, has correct links, at most one process may fail, and it can only fail

by crashing (see Theorem 13 in Section 7.2.1).

6.1 Model of Point-to-Point Networks

Recall from Section 2.2 that in a point-to-point network, a pair of processes connected by

a link can communicate by means of send and receive primitives. We now establish some

terminology regarding these primitives and state two properties that they satisfy. (A more

detailed model of point-to-point networks is given in the Appendix.)

Consider the send and receive associated with the link from process p to process

q. If p invokes send with a message m as a parameter we say that p sends m to q; in

our algorithms we denote this invocation by \send(m) to q". When p returns from that

invocation we say that p completes the sending of m to q. When a process q returns from

the execution of receive with message m as the returned value, we say that q receives

m; we denote this by \receive(m)". For convenience, we assume that every process can

\send" messages to itself, and that it \receives" such messages instantaneously. This is only

a �ctional device, as a process does not really invoke the primitives send and receive for

such messages. These primitives satisfy the following two properties:

12

� Validity: If p sends m to q, and both p and q and the link from p to q are correct,

then q eventually receives m. (If p = q then p receives m instantaneously.)

� Uniform Integrity: For any message m, q receives m at most once from p, and only if

p previously sent m to q.

6.2 Assumptions and Notation

All our Reliable Broadcast algorithms rely on the following two assumptions:

12

To simplify the formulation of these properties, we assume that each message sent from p to q is unique.

This can be easily enforced by using link sequence numbers.

46

a. Benign Failures: Process and link failures are benign.

b. No Partitioning: Every two correct processes are connected via a path consisting

entirely of correct processes and links.

In these algorithms, a process p is required to send a message m to every one of its

neighbors in the network (i.e., to every process q that is connect to p by a link). We use

the notation \send(m) to all neighbors" as a short-hand for \for all q such that q is a

neighbor of p do send(m) to q." If p fails while executing this for loop, it is possible that

some neighbors of p receive m while others do not.

In this section, instead of R-broadcasts and R-deliveries we refer simply to broadcasts

and deliveries: The algorithms do not use any other type of broadcast, and thus there is no

ambiguity.

6.3 Reliable Broadcast

With the above assumptions, Reliable Broadcast can be easily implemented as follows. To

broadcast a message, a process sends it to itself. When a process receives a message for the

�rst time, it sends this message to all its neighbors, and then delivers it. This \message

di�usion" algorithm is shown in Figure 11.

Some obvious optimizations are possible (e.g., if p receives m from q, it need not send

m to q), but we do not consider such details here. It is important to note that this algorithm

works even if the network is asynchronous.

Algorithm for process p:

To execute broadcast(R,m):

send(m) to p

deliver(R,m) occurs as follows:

upon receive(m) do

if p has not previously executed deliver(R,m)

then

send(m) to all neighbors

deliver(R,m)

Figure 11: Reliable Broadcast for Point-to-Point Networks

Theorem 8 The algorithm in Figure 11 is a Reliable Broadcast.

13

13

All the Reliable Broadcast algorithms in this section satisfy the Uniform version of Integrity. For brevity

we omit to state this in our theorems.

47

Proof: We have to show that the algorithm satis�es the three properties of Reliable Broad-

cast, namely, Validity, Agreement, and Uniform Integrity.

Validity: If a correct process p broadcasts m, it sends m to itself. By Validity of send and

receive, p receives m. So p delivers m.

Agreement: Let p and q be any correct processes. Suppose p delivers m. We must show

that q also delivers m. By Assumption (b), there is a path p

1

= p; p

2

; : : : ; p

k

= q consisting

entirely of correct processes and links. By induction on i we prove that each p

i

delivers

m. The basis, i = 1, is true by assumption. For the induction step, suppose p

i

delivers

m; we show that p

i+1

also delivers m. By the algorithm, since p

i

delivers m, it must have

previously sent m to every one of its neighbors, including p

i+1

. By Validity of send and

receive, p

i+1

receives m and, being correct, delivers m.

Uniform Integrity: From the algorithm, p delivers m only if it has not previously executed

deliver(R,m), i.e., p delivers m at most once. Suppose some process delivers m; we must

show that sender(m) did in fact broadcast m. This follows from the Uniform Integrity of

send and receive, and the fact that with benign failures if a process p broadcasts m then

sender(m) = p. 2

If we make further assumptions about the given point-to-point network, the algorithm

in Figure 11 satis�es additional properties, namely, Uniform Causal Order, Uniform Agree-

ment and Real-Time �-Timeliness. With a modi�cation, it can also satisfy Local-Time

�-Timeliness. This is shown in the next sections.

6.4 Achieving Uniform Causal Order

In many point-to-point networks, data-link layer transmission protocols provide reliable

FIFO links. More precisely, they provide send and receive primitives that satisfy Validity

and Uniform Integrity, as well as the following property:

� Uniform FIFO Order: If p sends m to q before it sends m

0

to q, then q does not

receive m

0

unless it has previously received m.

With such links the algorithm given in the previous section is actually a Causal Broadcast!

Theorem 9 Assume that the send and receive primitives satisfy Uniform FIFO Order

and the upon statement is indivisible.

14

The Reliable Broadcast algorithm in Figure 11

satis�es Uniform Causal Order.

Proof: We say that a process p relays m when it begins executing the statement \send(m)

to all neighbors". Since p could fail during the execution of this statement, saying that p

relayed m does not necessarily imply that all its correct neighbors will receive m.

14

That is, each execution of the upon statement cannot be interrupted by another execution of this

statement.

48

Claim: For any messages m and m

0

, if sender(m

0

) relays m and m

0

in that order, then

no process relays m

0

unless it has previously relayed m.

Proof of Claim: Suppose sender(m

0

) relays m and m

0

, in that order. Assume, for

contradiction, that some process relays m

0

without having previously relayed m. Let q

be the �rst process to do so (in real time). Clearly, q 6= sender(m

0

). Thus q relayed m

0

because it previously received m

0

from a process s 6= q. By the Uniform Integrity of send

and receive, s must have relayed m

0

to q. Note that the relay of m

0

by s precedes the one

by q. By the choice of q, s relayed m before m

0

. So, s sent m to q before m

0

. By Uniform

FIFO Order of send and receive, q received m before receiving m

0

. By the indivisibility

of the upon statement, q relayed m before receiving m

0

, and therefore before relaying m

0

.

This contradicts the de�nition of q. 2

Claim

We now show that the algorithm satis�es Uniform Causal Order by proving that it

satis�es Uniform FIFO Order and Uniform Local Order (see Theorem 2). Suppose that

sender(m

0

) broadcasts m or delivers m, before it broadcasts m

0

. We must show that no

process delivers m

0

unless it has previously delivered m. We �rst prove that:

If sender(m

0

) relays m

0

, then no process relays m

0

unless it has previously relayed m.

(�)

Assume that sender(m

0

) relays m

0

. By the above claim, it is su�cient to show that

sender(m

0

) relayed m before m

0

. There are two cases to consider:

� sender(m

0

) delivers m before it broadcasts m

0

. From the algorithm, sender(m

0

) re-

layed m before delivering m, and it relayed m

0

after broadcasting m

0

. Thus, it relayed

m before m

0

.

� sender(m

0

) broadcasts m before it broadcasts m

0

. From the algorithm, sender(m

0

)

sends m to itself before m

0

. By the Uniform FIFO Order of send and receive,

sender(m

0

) receivesm beforem

0

. By the indivisibility of the upon statement, sender(m

0

)

relays m before m

0

.

This concludes the proof of (�). Now consider a process q that delivers m

0

. We show that

q delivers m before m

0

. Since q delivered m

0

, it must have previously received and relayed

m

0

. By Uniform Integrity of send and receive, it is easy to show that sender(m

0

) relayed

m

0

. By (*), q relayed m before m

0

. By the indivisibility of the upon statement, q delivered

m before m

0

, as wanted. 2

Note that the Uniform FIFO Order property of send and receive, applies even be-

tween two faulty processes (that is why we call it Uniform). This uniformity is crucial

to Theorem 9: without it, the Reliable Broadcast algorithm in Figure 11 would not even

satisfy FIFO Order, let alone Uniform Causal Order. The same is true about the required

indivisibility of the upon statement.

6.5 Achieving Uniform Agreement

The Reliable Broadcast algorithm in Figure 11 works for any type of benign failures, pro-

vided that correct processes remain connected (see Assumption (b)). We now show that if

49

we restrict the type of failures and strengthen the connectivity assumption, this algorithm

also satis�es Uniform Agreement.

Consider a point-to-point network where processes do not commit send-omission fail-

ures. With this restriction, the send and receive primitives satisfy a stronger Validity

property than the one given in Section 6.1. If send-omission failures cannot occur then the

following property holds (see Appendix):

� Strong Validity: If a process p (whether correct or faulty) completes the sending of a

message m to a correct process q, and the link from p to q is correct, then q eventually

receives m.

We can now show the following:

Theorem 10 Consider a network such that: (1) processes do not commit send-omission

failures, and (2) every process p (whether correct or faulty) is connected to every correct pro-

cess via a path consisting entirely of correct processes and links (with the possible exception

of p itself). The Reliable Broadcast algorithm in Figure 11 satis�es Uniform Agreement.

Proof: We have already proved that the algorithm satis�es Validity and Uniform Integrity

of Reliable Broadcast (cf. Theorem 8). It remains to prove that it satis�es:

Uniform Agreement: Let p be any process (correct of faulty) that delivers m, and let q be

a correct process. We must show that q also delivers m. By assumption, there is a path

p

1

= p; p

2

; : : : ; p

k

= q consisting entirely of correct processes and links (with the possible

exception of p). By induction on i we prove that each p

i

delivers m. The basis, i = 1, is

true by assumption. For the induction step, suppose p

i

delivers m; we show that p

i+1

also

delivers m. By the algorithm, since p

i

delivers m, it must have previously completed the

sending of m to every one of its neighbors, including p

i+1

. Since p

i+1

and the link from

p

i

to p

i+1

are correct, by Strong Validity of send and receive p

i+1

eventually receives m.

Since it is correct, p

i+1

delivers m. 2

Achieving Uniform Agreement in systems with send-omission and receive-omission failures

can be done using techniques described in [NT90].

6.6 Impossibility of �-Timeliness in Asynchronous Systems

Consider an asynchronous point-to-point network. Clearly, no Reliable Broadcast algorithm

can achieve Real-Time �-Timeliness in such a system. Can it achieve Local-Time �-

Timeliness? If local clocks are required to satisfy the Clock Monotonicity property, the

answer is negative. In fact, this impossibility result holds even if the network is completely

connected, has correct links, at most one process may fail, and it can only fail by crashing.

The proof is by contradiction. Suppose there is a Reliable Broadcast algorithm that satis�es

Local-Time �-Timeliness in such a system. We could transform it into an Atomic Broadcast

algorithm, as shown in Figure 4 (Section 5.3). This contradicts the impossibility of solving

Atomic Broadcast in such a system (see Corollary 2 in Section 7.2.1).

50

6.7 Achieving �-Timeliness in Synchronous Systems

In contrast to the impossibility results above, both versions of �-Timeliness can be achieved

in synchronous point-to-point networks: Real-Time �-Timeliness in networks with omission

failures, and Local-Time �-Timeliness in networks with timing failures. To show this, we

�rst state the properties of synchronous point-to-point networks.

6.7.1 Model of Synchronous Point-to-Point Networks

Roughly speaking, a point-to-point network is synchronous if there are known bounds on

message delay, clock drift, and the time to execute a local step. More precisely, a point-to-

point network is synchronous if, in addition to the properties in Section 6.1, it also satis�es

the following three synchrony properties (in this de�nition the word \time" refers to real

time):

1. � -Local Step: There is a known constant � � 0 such that no process p completes a

step later than � time units of when it started that step.

2. �-Clock Drift: There is a known constant � � 0 such that every process p has a local

clock whose drift with respect to time is bounded by �. That is, if C

p

(t) denotes the

value of the local clock of p at time t, then for all t > t

0

:

1

1 + �

�

C

p

(t)� C

p

(t

0

)

t� t

0

� 1 + �

3. �-Timeliness: There is a known constant � � 0 such that for any processes p and q

connected by a link then q does not receive m after time t+ �.

In a synchronous point-to-point network with omission failures the above properties

are never violated. In one with timing failures, however, Properties 1 and 2 hold only if p

is correct, and Property 3 holds only if p, q, and the link from p to q are all correct. In

other words, in a synchronous point-to-point network with timing failures the synchrony

properties hold only in the subnetwork consisting entirely of correct processes and links.

6.7.2 Assumptions

To achieve �-Timeliness we make the following assumptions:

c. f -Failures: There is a known upper bound f on the number of faulty processes.

d. d-Diameter: There is a known constant d such that every two correct processes are

connected via a path of length at most d, consisting entirely of correct processes and

links.

e. 0-Local Step: The time to execute a local step is 0. More precisely, we take � = 0 in

Property 1 in the de�nition of synchronous point-to-point networks.

51

Regarding the �rst two assumptions, note that f and d can be taken to be the number of

processes in the network, if no better bounds on these quantities are available. Regarding

the third assumption, we note that it is not really necessary but it simpli�es the algorithms

and their analyses. Moreover, this assumption is reasonable for the type of algorithms that

we are considering: The amount of local processing is negligible and can be absorbed in the

upper bound on message delay �.

6.7.3 Achieving Real-Time �-Timeliness

In a network with timing failures, no Reliable Broadcast can satisfy Real-Time �-Timeliness.

Roughly speaking, the argument runs as follows. Suppose that the clocks of correct pro-

cesses show real time, while faulty processes have clocks that are �

0

ahead of real time,

for some �

0

> �. Assume that a faulty process p broadcasts a message m at real time

t ��

0

, i.e., at time t according to the clocks of faulty processes. Suppose the set of faulty

processes \withhold" m for �

0

real-time units, and then \release" m into the rest of the

network at real-time t. To any correct process q, it now seems that the broadcast of m was

initiated at real time t, and that the sender of m, namely p, is actually correct. Thus, q

has to assume that p delivers m (by Validity). To satisfy Agreement, q must also deliver m

thereby violating Real-Time �-Timeliness.

In contrast, in a network where only omission failures occur (i.e., one where the syn-

chrony assumptions are not violated), the Reliable Broadcast algorithm in Figure 11 does

satisfy Real-Time �-Timeliness:

Theorem 11 In a synchronous network with omission failures the Reliable Broadcast al-

gorithm in Figure 11 satis�es Real-Time �-Timeliness, with � = (f + d)�.

Proof: We �rst show the following

Claim: For any two correct processes s and r, if s delivers a message m at real time t

s

,

then r delivers m at real time t

r

such that t

r

� t

s

+ d�.

Proof of Claim: Suppose s delivers m at real time t

s

. By Assumption (d), there is a

path p

1

= s; p

2

; : : : ; p

k

= r (for some k, 1 � k � d + 1) from s to r, consisting entirely of

correct processes and links. We now show that:

for all i, 1 � i � k, p

i

delivers m by real time t

s

+ (i� 1)�. (*)

The proof of this is by induction on i. For i = 1, we have p

1

= s and the induction

hypothesis obviously holds. Suppose it holds for i; we show it also does for i+ 1. By the

induction hypothesis, p

i

delivers m by real time t

s

+ (i� 1)�. By the algorithm, just before

delivering m, p

i

sent m to all its neighbors, including p

i+1

.

Since p

i

, p

i+1

, and the link between them are correct, by Validity and �-Timeliness of

send and receive, p

i+1

receives m by real time t

s

+ i�. By Assumption (e), p

i+1

delivers

m by real time t

s

+ i� | concluding the proof of (*). By (*), p

k

= r delivers m by real

time t

s

+ (k � 1)�. Noting that k � d+ 1 concludes the proof of the claim. 2

Claim

52

We now prove that the algorithm satis�es Real-Time �-Timeliness.

Real-Time �-Timeliness: Suppose a process p broadcasts a message m at real time t, and

some correct process q delivers m at real time t

0

. We must show that t

0

� t + �, where

� = (f + d)�. If p = q, then t

0

= t (by Validity of send and receive, the message delay

of the \link" between p and itself is 0), and the result holds. Now assume p 6= q. From the

algorithm, Uniform Integrity and �-Timeliness of send and receive, and Assumption (e),

there must be a sequence of k � 2 distinct processes p

1

= p; p

2

; : : : ; p

k

= q, such that for

all i, 2 � i � k, p

i

receives m from p

i�1

and delivers it by real time t + (i � 1)�. Let

p

j

be the �rst correct process in this sequence. It delivers m by real time t + (j � 1)�.

Since p

1

; : : : ; p

j�1

are faulty, and there are at most f faulty processes (Assumption (c)),

j � 1 � f . Thus, p

j

delivers m by real time t + f�. By the above claim, q delivers m at

most d� real-time units later, i.e., by real time t+ (f + d)�. 2

6.7.4 Achieving Local-Time �-Timeliness

Consider a synchronous point-to-point network with timing failures. In such networks, one

can implement approximately synchronized clocks, i.e., clocks that are always close to each

other and whose drift with respect to real time is bounded (for example, see [LM85,ST87a,

Cri89]). More precisely these clocks satisfy:

f. (�; �)-Clock Synchronization: There are known constants � � 0 and � � 0 such that

for all correct processes p and q, and all real times t > t

0

:

� jC

p

(t)� C

q

(t)j � �, and

�

1

1 + �

�

C

p

(t)� C

p

(t

0

)

t� t

0

� 1 + �

With such clocks, we can modify the Reliable Broadcast algorithm in Figure 11 so that

it satis�es Local-Time �-Timeliness even if timing failures occur. The modi�ed algorithm,

shown in Figure 12, works as follows. With each message m we now associate a counter

that indicates how many links m has traversed so far. Thus, processes send messages of the

form hm; ki, where k is the counter associated with message m. When a process wishes to

broadcast a message m, it tags m with the local sending time ts(m), and then sends hm; 0i

to itself. When a process p receives a message hm; ki, p checks whether the local receipt

time is less or equal to ts(m) + k(�(1+ �) + �). If so, p relays hm; k+1i to all its neighbors,

and then delivers m. Otherwise, p simply discards m.

Theorem 12 In a synchronous network with timing failures and approximately synchro-

nized clocks (Assumption (f)), the algorithm in Figure 12 is a Reliable Broadcast that sat-

is�es Local-Time �-Timeliness, with � = (f + d)�(1 + �) + (f + 1)�.

Proof: We �rst show the following

Claim: For any two correct processes s and r, if s delivers a message m at local time t

s

,

then r delivers m at local time t

r

such that t

r

� t

s

+ d�(1 + �) + �.

53

Algorithm for process p:

To execute broadcast(R,m):

send(hm; 0i) to p

deliver(R,m) occurs as follows:

upon receive(hm; ki) do

if p has not previously executed deliver(R,m) and

local time � ts(m) + k(�(1 + �) + �)

then

send(hm; k+ 1i) to all neighbors

deliver(R,m)

Figure 12: Reliable Broadcast with Local-Time �-Timeliness

Proof: Suppose s delivers m at local time t

s

on its clock. By Assumption (d), there is a

path p

1

= s; p

2

; : : : ; p

k

= r (for some k, 1 � k � d + 1) from s to r, consisting entirely of

correct processes and links. We now show that: For all i, 1 � i � k,

p

i

delivers m at time t

i

s

� t

s

+ (i� 1)�(1 + �) according to the clock of s. (*)

The proof of this is by induction on i. For i = 1, we have p

1

= s and t

1

s

= t

s

, and so the

induction hypothesis holds. Suppose it holds for i; we now show it also does for i+1. By the

induction hypothesis, p

i

delivers m. By the algorithm, it does so upon receiving a message

hm; k

i

i at local time t

i

(on p

i

's clock) such that t

i

� ts(m) + k

i

(�(1+ �)+ �). Furthermore,

immediately after the receipt of hm; k

i

i, p

i

sends hm; k

i

+ 1i to all its neighbors, including

p

i+1

. By Assumption (e) p

i

sends hm; k

i

+ 1i to p

i+1

at time t

i

(on p

i

's clock). Since

p

i

, p

i+1

, and the link between them are correct, by Validity of send and receive, p

i+1

eventually receives hm; k

i

+ 1i. By �-Timeliness of send and receive, this receipt occurs

within � units of real time from the time p

i

sent hm; k

i

+ 1i. Thus, by Assumption (f),

p

i+1

receives hm; k

i

+ 1i at local time t

i+1

� t

i

+ �(1 + �) + � on its clock. Note that t

i+1

� ts(m)+(k

i

+1)(�(1+�)+�). Thus, by the algorithm and Assumption (e), p

i+1

delivers m

by local time t

i+1

. By the induction hypothesis, p

i

delivers m at time t

i

s

� t

s

+(i�1)�(1+�),

according to the clock of s. Since p

i+1

delivers m within � units of real time from this, p

i+1

delivers m at time t

i+1

s

� t

s

+ i�(1+�), also according to the clock of s. Thus, the induction

hypothesis holds for i+ 1 | concluding the proof of (*).

By (*), process p

k

= r delivers m at time t

k

s

� t

s

+ (k � 1)�(1 + �), according to the

clock of s. By Assumption (f), this delivery occurs at time t

r

� t

k

s

+ � on r's clock, i.e., at

time t

r

� t

s

+ (k � 1)�(1 + �) + �. Noting that k � d+ 1 concludes the proof of the claim.

2

Claim

We now prove that the algorithm satis�es the three properties of Reliable Broadcast as well

as Local-Time �-Timeliness.

Validity: If a correct process p broadcasts m, it sends hm; 0i to itself at local time ts(m).

54

By �-Timeliness of send and receive, the message delay of the \link" between p and itself

is 0. Thus, p receives hm; 0i at local time ts(m). By the algorithm, p delivers m.

Agreement: Immediate from the above claim.

Uniform Integrity: The proof, similar to the one given for the Algorithm in Figure 11, is

omitted.

Local-Time �-Timeliness: Suppose some correct process q delivers a message m at local

time t

q

. We must show that t

q

� ts(m) + �, where � = (f + d)�(1 + �) + (f + 1)�. If

q = sender(m), then t

q

= ts(m) (by Validity of send and receive, the message delay of the

\link" between q and itself is 0), and the result holds. Now assume q 6= sender(m). In this

case, from the algorithm and Uniform Integrity of send and receive, there is a sequence

of k � 2 distinct processes p

1

= sender(m); p

2

; : : : ; p

k

= q such that for all i, 1 � i � k� 1,

p

i

receives hm; i� 1i by local time t

i

� ts(m) + (i � 1)(�(1 + �) + �), and sends hm; ii to

p

i+1

(before delivering m). Let p

j

be the �rst correct process in this sequence. It receives

hm; j � 1i by local time t

j

� ts(m) + (j � 1)(�(1 + �) + �) on its clock. Since p

1

; : : : ; p

j�1

are faulty, and there are at most f faulty processes (Assumption (c)), j � 1 � f . Thus,

t

j

� ts(m) + f(�(1 + �) + �). By the above claim, since p

j

delivers m at local time t

j

, q

deliversm at local time t

q

� t

j

+d�(1+�)+�. Thus, t

q

� ts(m)+f(�(1+�)+�)+d�(1+�)+�,

i.e., t

q

� ts(m) + �, where � = (f + d)�(1 + �) + (f + 1)�. 2

Observation: As in Theorem 9, if the links are FIFO then the algorithm in Figure 12 is

actually a Causal Broadcast that satis�es Local-Time �-Timeliness! More precisely, this

holds when the send and receive primitives satisfy Uniform FIFO Order and the upon

statement is indivisible.

6.8 Obtaining Stronger Broadcasts

We now describe how to obtain algorithms for every type of broadcast in point-to-point

networks. Starting from the Reliable Broadcast algorithm in Figure 11, we apply the generic

transformation that adds FIFO Order (Figure 5) to obtain a FIFO Broadcast algorithm.

We then add Causal Order by applying either the non-blocking transformation in Figure 6,

or the blocking one in Figure 7. This results in two Causal Broadcast algorithms. Note

that the algorithms that we get this way satisfy the uniform versions of FIFO and Causal

Order.

To obtain Atomic, FIFO Atomic, or Causal Atomic Broadcast algorithms in a syn-

chronous point-to-point network, we can proceed as follows:

15

1. Run a clock synchronization algorithm that yields approximately synchronized clocks

(Assumption (f) in Section 6.7.4) that also satisfy the Clock Monotonicity property.

16

2. With such clocks, the Reliable Broadcast algorithm in Figure 12 satis�es Local-Time

�-Timeliness.

15

Recall that Atomic Broadcast cannot be solved in asynchronous systems.

16

Typically, clock synchronization algorithms satisfy this property, or can be easily modi�ed to do so.

55

3. Obtain FIFO and Causal Broadcast algorithms by successively applying the blocking

transformations of Figure 5 and 7 to the Reliable Broadcast algorithm of Step 2.

Under reasonable assumptions about the local clocks, these transformations preserve

Local-Time �-Timeliness. Since the given Reliable Broadcast algorithm satis�es this

property, so do the resulting FIFO and Causal Broadcast algorithms.

17

4. Apply the transformation that adds Total Order (Figure 4) to the Reliable, FIFO,

and Causal Broadcast algorithms that were obtained in the previous steps. This gives

Atomic, FIFO Atomic and Causal Atomic Broadcast algorithms.

Another way to obtain FIFO Atomic and Causal Atomic Broadcast algorithms is:

(1) Derive an Atomic Broadcast by adding Total Order to our Timed Reliable Broadcast

as explained above, (2) add FIFO Order (recall that this transformation preserves Total

Order), and (3) add Causal Order by applying one of the three non-blocking transformations

of Section 5.6.

If a synchronous point-to-point network has FIFO links, one can also implement a

Causal Atomic Broadcast algorithm as follows. Start with the algorithm in Figure 12. As

we observed in Section 6.7.4, this is already a Causal Broadcast that satis�es Local-Time

�-Timeliness. Now apply the transformation that adds Total Order (Figure 4).

Bibliographic Notes

The algorithm for Reliable Broadcast that satis�es Local-Time �-Timeliness and tolerates

timing failures (Figure 12) is due to [CASD85]. That paper also presented an Atomic

Broadcast algorithm for point-to-point networks using the idea of delaying the delivery

of a message m until local time ts(m) + �. This technique is the basis of our generic

transformation that adds Total Order to any type of Timed Broadcast (Figure 4). Many

other broadcast algorithms for speci�c network types, synchrony assumptions, and failure

models have appeared in the literature, including those described in [CM84,BD85,BJ87,

PBS89,GSTC90,VM90,BSS91,GMS91,ADKM92].

7 Consensus

7.1 Speci�cation

In the Consensus problem, all correct processes propose a value and must agree on some

value related to the proposed values. Formally, we de�ne the Consensus problem in terms

of two primitives, propose and decide. If p invokes propose with a value v as a parameter

we say that p proposes v; in our algorithms we denote this invocation by \propose(v)".

17

In general we cannot apply the non-blocking transformation from FIFO to Causal Broadcast described

in Figure 6, because it does not preserve �-Timeliness unless the given FIFO Broadcast satis�es Uniform

Agreement. We can apply this transformation if, in Step 1, we start with an Reliable Broadcast that satis�es

Uniform Agreement.

56

The value proposed is taken from some set V . When a process q returns from the execution

of decide with value v, we say that q decides v; we denote this by \decide(v)". The

Consensus problem requires that if each correct process proposes a value then the following

hold:

� Termination: Every correct process eventually decides exactly one value.

� Agreement: If a correct process decides v, then all correct processes eventually decide

v.

� Integrity: If a correct process decides v, then v was previously proposed by some

process.

Integrity ensures that the decision of a correct process is not created \out of thin air".

In particular, if all processes that propose a value, propose the same value v, then this

decision can only be v. As usual, we can strengthen the Agreement and Integrity properties

by requiring Uniformity:

� Uniform Agreement: If a process (whether correct or faulty) decides v, then all correct

processes eventually decide v.

� Uniform Integrity: If a process (whether correct or faulty) decides v, then v was

previously proposed by some process.

Now consider the speci�cation of Consensus in the case of arbitrary failures. If a process p

is subject to such failures, the meaning of \p proposes v" or \p decides v" is now ambiguous.

To circumvent this problem, the properties of Consensus should now refer only to proposals

and decisions of correct processes (see Section 3.10). This already holds for Termination

and Agreement, but for arbitrary failures Integrity must be rede�ned as follows:

� Integrity: If all processes are correct and a process decides v, then v was previously

proposed by some process.

7.2 Relating Consensus and Atomic Broadcast

In this section we examine the relation between Consensus and Atomic Broadcast. We shall

see that the two problems are, under certain conditions, equivalent to each other. That is

we can transform any algorithm for one into an algorithm for the other.

The transformation from Atomic Broadcast to Consensus tolerates any number of be-

nign failures. The one from Consensus to Atomic Broadcast assumes that Reliable Broad-

cast is available and that only crash failures occur.

18

Both transformations make no as-

sumptions on the type or synchrony of the communication network.

18

A more complex transformation can actually work for any type of failures [CT92], but it is beyond the

scope of this paper.

57

These two transformations have important consequences regarding the solvability of

Atomic Broadcast in asynchronous point-to-point networks with crash failures:

1. Atomic Broadcast can not be solved, even if we assume that links are reliable, at most

one process may fail, and it can only fail by crashing (Corollary 2).

2. Atomic Broadcast can be solved using randomization or failure detectors (Corollary 5).

7.2.1 Transforming Atomic Broadcast to Consensus

In Figure 13, we show how to transform any Atomic Broadcast algorithm into a Consensus

algorithm. To propose a value v, a process uses the given Atomic Broadcast algorithm

to A-broadcast v. To decide a value, a process selects the value of the �rst message that

it A-delivers. By Agreement and Total Order of Atomic Broadcast, all correct processes

choose the same value; hence Agreement of Consensus is satis�ed. It is easy to verify

that Termination and Integrity of Consensus also hold. This transformation makes no

assumptions on the type or synchrony of the communication network, and it tolerates any

number of benign failures.

Algorithm for process p:

To execute propose(v):

broadcast(A,v)

decide(�) occurs as follows:

upon deliver(A,u) do

if p has not previously executed deliver(A, {)

then decide(u)

Figure 13: Transforming Atomic Broadcast into Consensus

Theorem 13 The algorithm in Figure 13 transforms any Atomic Broadcast algorithm into

a Consensus algorithm.

Corollary 2 Atomic Broadcast cannot be solved in an asynchronous point-to-point network,

even if the network is completely connected, all the links are correct, at most one process

may fail, and it can only fail by crashing.

Proof: It is well-known that Consensus cannot be solved in such a system [FLP85]. The

result now follows from the previous theorem. 2

The impossibility of Atomic Broadcast in asynchronous systems seems paradoxical

since this primitive is a basic service provided by many practical systems which, on the

58

face of it, appear to be asynchronous. (Such systems include Isis [BJ87,BCJ

+

90], Amoeba

[Kaa92], Delta-4 [VM90], and Transis [ADKM92].) There is no contradiction here. What

this indicates is that such systems, at some level, explicitly or implicitly use of one of the

mechanisms previously mentioned for circumventing the impossibility result. For example,

the Isis Atomic Broadcast algorithm uses a failure detector mechanism based on timeouts.

This means that it relies, at some level, on synchrony assumptions.

We close this section with a word of caution against confusing the impossibility of

Atomic Broadcast and Consensus in asynchronous systems with a seemingly similar but, in

fact, quite di�erent impossibility result in fault-tolerant distributed computing, sometimes

known as \the generals' paradox" [Gra78]. This concerns a problem, technically known as

Non-Blocking Atomic Commitment [BHG87], that cannot be solved if the communication

network may partition into two or more components, so that no messages can be exchanged

between processes in di�erent components. It is the possibility of network partioning that

makes Non-Blocking Atomic Commitment unsolvable. In fact, this problem cannot be

solved even if the network is synchronous (i.e., each message is either delivered within a

known bound or not at all). In contrast, the impossibility of Consensus is due to the

combination of asynchrony and process failures, and it holds even if communication is

reliable, i.e., even if partitioning cannot occur. The di�erence in the reasons underlying these

two impossibility results is reected in their proofs, which are based on entirely di�erent

ideas (compare [FLP85] and [Gra78]).

7.2.2 Transforming Reliable Broadcast and Consensus to Atomic Broadcast

In Figure 14, we show how to transform any Reliable Broadcast and Consensus algorithms

into an Atomic Broadcast algorithm [CT91]. This transformation uses repeated (possibly

concurrent but completely independent) executions of Consensus. Informally, the kth ex-

ecution of Consensus is used to decide on the kth batch of messages to be A-delivered.

Processes disambiguate between these executions by tagging all the messages pertaining to

the kth execution of Consensus with a counter k. Tagging with such counters constitutes

a minor modi�cation to any given Consensus algorithm. The propose and decide prim-

itives corresponding to the kth execution of Consensus are denoted by propose(k;�) and

decide(k;�).

When a process wishes to A-broadcast a message m, it uses the given Reliable Broad-

cast algorithm to R-broadcast m (Task 1). When a process p R-delivers m, it adds m to

the set R delivered

p

(Task 2). Thus, R delivered

p

contains all the messages submitted for

Atomic Broadcast (since the beginning) that p is aware of. When p A-delivers a message

m, it adds m to the set A delivered

p

(in Task 3). Thus, R delivered

p

� A delivered

p

is

the set of messages that were submitted for Atomic Broadcast but not yet A-delivered, ac-

cording to p. This set is denoted by A undelivered

p

. Process p periodically checks whether

A undelivered

p

is not empty; if so, p participates in the next execution of Consensus, say

the kth one, by proposing A undelivered

p

as the kth batch of messages to be A-delivered.

It then waits for the decision msgSet of this Consensus execution. Finally, it A-delivers all

the messages in msgSet except those it previously A-delivered. More precisely, p A-delivers

all the messages in batch

p

(k) = msgSet�A delivered

p

, and it does so in some deterministic

59

Algorithm for process p:

Initialization:

R delivered := ;

A delivered := ;

k := 0

To execute broadcast(A,m): f Task 1 g

broadcast(R,m)

deliver(A,�) occurs as follows:

upon deliver(R,m) do f Task 2 g

R delivered := R delivered [fmg

do forever f Task 3 g

A undelivered := R delivered�A delivered

if A undelivered 6= ; then

k := k + 1

propose(k; A undelivered)

wait for decide(k;msgSet)

batch(k) := msgSet�A delivered

A-deliver all messages in batch(k) in some deterministic order

A delivered := A delivered[batch(k)

Figure 14: Transforming Consensus and Reliable Broadcast into Atomic Broadcast

60

order that was agreed a priori by all processes, e.g., in lexicographical order.

This transformation assumes that the given Reliable Broadcast algorithm satis�es Uni-

form Integrity, and that only crash failures occur. On the other hand, it makes no assump-

tions on the type or synchrony of the communication network, and it tolerates any number

of crash failures.

The following sequence of lemmata show that the transformation in Figure 14 results

in an algorithm that satis�es all the properties of Atomic Broadcast.

Lemma 1 For any two correct processes p and q, and any message m, if m 2 R delivered

p

then eventually m 2 R delivered

q

.

Proof: If m 2 R delivered

p

then p R-delivered m (in Task 2). Since p is correct, by

Agreement of Reliable Broadcast q eventually R-deliversm, and insertsm into R delivered

q

.

2

Lemma 2 For all correct processes p and all k � 1:

1. batch

p

(k) is a set of messages.

2. p does not A-deliver the messages in batch

p

(k+1) unless it has previously A-delivered

those in batch

p

(k).

Proof: Let v be p's decision value of the kth execution of Consensus. By Integrity of

Consensus, some process must have proposed v. By the algorithm, v is a set of messages.

Part (1) of the lemma follows from the observation that batch

p

(k) = v�A delivered

p

, and

A delivered

p

is also a set of messages. Part (2) of the lemma is obvious from Task 3. 2

Lemma 3 For any two correct processes p and q, and all k � 1:

1. If p executes propose(k;�), then q eventually executes propose(k;�).

2. If p A-delivers messages in batch

p

(k), then q eventually A-delivers messages in batch

q

(k),

and batch

p

(k) = batch

q

(k).

Proof: The proof is by simultaneous induction on (1) and (2). For k = 1, we �rst

show that if p executes propose(1;�), then q eventually executes propose(1;�). When p

executes propose(1;�), R delivered

p

must contain some message m. By Lemma 1, m is

eventually in R delivered

q

. Since A delivered

q

is initially empty, eventually R delivered

q

�

A delivered

q

6= ;. Thus, q eventually executes Task 3 and propose(1;�).

We now show that if p A-delivers the messages in batch

p

(1), then q eventually A-delivers

the messages in batch

q

(1), and batch

p

(1) = batch

q

(1). From the algorithm, if p A-delivers

messages in batch

p

(1), it previously executed propose(1;�). From part (1) of the lemma,

all correct processes eventually execute propose(1;�). By Termination of Consensus, every

61

correct process eventually executes decide(1;�) exactly once. By Agreement of Consensus,

all correct processes execute decide(1; msgSet) with the same msgSet. Since A delivered

p

and A delivered

q

are initially empty, batch

p

(1) = batch

q

(1) = msgSet.

Now assume that the lemma holds for all k; 1 � k < l. We �rst show that if p executes

propose(l;�), then q eventually executes propose(l;�). When p executes propose(l;�),

R delivered

p

must contain some message m that is not in A deliver

p

. Thus, m is not in

S

l�1

k=1

batch

p

(k). By the induction hypothesis, batch

p

(k) = batch

q

(k) for all 1 � k � l � 1.

So m is not in

S

l�1

k=1

batch

q

(k). Since m is in R delivered

p

, by Lemma 1, m is eventually

in R delivered

q

. Thus, there is a time after q A-delivers batch

q

(l � 1) such that m is in

R delivered

q

�A delivered

q

. So q eventually executes Task 3 and propose(l;�).

We now show that if p A-delivers messages in batch

p

(l), then q A-delivers messages

in batch

q

(l), and batch

p

(l) = batch

q

(l). Since p A-delivers messages in batch

p

(l), it must

have executed propose(l;�). By part (1) of this lemma, all correct processes eventually

execute propose(l;�). By Termination of Consensus, every correct process eventually exe-

cutes decide(l;�) exactly once. By Agreement of Consensus, all correct processes execute

decide(l;msgSet) with the same msgSet. Note that batch

p

(l) = msgSet�

S

l�1

k=1

batch

p

(k),

and batch

q

(l) = msgSet �

S

l�1

k=1

batch

q

(k). By the induction hypothesis, batch

p

(k) =

batch

q

(k) for all 1 � k � l � 1. Thus batch

p

(l) = batch

q

(l). 2

Corollary 3 Agreement and Total Order of Atomic Broadcast are satis�ed.

Proof: Immediate from Lemmata 2, 3, and the fact that correct processes A-deliver mes-

sages in each batch in the same deterministic order. 2

Lemma 4 Validity of Atomic Broadcast is satis�ed.

Proof: The proof is by contradiction. Suppose some correct process p A-broadcasts m

but never A-delivers m. By Corollary 3, no correct process A-delivers m. By Task 1 of

the algorithm, p R-broadcasts m. By Validity and Agreement of Reliable Broadcast, every

correct process q eventually R-delivers m, and inserts m in R delivered

q

(Task 2). Since

correct processes never A-deliver m, they never insert m in their A delivered set. Thus,

for every correct process q, there is a time after which m is permanently in R delivered

q

�

A delivered

q

. By the algorithm and Lemma 3, it is easy to show there is a k

1

, such that for

all l > k

1

, all correct processes execute propose(l;�), and they do so with sets that always

include m.

Since all faulty processes eventually crash, there is a k

2

such that no faulty process

executes propose(l;�) with l > k

2

. Let k = maxfk

1

; k

2

g. Since all correct processes

execute propose(k;�), by Termination and Agreement of Consensus, all correct processes

execute decide(k;msgSet) with the samemsgSet. By Integrity of Consensus, some process

q executed propose(k;msgSet). From our de�nition of k, q is correct and msgSet contains

m. Thus all correct processes, including p, A-deliver m | a contradiction that concludes

this proof. 2

Lemma 5 Integrity of Atomic Broadcast is satis�ed.

62

Proof: We must show that for any message m, every correct process A-delivers m at most

once, and only if m was A-broadcast by sender(m). Suppose a correct process p A-delivers

m. After p A-delivers m, it inserts m in A delivered

p

. From the algorithm, it is clear that

p cannot A-deliver m again. Furthermore, since p A-delivers m, it must have previously

executed decide(k;msgSet) for some k and some msgSet that contains m. By Integrity

of Consensus, some process q must have executed propose(k;msgSet). So q previously

R-delivered all the messages in msgSet, including m. By Uniform Integrity of Reliable

Broadcast, sender(m) R-broadcast m, and therefore it A-broadcast m. 2

Theorem 14 In a system with crash failures, the algorithm in Figure 14 transforms any

algorithms for Reliable Broadcast and Consensus into an Atomic Broadcast algorithm.

Proof: Immediate from Lemmata 4, 5, and Corollary 3. 2

From the proof of Lemma 5, it is easy to see that if the given Consensus algorithm satis�es

Uniform Integrity, the resulting Atomic Broadcast also does so. From Theorems 13 and 14:

Corollary 4 Consensus and Atomic Broadcast are equivalent in any system with crash

failures where Reliable Broadcast can be implemented.

Theorem 14 does not make any assumption on the type or synchrony of the commu-

nication network. Now consider asynchronous point-to-point networks with crash failures.

In such systems, Reliable Broadcast can be implemented (see Section 6), and Consensus

can be solved using randomization [CD89] or failure detectors [CT91]. These results and

Theorem 14 imply:

Corollary 5 In asynchronous point-to-point networks with crash failures, Atomic Broad-

cast can be implemented using randomization or failure detectors.

Bibliographic Notes

Fischer, Lynch and Paterson [FLP85] proved the basic result that Consensus is not solv-

able deterministically in asynchronous systems. Soon after this result was �rst published,

it was shown that Consensus can be solved with randomized algorithms in asynchronous

systems. Such algorithms include [Ben83,Rab83,Bra87], and are surveyed in [CD89]. Un-

reliable failure detectors were introduced by Chandra and Toueg in [CT91], who gave Con-

sensus algorithms based on failure detectors of varying strength. [CT91] also shows that

Reliable Broadcast together with Consensus can be transformed into Atomic Broadcast

(Theorem 14). [CHT92] determines the weakest failure detector that can be used to solve

Consensus. Ricciardi and Birman consider failure detectors in the context of the group

membership problem in [RB91].

Agreement-like problems that are solvable in asynchronous systems in the presence of

failures are described in [DLP

+

86,ABD

+

87,BW87,Fek90,Fek93]. [BMZ88] gives a graph-

theoretic characterization of the problems that can be solved (deterministically) in asyn-

63

chronous systems with one crash failure. Similar results in the context of shared-memory

distributed systems are given by [BG93,HS93,SZ93].

8 Terminating Reliable Broadcast

8.1 Speci�cation

Recall that with Reliable Broadcast any process is allowed to broadcast any message from a

setM of possible messages, at any time. In particular, processes have no a priori knowledge

of the impending broadcasts. Thus, as we noted before, if a process p fails immediately after

invoking the broadcast primitive, the correct processes cannot be required to deliver any

message, as they were not even aware of p's intention to broadcast.

In contrast, in some applications there is a priori knowledge that a particular process,

say sender s, is supposed to broadcast a single message in M. For example, a distributed

control system may have a temperature sensor process s that is supposed to reliably broad-

cast the temperature at a particular time to three monitoring processes. This broadcast is

an instance of Terminating Reliable Broadcast for sender s, a type of broadcast that requires

correct processes to always deliver a message (\from" s) | even if the sender s is faulty and,

say, crashes before the broadcast! For this requirement to be satis�able, processes must be

allowed to deliver a message that was not actually broadcast by s. Thus, we now allow the

delivery of a special message F

s

=2 M stating that the sender s is faulty. By convention, we

assume sender(F

s

) = s.

With Terminating Reliable Broadcast (TRB) for sender s, s can broadcast any message

m 2M, processes can deliver any message m 2 M[fF

s

g, and the following hold:

� Termination: Every correct process eventually delivers exactly one message.

� Validity: If s is correct and broadcasts a message m, then it eventually delivers m.

� Agreement: If a correct process delivers a message m, then all correct processes even-

tually deliver m.

� Integrity: If a correct process delivers a messagem then sender(m) = s. Furthermore,

if m 6= F

s

then m was previously broadcast by s.

The reader should verify that the speci�cation of TRB for sender s implies that a correct pro-

cess delivers F

s

only if s is faulty. Just as with Reliable Broadcast, we can strengthen TRB

by requiring it to satisfy Uniform Agreement, or one of the two versions of �-Timeliness.

This problem has been studied extensively in the case of arbitrary failures under the

name of \Byzantine Agreement" or \Byzantine Generals' Problem". If the sender s is sub-

ject to arbitrary failures, the second clause of Integrity, namely the sentence \Furthermore,

if m 6= F

s

then m was previously broadcast by s", is now ambiguous. To circumvent this

problem in the usual manner (see Section 3.10), we must reformulate this statement so that

64

it applies only to the case that s is correct. In that case, however, the other three properties

of TRB already determine that correct processes must deliver the message broadcast by s,

and only that. Hence, for arbitrary failures, we can simply drop this second clause, and

Integrity reduces to: \If a correct process delivers a message m then sender(m) = s."

8.2 Relating Consensus and Terminating Reliable Broadcast

In this section we relate Consensus and Terminating Reliable Broadcast:

� In some synchronous point-to-point networks, Consensus is equivalent to TRB. This

allows us to translate both positive and negative results proven for one problem, to

the other. For example, the transformation from Consensus to TRB is message- and

time-e�cient. In particular, it can convert any constant-time randomized Consen-

sus algorithm (such as the one in [FM90]), into a constant-time randomized TRB

algorithm.

� In asynchronous systems, these two problems are not equivalent: TRB can be trans-

formed to Consensus, but the converse does not hold (Consensus is solvable with

randomization, but TRB is not).

8.2.1 Transforming Terminating Reliable Broadcast to Consensus

The transformation from TRB to Consensus requires the concurrent execution of several

independent copies of the given TRB algorithm, one for each process as the sender. Let

TRB(p) denote the copy of TRB for sender p, and F be the set fF

q

j for all processes qg.

The transformation is shown in Figure 15. To propose a value v (we assume that

v =2 F), a process p uses TRB(p) to broadcast v. When p delivers a value from a process

q, it inserts that value into entry V [q] of a vector V that has one entry per process. Once

all the entries of V have been �lled, p decides the �rst non-F value in V (i.e., the �rst

component of V whose value is not in F).

This transformation makes no assumptions on the type or synchrony of the communi-

cation network, and it works with any type and number of benign failures.

Theorem 15 The algorithm in Figure 15 transforms any Terminating Reliable Broadcast

algorithm into a Consensus algorithm.

Proof: We show that the algorithm that results from the transformation satis�es the prop-

erties of Consensus.

Termination and Integrity: Consider any correct process p. From the structure of the

algorithm, it is clear that p decides at most once. We now show that p does decide, and

that its decision value was previously proposed by some process. Suppose p proposes, and

hence broadcasts, v. By assumption, v =2 F . By Validity of TRB(p), p delivers v. Since

sender(v) = p, it sets V [p] := v. By Termination and Integrity of TRB, p never delivers

65

Algorithm for process p:

To execute propose(v):

broadcast(TRB,v)

decide(�) occurs as follows:

V := h?;?; : : : ;?i

cobegin

upon deliver(TRB,u) do V [sender(u)] := u

//

wait for (8q; V [q] 6= ?)

decide(�rst non-F value of V)

coend

Figure 15: Transforming Terminating Reliable Broadcast into Consensus

any other message u such that sender(u) = p. Therefore p never sets V [p] to a value u

di�erent than v.

By Termination of TRB(q) for each process q, p eventually delivers exactly one message

from q. Thus, p's execution of the wait for statement eventually terminates, and at that

time V contains at least one non-F value, namely V [p] = v. Therefore, p eventually decides

a non-F value u, where u = V [s] for some process s. From the algorithm, p previously

delivered u and sender(u) = s. By Integrity of TRB, the delivery of u occurred during the

execution of TRB(s). By Integrity of TRB(s), u was previously broadcast by s. Thus, u

was previously proposed by s.

Agreement: By Agreement of TRB(q) for each process q, all correct processes have the same

vector V when they use it to decide. Thus, they all decide the same value. 2

8.2.2 Transforming Consensus into Terminating Reliable Broadcast

In Figure 16 we show how to transform any Consensus algorithm into a TRB algorithm for

any given sender s. In contrast to the converse transformation, this one requires several

assumptions: The system is a synchronous point-to-point network, it is completely con-

nected with no link failures, and faulty processes are subject to send-omission failures only.

Furthermore, we assume that processes have a priori knowledge of the time t

0

at which the

sender s is supposed to broadcast, and have perfect real time clocks (i.e., C

p

(t) = t for all

processes p). Recall that in a synchronous point-to-point network there is a known upper

bound � on message transmission time over a link (Condition 3 in Section 6.7).

To broadcast a message m, s sends m to every process at the designated time t

0

. At

time t

0

+�, if a process previously received a message from s then it uses the given Consensus

algorithm to propose that message, otherwise it proposes F

s

. To deliver a message, a process

66

waits for the decision value of the Consensus algorithm and delivers it.

broadcast(TRB,m) occurs as follows:

The sender s at time t

0

:

send(m) to all processes f m 6= F

s

g

Every process at time t

0

+ �:

if receive(m) from s by time t

0

+ �

then propose(m)

else propose(F

s

)

deliver(TRB,�) occurs as follows:

Every process:

upon decide(v) do f v is a message m or F

s

g

deliver(TRB,v)

Figure 16: Transforming Consensus into Terminating Reliable Broadcast for Sender s

Theorem 16 Consider a synchronous point-to-point network that satis�es the assumptions

listed above. The algorithm in Figure 16 transforms any Consensus algorithm into a Ter-

minating Reliable Broadcast algorithm for any given sender s.

The proof is omitted.

9 Multicast Speci�cations

So far we have assumed that each broadcast is targeted to all the processes in the system.

In some applications, the system is con�gured as a collection of (possibly overlapping)

groups, each consisting of a subset of processes. A multicast is a broadcast that is targeted

exclusively to the members of some particular group. We shall assume that groups are static,

and that each process knows to which groups it belongs and the members of each of these

groups. We shall not address the question of how these groups are formed, or how processes

join or leave them. This is the group membership problem discussed in [Cri90a,RB91], and

is outside the scope of this paper.

Formally, a group G is a name for a subset of the processes in the system. We say that

process p is in G (or p is a member of G), and write p 2 G, when p is in the subset of

processes named G. Since each message m is multicast to a particular group, it is tagged

with the name of that group, i.e., we assume that m has a �eld denoted group(m).

Multicasts are de�ned in terms of two primitives, multicast and deliver. When a

process p invokes multicast with a message m as a parameter, we say that p multicasts m

67

(to group(m)). We assume thatm is taken from a set a setM of possible messages. When a

process q returns from the execution of deliver(m) with message m as the returned value,

we say that q delivers m (in group(m)). As with broadcasts, our de�nitions of multicasts

assume benign failures. The modi�cations for arbitrary failures are similar to those given

in Section 3.10 for broadcasts, and are omitted.

9.1 Reliable Multicast

Reliable Multicast is essentially the Reliable Broadcast problem adapted to groups. It is the

basis for all the types of multicasts that we consider. Informally, Reliable Multicast requires

that all correct processes in each group G deliver the same set of messages, that this set

include all the messages multicast to G by correct processes, and that no spurious messages

are ever delivered. More precisely, Reliable Multicast is de�ned in terms of multicast and

deliver primitives that satisfy the following:

� Validity: If a correct process multicasts a message m, then some correct process in

group(m) eventually delivers m or no process in that group is correct.

� Agreement: If a correct process delivers a message m, then all correct processes in

group(m) eventually deliver m.

� Integrity: For any message m, every correct process p delivers m at most once, and

only if p is in group(m) and m was previously multicast by sender(m).

The reader should verify that Reliable Multicast is a generalization of Reliable Broadcast:

if group(m) is the set of all processes then the above speci�cation is equivalent to the

speci�cation of Reliable Broadcast given in Section 3. The key di�erence from Reliable

Broadcast is that only processes in group(m) can deliver m.

In some applications processes must be able to multicast messages to groups to which

they do not belong. For example, consider a client-server application where the server is

replicated for fault-tolerance. In this case, a client broadcasting a request to the distributed

server is not a member of the group of processes that implement the service. Thus, the

speci�cation of Reliable Multicast does not require that the sender of a message m be a

member of group(m).

19

9.2 FIFO Multicast

Informally, FIFO Multicast is a Reliable Multicast in which a process p delivers a message

m only if it has already delivered all messages previously multicast by the sender ofm, with

the exception of those targeted to groups of which p is not a member. More precisely, FIFO

Multicast is a Reliable Multicast that satis�es the following requirement:

19

This is why the formulation of Validity for multicasts is di�erent from the one for broadcasts: We can

no longer require that the sender of a message deliver its own message.

68

� Global FIFO Order: If a process multicasts a messagem before it multicasts a message

m

0

, then no correct process in group(m) delivers m

0

unless it has previously delivered

m.

In some applications, a weaker order requirement is adequate. It stipulates that FIFO

Order applies only to messages that are multicast to the same group. More precisely,

� Local FIFO Order: If a process multicasts a message m before it multicasts a message

m

0

such that group(m

0

) = group(m), then no correct process delivers m

0

unless it has

previously delivered m.

To see the di�erence between the two FIFO Order properties, consider the following

example. Suppose a process p multicasts a message m to group G = fp; q; rg and then

it multicasts a message m

0

to group G

0

= fp; q; r

0

g. Suppose, further, that there are no

failures. Since q is in both groups, it must deliver both messages. In the case of Global

FIFO Order, q must deliver m before m

0

. In the case of Local FIFO Order, since m and m

0

were multicast to di�erent groups, q is not constrained as to the order in which it delivers

them.

If the application is such that a process p delivering a message m can properly in-

terpret m if it has already delivered every message that sender(m) previously multicast

to group(m), then Local FIFO Order can be used. In general, however, it may be that

to properly understand m, p must have already delivered every message that sender(m)

previously multicast to any group of which p is a member. In this case Global FIFO Order

should be used.

9.3 Causal Multicast

As we strengthened FIFO Broadcast to obtain Causal Broadcast, we can strengthen FIFO

Multicast to obtain Causal Multicast. To do so, we must �rst de�ne the causal precedence

induced by the multicasts and deliveries of messages. This is just the ! relation de�ned in

Section 2.7 except that the word \broadcast" is substituted with \multicast" in Clause 2.

We can now de�ne Causal Multicast to be a Reliable Multicast that satis�es:

� Global Causal Order: If the multicast of a messagem causally precedes the multicast of

a message m

0

, then no correct process in group(m) delivers m

0

unless it has previously

delivered m.

In the above de�nition, the causal precedence relation crosses group boundaries: it

may relate multicasts and deliveries that \occur" in di�erent groups (hence the name Global

Causal Order). For example, suppose there are two groups G = fp; qg and G

0

= fp; q; rg,

and consider the following sequence of events: (a) p multicasts m to G; (b) p multicasts

m

00

to G

0

; (c) r delivers m

00

in G

0

; (d) r multicasts m

0

to G

0

. By de�nition, the multicast

of m causally precedes the multicast of m

0

. Since q is in both G and G

0

, Global Causal

69

Order requires that q deliver m before m

0

, even though these two messages were multicast

to di�erent groups. Similarly, it requires that q deliver m

00

before m

0

.

Local Causal Order, a weaker type of Causal Order that does not cross group bound-

aries, is de�ned as follows. Given any group G, the causal precedence relation induced by

the multicasts and deliveries of messages m such that group(m) = G is called causal prece-

dence in group G. Note that this relation ignores the multicasts and deliveries of messages

that are not in group G. We now de�ne Local Causal Order as follows:

� Local Causal Order: If the multicast of a messagem causally precedes in group(m) the

multicast of a message m

0

, then no correct process delivers m

0

unless it has previously

delivered m.

In the previous example, group(m) = G 6= group(m

0

) = G

0

. So, the multicast of m does not

causally precede in group(m) the multicast of m

0

, and, in contrast to Global Causal Order,

Local Causal Order allows q to deliver m

0

andm in any order. However, the multicast of m

00

causally precedes in G

0

the multicast of m

0

, so Local Causal Order requires that q deliver

m

00

before m

0

.

The following example shows that even if the multicast of m causally precedes the

multicast of m

0

and group(m) = group(m

0

), it is still possible that the multicast of m does

not causally precede in group(m) the multicast of a m

0

. Consider groups G = fp; qg and

G

0

= fp; rg, and the following sequence of events: (a) p multicasts m to G; (b) p multicasts

m

00

to G

0

; (c) r delivers m

00

in G

0

; (d) r multicasts m

0

to G (even though r does not belong

to G). By de�nition, the multicast of m causally precedes the multicast of m

0

. Since both

messages are multicast to a group of which q is a member, Global Causal Order requires

that q deliver m before m

0

. However, even though m and m

0

were multicast to the same

group G, the multicast of m does not causally precede the multicast of m

0

in G, since the

causality is established via the multicast and delivery of m

00

, a message that is not in G.

So, in contrast to Global Causal Order, Local Causal Order allows q to deliver m

0

before

m.

9.4 Atomic Multicast

We consider three types of Atomic Multicast that di�er by the strength of their message

delivery order requirement.

9.4.1 Local Atomic Multicast

A Local Atomic Multicast is a Reliable Multicast that satis�es the following property:

� Local Total Order: If correct processes p and q both deliver messages m and m

0

and

group(m) = group(m

0

), then p delivers m before m

0

if and only if q delivers m before

m

0

.

70

This is the total order property guaranteed by the Atomic Multicast primitive that the Isis

system provides [BJ87,BCJ

+

90].

9.4.2 Pairwise Atomic Multicast

Local Total Order allows two correct processes to disagree on the order in which they

deliver messages. For example, consider two groups G = fp; q; rg and G

0

= fp; q; r

0

g.

Suppose r multicasts m to G, and r

0

multicasts m

0

to G

0

. Local Total Order allows p and

q to deliver the two messages in di�erent order. This disagreement, which is undesirable

in some applications, is prevented by Pairwise Atomic Multicast, a Reliable Multicast that

satis�es the following property:

� Pairwise Total Order: If correct processes p and q both deliver messages m and m

0

,

then p delivers m before m

0

if and only if q delivers m before m

0

.

This is the total order requirement of several Atomic Multicasts that have appeared in the

literature (e.g., [GMS91]).

9.4.3 Global Atomic Multicast

Pairwise Total Order is not the strongest possible message ordering requirement for Atomic

Multicasts. In particular, it allows cycles in message delivery order. For example, consider

three groups, G

1

= fp; qg, G

2

= fq; rg and G

3

= fr; pg. Note that the intersection of

any two of these groups consists of exactly one process. The messages m

1

, m

2

and m

3

are

multicast to groups G

1

, G

2

and G

3

, respectively. Pairwise Total Order allows process p to

deliver m

3

before m

1

, q to deliver m

1

before m

2

, and r to deliver m

2

before m

3

. This cycle

of deliveries is counter to the intuition that Atomic Multicast must provide the abstraction

of indivisible, i.e., \simultaneous", deliveries. Moreover, Pairwise Total Order is not strong

enough for some applications, as we illustrate with a simple example below.

Consider the Dining Philosophers' Problem with philosophers G

1

, G

2

and G

3

, and forks

p, q and r. G

1

needs forks p and q, G

2

needs forks q and r, and G

3

needs forks r and p.

Each philosopher G

i

competes for her forks by broadcasting m

i

to her forks. G

i

wins a

fork if her message is the �rst to be delivered at that fork. If the philosophers use Pairwise

Atomic Multicast to broadcast their messages, and a cycle of deliveries occurs as in the

scenario described above, each philosopher wins exactly one fork, and they all starve.

Global Atomic Multicast is a type of Atomic Multicast that precludes such cycles.

Consider the set of messages delivered by correct processes. We de�ne the relation < on

this set as follows: m < m

0

if and only if any correct process deliversm andm

0

, in that order.

A Global Atomic Multicast is a Reliable Multicast that satis�es the following property:

� Global Total Order: The relation < is acyclic.

71

Since < is acyclic, the set of messages delivered by correct processes can be totally ordered

in a way that is consistent with <, i.e., with the order of message deliveries at each correct

process.

Global Total Order is strictly stronger than Pairwise Total Order which is strictly

stronger than Local Total Order. However, none of these three properties guarantees FIFO

Order. In principle, we can de�ne six types of FIFO Atomic Multicasts by selecting one

of the two FIFO Orders (Local or Global) and any one of the three Total Orders above.

Of these, the FIFO Atomic Multicast that requires the Local versions of FIFO Order and

Total Order, and the one requiring the Global versions of these two properties, seem the

most sensible. The others are of questionable value.

Similarly, we can de�ne six types of Causal Atomic Multicasts, by combining any one

of the two types of Causal Order with one of the three Total Orders above. As before, of

these six combinations two seem particularly useful: the one combining the Local versions

of the order properties, and the one combining the Global versions.

9.5 Timeliness and Uniformity

As with broadcasts, we can impose a bound on the latency of multicasts in terms of local

or real time. More precisely, we can require one of these two properties:

� Local-Time �

G

-Timeliness: For each group G, there is a known constant �

G

such

that no correct process p delivers a message m after local time ts(m) + �

G

on p's

clock.

� Real-Time �-Timeliness: For each group G, there is a known constant �

G

such that

if a message m is broadcast at real time t, then no correct process delivers m after

real time t+ �

G

.

Note that the bound �

G

on the latency now depends on the group G. A multicast that

satis�es any of the above properties is called a Timed Multicast.

As with broadcast, we can also de�ne the Uniform counterparts for the Agreement,

Integrity, Order, and �-Timeliness properties of multicasts. The formal de�nitions are

straightforward and are omitted.

A Appendix | Model of Point-to-Point Networks

In this appendix we describe our model of point-to-point networks in more detail than in

Sections 2 and 6. The overall plan is as follows: First we describe the correct behavior of

processes and links. We then de�ne di�erent types of (process and link) failures as violations

of some of the properties that describe correct behavior. In the case of synchronous systems,

where correct behavior includes the timely occurrence of actions, correctness can be violated

in two ways: actions that are supposed to take place never occur (omission failures), or they

occur late (performance and clock failures).

72

A.1 Networks with No Failures

A point-to-point network can be modeled as a directed graph, with nodes representing pro-

cesses, and edges representing communication links between processes. In such a network,

any pair of processes that are connected by a link can communicate with each other by send-

ing and receiving messages, as described below. In this section we assume that processes

and links do not fail.

Properties of Processes:

Each process is capable of executing certain operations, such as the writing of a local

variable, or the sending or receipt of a message. The execution of an operation by a process

p is a step of p. We do not assume that the steps are atomic; a step consists of a sequence

of atomic events, delimited by a start and an end event. (The fact that steps are not

atomic will permit us, in the next section, to model failures that interrupt the execution of

an operation in the middle.) Hence, the execution of a process p is modeled as a sequence

of events grouped into steps such that the start event of each step (except the �rst one)

immediately follows the end event of the previous step. If this sequence includes the start

event of a step, we say that p has started that step; if it includes the end event of a step,

we say that p completed that step. Associated with each process p is an automaton whose

transition relation describes the legal sequences of events (and thus of steps) for p. We

assume that:

a. Every process completes an in�nite number of steps.

This implies that every process eventually completes every step that it starts.

Properties of send and receive:

Let p and q be any two processes connected by a link from p to q. Associated with this

link are the communication primitives send and receive, which are among the operations

that can be executed by p and q, respectively. The operation send takes a message as a

parameter; receive returns a message. The execution of the send primitive with parameter

m is a step denoted send(m); the execution of the receive primitive with return value m

is a step denoted receive(m). We say that p sends m to q if p starts the step send(m); we

say that q receives m if q completes the step receive(m).

Associated with the link from p to q, p has an outgoing message bu�er, denoted

omb(p; q), and q has an incoming message bu�er, denoted imb(p; q). Informally, when p

sends a message m to q, p inserts m in omb(p; q), the link transports m from omb(p; q) to

imb(p; q), and q receives m from imb(p; q). More precisely, the send and receive primitives

associated with the link from p to q satisfy:

20

b. If p completes the sending of m to q, then m is eventually inserted into omb(p; q).

c. If m is inserted into omb(p; q), then m is eventually inserted into imb(p; q).

20

To simplify the formulation of these properties, we assume that each message sent from p to q is unique.

This can be easily enforced by using link sequence numbers.

73

d. If m is inserted into imb(p; q), then q eventually receives m.

These three properties imply:

� If p sends m to q then q eventually receives m.

21

We also assume that:

b

0

. m is inserted into omb(p; q) at most once, and only if p sends m to q.

c

0

. m is inserted into imb(p; q) at most once, and only if m is in omb(p; q).

d

0

. q receives m at most once, and only if m is in imb(p; q).

Properties (b

0

){(d

0

) imply:

� Uniform Integrity: For any message m, q receives m at most once from p, and only if

p previously sent m to q.

To simplify the exposition and the correctness proofs of our algorithms for point-to-point

networks, we found it convenient to allow each process to send a message to itself. This

is only a �ctitious device, and a message \sent" this way does not really go through any

bu�er or link. We postulate the following property regarding such messages:

� If p sends m to itself, then p receives m instantaneously.

The preceding de�nition of a point-to-point network assumes that no failures occur. In

the next section we consider some of the failures that can a�ect processes and links. These

failures will be de�ned as violations of Properties (a){(d). We will not allow the violation

of Properties (b

0

){(d

0

); thus, Uniform Integrity holds even in networks with failures. We

will also not allow the violation of the postulated property regarding messages sent by a

process to itself.

A.2 Networks with Omission Failures

Failures can be de�ned as deviations from correct behavior. In networks with omission

failures, processes and links may violate Properties (a){(d).

Violating Property (a) of Processes:

To model the violation of Property (a), we introduce a special event called crash.

Every process p can execute a crash at any time

22

, and after doing so it stops executing

21

Note that messages are not necessarily received in the order in which they are sent.

22

In particular, a crash event may occur in the middle of a step, i.e., between the start and the end

events of a step. This models a crash that interrupts the execution of a non-atomic operation in the middle.

74

further events. This is modeled by the addition of a new terminal state to the automaton

associated with p, and a transition from every other state of p to that terminal state. The

event associated with such a transition is de�ned as a crash. We say that p commits a

crash failure if it executes a crash event.

Since no event can follow crash, a process that crashes can execute only a �nite number

of events, and therefore completes only a �nite number of steps. Thus, a process that

crashes violates Property (a). We assume, however, that only processes that crash violate

that property. That is, a process that does not crash completes an in�nite number of steps.

Violating Properties (b), (c), and (d) of send and receive:

. Process p commits a send-omission failure on m if p completes the sending of m to q

but m is never inserted into omb(p; q) (violation of Property (b)).

. The link from p to q commits an omission failure on m if m is inserted into omb(p; q)

but m is never inserted into imb(p; q) (violation of Property (c)).

. Process q commits a receive-omission failure on m if m is inserted into imb(p; q) but

q never receives m and does not crash (violation of Property (d)).

If a process or a link commits a failure, we say that it is faulty ; otherwise it is correct.

Recall that in networks with no failures, if p sends m to q then q eventually receives m.

The properties of point-to-point networks with omission failures imply:

� Validity: If p sends m to q and q does not receive m, then one of the following holds:

1. p does not complete the sending of m, or

2. p commits a send-omission failure on m, or

3. the link from p to q commits an omission failure on m, or

4. q commits a receive-omission failure on m, or

5. q crashes.

This formulation of Validity implies the simpler one stated in Section 6.1. It also implies

the Strong Validity property given in Section 6.5 for systems where send-omission failures

do not occur.

A.3 Synchronous Networks with No Failures

Consider the sequence of events executed by a process. Since events are atomic, we can

associate with each the real time at which it occurred. We say that p sends m at time t

(respectively, q receives m at time t), if the start event of send(m) (respectively, the end

event of receive(m)) occurs at time t.

75

A point-to-point network with no failures is synchronous if, in addition to the properties

of Section A.1, all processes and links satisfy Properties (e){(i) below (in all our de�nitions

for synchronous networks, the word \time" always refers to real time):

Synchrony Properties of Processes:

e. � -Local Step: There is a known constant � � 0 such that no process completes a step

later than � time units of when it started that step.

f. �-Clock Drift: There is a known constant � � 0 such that every process p has a local

clock whose drift with respect to time is bounded by �. That is, if C

p

(t) denotes the

value of the local clock of p at time t, then for all t > t

0

:

1

1 + �

�

C

p

(t)� C

p

(t

0

)

t� t

0

� 1 + �

Synchrony Properties of send and receive:

There are known constants �

1

, �

2

, and �

3

� 0, such that for any processes p and q connected

by a link from p to q:

g. If p sends m to q at time t, then m is not inserted into omb(p; q) after time t + �

1

.

h. If m is inserted into omb(p; q) at time t, then m is not inserted into imb(p; q) after

time t + �

2

.

i. If m is inserted into imb(p; q) at time t, then q does not receive m after time t + �

3

.

Let � = �

1

+ �

2

+ �

3

. The properties of synchronous point-to-point networks imply:

� �-Timeliness: There is a known constant � � 0 such that for any processes p and q

connected by a link, if p sends m to q at time t then q does not receive m after time

t+ �.

A.4 Synchronous Networks with Omission Failures

In synchronous networks with omission failures, all processes and links satisfy all the syn-

chrony properties (i.e., (e){(i)), but some may violate Properties (a){(d). The synchrony

properties allow us to rede�ne crash and omission failures in a way that includes information

about the time when each failure occurred.

Violating Property (a) of Processes:

As in Section A.2, we introduce a crash event which can be executed by any process

p at any time, but after which p may not execute any event. We say that p crashes at time

t if it executes a crash event at time t.

Violating Properties (b), (c), and (d) of send and receive:

76

. Process p commits a send-omission failure on m during [t; t+ �

1

] if p sends m to q at

time t, completes the sending of m, but m is never inserted into omb(p; q) (violation

of Property (b) for a message m sent at time t).

. The link from p to q commits an omission failure on m during [t; t+�

2

] if m is inserted

into omb(p; q) at time t butm is never inserted into imb(p; q) (violation of Property (c)

for a message m inserted into omb(p; q) at time t).

. Process q commits a receive-omission failure on m during [t; t + �

3

] if m is inserted

into imb(p; q) at time t but q never receives m and does not crash by time t + �

3

(violation of Property (d) for a message m inserted into imb(p; q) at time t).

A.5 Synchronous Networks with Clock and Performance Failures

In synchronous networks with clock and performance failures, processes and links may

violate the synchrony properties (e), (f), (g), (h), and (i).

Violating Synchrony Properties (e) and (f) of Processes:

. Process p commits a performance failure if p completes a step later than � time units

of when it started that step (violation of Property (e)).

. Process p commits a clock failure if during some time interval the local clock C

p

of p

drifts more than � with respect to real time (violation of Property (f)).

Violating Synchrony Properties (g), (h), and (i) of send and receive:

. Process p commits a performance failure on the sending of m if p sends m to q at time

t and m is inserted into omb(p; q) after time t+ �

1

(violation of Property (g)).

. The link from p to q commits a performance failure on m ifm is inserted into omb(p; q)

at time t and m is inserted into imb(p; q) after time t+ �

2

(violation of Property (h)).

. Process q commits a performance failure on the receipt of m if m is inserted into

imb(p; q) at time t and q receives m after time t + �

3

(violation of Property (i)).

A.6 Classi�cation of Failures and Terminology

In the preceding sections, we have de�ned crash, send-omission, receive-omission failures

of processes, and omission failures of links. For synchronous systems, we also de�ned

performance and clock failures of processes, and performance failures of links.

It is convenient to group failures into two classes that include both process and link

failures:

� omission failures consist of crash, send-omission, and receive-omission failures of pro-

cesses, as well as link omission failures.

77

� timing failures consist of omission, clock and performance failures.

A network with a certain class of failures, is one where processes and links may commit

any of the failures included in that class, but no other failures. Thus, a network with

omission failures is not subject to clock, performance, or arbitrary failures. Similarly, one

with timing failures is not subject to arbitrary failures. Benign failures is synonymous to

omission failures in asynchronous networks and to timing failures in synchronous networks.

We have not included arbitrary failures among the types of process and link failures

de�ned in this appendix, since these failures are only considered in passing in this paper.

It is not di�cult to incorporate such failures in the framework of our model. Recall that

we de�ned a network with no process or link failures by stating various properties that

the processes and links must satisfy. The types of failures considered so far were de�ned

as speci�c violations of some of these properties. We say that a process or link commits

arbitrary failures if it can violate arbitrarily the properties that specify its correct behavior.

Acknowledgements

We are indebted to a large number of colleagues for extremely useful discussions and com-

ments on a draft of this paper: Navin Budhiraja, Tushar Chandra, David Cooper, Prasad

Jayanti, Mike Reiter, and King Tan. Ajei Gopal helped us formulate the properties of

broadcast problems. Over the past few years we have received invaluable feedback on this

material from students of CS 444 and CS 618 at Cornell, and CSC2221 at the University of

Toronto.

References

[ABD

+

87] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg, and

R�udiger Reischuk. Achievable cases in an asynchronous environment. In Pro-

ceedings of the Twenty-Eighth Symposium on Foundations of Computer Science,

pages 337{346. IEEE Computer Society Press, October 1987.

[Abr85] N. Abramson. Development of the ALOHANET. IEEE Transactions on Infor-

mation Theory, 31:119{123, March 1985.

[ADKM92] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A com-

munication sub-system for high availability. In Proceedings of the Twenty Sec-

ond International Symposium on Fault-Tolerant Computing, pages 76{84. IEEE

Computer Society Press, July 1992.

[BCJ

+

90] Kenneth P. Birman, Robert Cooper, Thomas A. Joseph, Kenneth P. Kane, and

Frank Bernhard Schmuck. Isis - A Distributed Programming Environment, June

1990.

78

[BD85]

�

Ozalp Babao�glu and Rog�erio Drummond. Streets of Byzantium: Network ar-

chitectures for fast reliable broadcasts. IEEE Transactions on Software Engi-

neering, 11(6):546{554, June 1985.

[BD87]

�

Ozalp Babao�glu and Rog�erio Drummond. (Almost) no cost clock synchroniza-

tion. In Proceedings of the Seventeenth International Symposium on Fault-

Tolerant Computing, pages 42{47. IEEE Computer Society Press, July 1987.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous

agreement protocols. In Proceedings of the Second ACM Symposium on Princi-

ples of Distributed Computing, pages 27{30, August 1983.

[BG93] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for

t-resilient asynchronous computations. In Proceedings of the Twenty �fth ACM

Symposium on Theory of Computing, pages 91{100. ACM Press, May 1993.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley, 1987.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the pres-

ence of failures. ACM Transactions on Computer Systems, 5(1):47{76, February

1987.

[BMZ88] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization

of the distributed tasks that are solvable in the presence of one faulty processor.

In Proceedings of the Seventh ACM Symposium on Principles of Distributed

Computing, pages 263{275, August 1988.

[BN91] Rida Bazzi and Gil Neiger. Optimally simulating crash failures in a Byzantine

environment. In S. Toueg, P.G. Spirakis, and L. Kirousis, editors, Proceedings

of the Fifth International Workshop on Distributed Algorithms, Lecture Notes

on Computer Science, pages 108{128. Springer-Verlag, October 1991.

[BN92] Rida Bazzi and Gil Neiger. Simulating crash failures with many faulty proces-

sors. In A. Segal and S. Zaks, editors, Proceedings of the Sixth International

Workshop on Distributed Algorithms, Lecture Notes on Computer Science, pages

166{184. Springer-Verlag, November 1992.

[Bra87] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information

and Computation, 75(2):130{143, November 1987.

[BSS91] Kenneth P. Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and

atomic group multicast. ACM Transactions on Computer Systems, 9(3):272{

314, August 1991.

[BT93]

�

Ozalp Babao�glu and Sam Toueg. Non-blocking atomic commitment. In Sape J.

Mullender, editor, Distributed Systems, chapter 6. Addison-Wesley, 1993.

79

[BW87] Michael F. Bridgland and Ronald J. Watro. Fault-tolerant decision making

in totally asynchronous distributed systems. In Proceedings of the Sixth ACM

Symposium on Principles of Distributed Computing, pages 52{63, August 1987.

[CAS86] Flaviu Cristian, Houtan Aghili, and H. Raymond Strong. Approximate clock

synchronization despite omission and performance faults and processor joins. In

Proceedings of the Sixteenth International Symposium on Fault-Tolerant Com-

puting, July 1986.

[CASD85] Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev. Atomic

broadcast: From simple message di�usion to Byzantine agreement. In Proceed-

ings of the Fifteenth International Symposium on Fault-Tolerant Computing,

pages 200{206, June 1985. A revised version appears as IBM Research Labora-

tory Technical Report RJ5244 (April 1989).

[CD89] Benny Chor and Cynthia Dwork. Randomization in byzantine agreement. Ad-

vances in Computer Research, 5:443{497, 1989.

[CDD90] Flaviu Cristian, Robert D. Dancey, and Jon Dehn. Fault-tolerance in the ad-

vanced automation system. Technical Report RJ 7424, IBM Research Labora-

tory, April 1990.

[CHT92] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest fail-

ure detector for solving consensus. In Proceedings of the Tenth ACM Symposium

on Principles of Distributed Computing, pages 147{158, August 1992.

[CM84] Jo-Mei Chang and N.F. Maxemchuk. Reliable broadcast protocols. ACM Trans-

actions on Computer Systems, 2(3):251{273, August 1984.

[Coa87] Brian A. Coan. Achieving Consensus in Fault-Tolerant Distributed Computer

Systems: Protocols, Lower Bounds, and Simulations. PhD thesis, Massachusetts

Institute of Technology, June 1987.

[Cri87] Flaviu Cristian. Issues in the design of highly available computing services.

In Annual Symposium of the Canadian Information Processing Society, pages

9{16, July 1987. Also IBM Research Report RJ5856, July 1987.

[Cri89] Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing,

3:146{158, 1989.

[Cri90a] Flaviu Cristian. Reaching agreement on processor group membership in syn-

chronous distributed systems. Technical Report RJ5964, IBM Research Labo-

ratory, October 1990.

[Cri90b] Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast chan-

nels. Real-Time Systems, 2(3):195{212, September 1990. Also IBM Research

Report RJ7203, December 1989 (revised April 1990).

80

[CT91] Tushar Chandra and Sam Toueg. Unreliable failure detectors for asynchronous

systems (preliminary version). In Proceedings of the Tenth ACM Symposium on

Principles of Distributed Computing, pages 325{340. ACM Press, August 1991.

[CT92] Tushar Deepak Chandra and Sam Toueg. Personal communication. 1992.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-

chronism needed for distributed consensus. Journal of the ACM, 34(1):77{97,

January 1987.

[DHS86] Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the possibility

and impossibility of achieving clock synchronization. Journal of Computer and

System Sciences, 22(2):230{250, April 1986.

[DLP

+

86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and

William E. Weihl. Reaching approximate agreement in the presence of faults.

Journal of the ACM, 33(3):499{516, July 1986.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the

presence of partial synchrony. Journal of the ACM, 35(2):288{323, April 1988.

[Fek90] Alan D. Fekete. Asymptotically optimal algorithms for approximate agreement.

Distributed Computing, 4(1):9{30, 1990.

[Fek93] Alan D. Fekete. Asynchronous approximate agreement. Information and Com-

putation, 1993. To appear.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM, 32(2):374{

382, April 1985.

[FM90] Paul Feldman and Silvio Micali. An optimal algorithm for synchronous Byzan-

tine agreement. Technical Report MIT/LCS/TM-425, Laboratory for Computer

Science, Massachusetts Institueof Technology, June 1990.

[GMS91] Hector Garcia-Molina and Annemarie Spauster. Ordered and reliable multi-

cast communication. ACM Transactions on Computer Systems, 9(3):242{271,

August 1991.

[Gop92] Ajei Gopal. Fault-Tolerant Broadcasts and Multicasts: The Problem of Incon-

sistency and Contamination. PhD thesis, Cornell University, January 1992.

[Gra78] James N. Gray. Notes on database operating systems. In R. Bayer, R. M.

Graham, and G. Seegmuller, editors, Operating Systems: An Advanced Course,

volume 66 of Lecture Notes on Computer Science. Springer-Verlag, 1978. Also

appears as IBM Research Laboratory Technical report RJ2188.

[GSTC90] Ajei Gopal, Ray Strong, Sam Toueg, and Flaviu Cristian. Early-delivery atomic

broadcast. In Proceedings of the Ninth ACM Symposium on Principles of Dis-

tributed Computing, pages 297{310, August 1990.

81

[GT91] Ajei Gopal and Sam Toueg. Inconsistency and contamination. In Proceedings

of the Tenth ACM Symposium on Principles of Distributed Computing, pages

257{272, August 1991.

[Had84] Vassos Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD

thesis, Harvard University, June 1984. Department of Computer Science Tech-

nical Report 11-84.

[HJT] Vassos Hadzilacos, Prasad Jayanti, and Sam Toueg. Fundamentals of Fault-

Tolerant Distributed Computing. Forthcoming.

[HS93] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for

t-resilient tasks. In Proceedings of the Twenty �fth ACM Symposium on Theory

of Computing, pages 111{120. ACM Press, May 1993.

[HSSD84] Joseph Y. Halpern, Barbara Simons, Ray Strong, and Danny Dolev. Fault-

tolerant clock synchronization. In Proceedings of the Third ACM Symposium

on Principles of Distributed Computing, pages 89{102, August 1984.

[Kaa92] M. Frans Kaashoek. Group Communication in Distributed Computer Systems.

PhD thesis, Vrije Universiteit, December 1992.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in dis-

tributed real-time systems. IEEE Transactions on Computers, C-36(8):933{940,

August 1987.

[Lam78a] Leslie Lamport. The implementation of reliable distributed multiprocess sys-

tems. Computer Networks, 2:95{114, 1978.

[Lam78b] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558{565, July 1978.

[Lam84] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed

systems. ACM Transactions on Programming Languages and Systems, 6(2):254{

280, April 1984.

[LF82] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit

protocols. Technical Report 62, SRI International, April 1982.

[LM85] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence

of faults. Journal of the ACM, 32(1):52{78, January 1985.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-

erals problem. ACM Transactions on Programming Languages and Systems,

4(3):382{401, July 1982.

[NT87] Gil Neiger and Sam Toueg. Substituting for real time and common knowledge

in asynchronous distributed systems (preliminary version). In Proceedings of

the Sixth ACM Symposium on Principles of Distributed Computing, pages 281{

293, August 1987. A revised and expanded version appears as: Simulating

82

Synchronized Clocks and Common Knowledge in Distributed Systems. Journal

of the ACM, 40(2):334{367, April 1993.

[NT90] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of

distributed algorithms. Journal of Algorithms, 11(3):374{419, September 1990.

[Owi93] Susan S. Owicki. A perspective on AN2: Local area network as distributed sys-

tem. In Proceedings of the Twelfth ACM Symposium on Principles of Distributed

Computing, pages 1{12, August 1993.

[PBS89] Larry L. Peterson, Nick C. Bucholz, and Richard D. Schlichting. Preserving and

using context information in interprocess communication. ACM Transactions

on Computer Systems, 7(3):217{246, August 1989.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in

the presence of faults. Journal of the ACM, 27(2):228{234, April 1980.

[PT86] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of pro-

cessor and communication faults. IEEE Transactions on Software Engineering,

12(3):477{482, March 1986.

[Rab83] Michael Rabin. Randomized Byzantine generals. In Proceedings of the Twenty-

Fourth Symposium on Foundations of Computer Science, pages 403{409. IEEE

Computer Society Press, November 1983.

[RB91] Aleta Ricciardi and Ken Birman. Using process groups to implement failure

detection in asynchronous environments. In Proceedings of the Tenth ACM

Symposium on Principles of Distributed Computing, pages 341{351. ACM Press,

August 1991.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Computing Surveys, 22(4):299{319, December 1990.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach

to designing fault-tolerant computing systems. ACM Transactions on Computer

Systems, 1(3):222{238, August 1983.

[ST87a] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the

ACM, 34(3):626{645, July 1987.

[ST87b] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive

simple fault-tolerant algorithms. Distributed Computing, 2(2):80{94, 1987.

[SZ93] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible:

The topology of public knowledge. In Proceedings of the Twenty �fth ACM

Symposium on Theory of Computing, pages 101{110. ACM Press, May 1993.

[VM90] Paulo Ver��ssimo and Jos�e A. Marques. Reliable broadcast for fault-tolerance on

local computer networks. In Proceedings of the Ninth Symposium on Reliable

Distributed Systems, Huntsville, Alabama-USA, October 1990. IEEE.

83

[Wel87] Jennifer Lundelius Welch. Simulating synchronous processors. Information and

Computation, 74(2):159{171, August 1987.

[WL88] Jennifer Lundelius Welch and Nancy A. Lynch. A new fault-tolerant algo-

rithm for clock synchronization. Information and Computation, 77(1):1{36,

April 1988.

[WLG

+

78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N.

Levitt, P.M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock.

SIFT: Design and analysis of a fault-tolerant computer for aircraft control. Pro-

ceedings of the IEEE, 66(10):1240{1255, October 1978.

84

