

Add Fault Tolerance – order & time

Time, Clocks, and the Ordering of Events in a Distributed Sy
stem

Leslie Lamport

Optimal Clock Synchronization
T.K. Srikanth and Sam Toueg

Presenter: Feng Shao
 (Some slides borrowed from Lamport)

Why do we care about the “Time” in a
distributed system?

 May need to know the time of day at
which some event happens on a specific
computer

external clock synchronization

 For two events that happened on
different computers

May need to know the relative order
May need to know time interval
 internal clock synchronization

Physical Clocks

 Every computer contains a physical clock

 A clock is an electronic device that counts oscillations in a crystal
at a particular frequency

 Count is typically divided and stored in a computer register

 Clock can be programmed to generate interrupts at regular
intervals.

 This value can be used to timestamp an event on that computer

 Two events will have different timestamps only if clock resolution is
sufficiently small

 Many applications are interested only in the order of events, not
the exact time of day at which they occurred.

Physical Clocks in Distributed Systems

 Does this work?
 Synchronize all the clocks to some known high degree of

accuracy, and then
 Measure time relative to each local clock to determine order

between two events

 Well, there are some problems…
 It’s difficult to synchronize the clocks
 Crystal-based clocks tend to drift over time-count time at

different rates, and diverge from each other
 Physical variations in the crystals, temperature variations, etc.
 Drift is small, but adds up over time
 For quartz crystal time, typical drift rate is about one second every

106 seconds=11.6days
 Best atomic clocks have drift rate of one second in 1013 seconds =

300,000 years

Logical Clocks

 Idea — abandon idea of physical time

 For many purposes, it is sufficient to know
the order in which events occurred

 Lamport (1978) — introduce logical

 (virtual) time, to provide consistent event
ordering

TIME, CLOCKS AND THE ORDERING OF
EVENTS IN A DISTRIBUTED SYSTEM

Leslie Lamport

THE PAPER

 Handles the problem of clock drift in
distributed systems

 Identify main function of computer
clocks

 How to order events
 Indicates which conditions clocks must

satisfy to fulfill their role

 Introduces logical clocks

ORDERING EVENTS

 Event ordering linked with concept of
causality:
 Saying that event a happened before

event b is same as saying that event a
could have affected the outcome of
event b

 If events a and b happen on processes
that do not exchange any data, their
exact ordering is not important

Relation “has happened before” (I)

 Smallest relation satisfying the three
conditions:
 If a and b are events in the same process

and a comes before b, then a b
 If a is the sending of a message by a

process and b its receipt by another
process then
a b

 If a b and b c then a c.

Example (I)

Process i

Process k

Process j

XX

XX

XX

XX

XX

a

c

b

d

e

Example (II)

 From first condition
 a d
 c e

 From second condition
 a c
 b e

 From third condition
 a e

Relation “has happened before” (II)

 We cannot always order events:
relation “has happened before” is
only a partial order

 If a did not happen before b, it
cannot causally affect b.

Logical clocks

 Verify the clock condition:
 if a b then C<a> < C

and the two sub-conditions:
 if a and b are events in process Pi and a

comes before b, then Ci<a> < Ci,
 if a is the sending of a message by Pi

and b its receipt by Pj then
Ci<a> < Cj,

Implementation rules

 Each process Pi increments its clock
Ci between two consecutive events,

 If a is the sending of a message m by
Pi then m includes a timestamp Tm =
Ci<a>
when Pj receives m, it sets its clock to
a value greater than or equal to its
present value and greater than Tm.

Defining a total order

 We can define a total ordering on
the set of all system events

a b if either Ci<a> < Cj
or

 Ci<a> = Cj and Pi < Pj.

 This ordering is not unique

Anomalous behaviors

 Logical clocks have anomalous
behaviors in the presence of outside
interactions
 carrying a diskette from one machine

to another

 dictating file changes over the phone

 Must use physical clocks

Example

Process i

Process k

Process j

XX

XX

XX

XX

XX

a

c

b

d

e

outside interaction

Strong clock condition
 Let S be set of all systems events

plus the relevant external events

 For any events a, b in S,
if a b then C<a> < C

Physical clock conditions

 There is a constant k << 1 such that for
all i:

|d Ci(t)/dt - 1| < k

The clock is neither too fast nor too slow

 There is a constant such that for all i,
j:

 |Ci(t) - Cj(t)| <
The clocks are more or less synchronized

Observations

 Like logical clocks, physical clocks
cannot be rolled back

 Required accuracy of a physical clock
depends on the minimum
transmission delay of outside
interactions
 If it takes 20 minutes to carry a diskette

between two machines their clocks can
be off by up to 20 minutes

Example

Process i

Process j

XX

XX

XX
11:30 am d

OK

11:15 am
XX

11:30 am

NO

20 minutes

Optimal Clock Synchronization

T. K. Srikanth and Sam Toueg

Why do clock synchronization?

 Time-based computations on multiple machines
 Applications that measure elapsed time
 Agreeing on deadlines
 Real time processes may need accurate timestamps

 Many applications require that clocks advance at
similar rates
 Real time scheduling events based on processor clock
 Setting timeouts and measuring latencies
 Ability to infer potential causality from timestamps

Famous example

 Scud rockets launched by Iraq
towards Israel

 Ground-based Patriot missiles fire
back

 But missiles always missed the
warhead!

 Why?

Famous example

 Scud rockets launched by Iraq towards
Israel

 Ground-based Patriot missiles fire back
 But missiles always missed the warhead!
 Why?

 After 72 hours of waiting control system was
out of sync relative to Patriot guidance
system

 “be at (x,y,z) at time t” was misinterpreted!

Synchronization with failures

 A process is faulty if its behavior deviates from that
prescribed by the algorithm it is running.

1. Crash: The process stops and does nothing from that point.

2. Send omission: The process crashes or omits to send
messages that it is supposed to send.

3. Receive omission: The process crashes or does not receive
messages sent to it.

4. General omission: The faulty process is subject to send
omissions, receive omissions, or both.

5. Arbitrary (sometimes called Byzantine): The faulty process
can exhibit any behavior, including malicious actions that
will cause the system to fail.

The System Model

 Hardware clocks
 Physical clock of process q designated Rq(t)
 Clocks have a drift rate ρ:

 (1+ ρ)-1(t2-t1) Rp(t2)- Rp(t1) (1+ ρ) (t2-t1)
 Implies that rate of drift is bounded by dr = ρ(2+ ρ)/(1+ ρ)
 For time t, general bounds:

• (1- ρ)t (1+ ρ)-1 t R(t) (1+ ρ)t (1- ρ)-1t

 There is a limit tdel on message latency

Clock synchronization goals

 A clock synchronization protocol implements
a virtual clock function mapping real time t
to Cp(t)

 Agreement condition:
 |Cp(t) - Cq(t)| Dmax for all correct p, q
 Dmax bounds the difference between two virtual

clocks running on different processors
 Accuracy condition:

 (1+)-1t + a Cp(t) (1+)t +b, for constants a, b,

 Says that p’s clock must be within a linear
envelope of “real time”

Clocks and True Time

True Time

C
lo

ck
 T

im
e

Idea
l C

lock

Virtu
al C

lock: C
p(t)

(1+)-
1 t + a

(1
+

)t
+b

ab

Authenticated Algorithm

//(not a sequential program)
 if received f+1 signed messages (round k) (“accept”)
 Ck(t):=kP+a;
 relay all f+1 signed messages to all f
coend

cobegin
 if Ck-1(t) = kP
 sign and broadcast (round k) f

Solution for system of n processes, at most f of
which are faulty

Observations
Why relay?

Faulty processes do not necessarily broadcast.

Why N > 2f?

 faulty processes correct processes

N = 4, f = 2, suppose faulty processes get stuck and p, q want to resynchronize

p

q

p, q cannot resynchronize !

Achieving Optimal Accuracy

 Bound on accuracy:

 for any synchronization, even in the
absence of faults, accuracy cannot
exceed that of the underlying
hardware clocks

 Why algorithm 1 is not optimal?
 Uncertainty of tdel introduces a

difference in the logical time between
resyn.

Optimality (informal description)

 Solution: compensate for the uncertainty of tdel:
If a process accepts a (round k) message early, it delays
the starting of the kth clock by tdel/2(1+ ρ).

If it accepts the message late, it advances the starting of
kth clock by tdel/2(1+ ρ).

 Suppose process i accepts (round k) message at
time t, and let T=Ck-1(t), ß = tdel/2(1+ ρ)

 early: T <= kP + ß
 late: T > kP+ ß

Proof of correctness: remarkably tricky, ignored
here

Unauthenticated algorithm

 The authenticated algorithm relies on
properties of the message system:

 Correctness: If at least f+1 correct processes broadcast
round k messages by time t, then every correct process
accepts a message by time t+tdel

 Unforgeability: If no correct process broadcasts a round
k message by time t, then no correct process accepts
the message by time t or earlier

 Relay: If a correct process accepts the message round k
at time t, then every correct process does so by time
t+tdel

Unauthenticated algorithm (II)

 A broadcast primitive which has the three properties
To broadcast a (round k) message, a correct process sends (init,

round k) to all.
for each correct process:
 if received (init, round k) from at least f+ 1 distinct processes
 send (echo, round k) to all;
 received (echo, round k) from at least f+ 1 distinct processes
 send (echo, round k) to all;
 fi
 if received (echo, round k) from at least 2f+ 1 distinct processes
 accept (round k)
 fi

 Requires n > 3f+1, in order to accept

N > 3f +1

 faulty processes correct processes

N = 5, f = 2, suppose faulty processes get stuck, all three correct
processes want to resynchronize

p

q

p, q, r never receive 2f +1 (echo, round k), thus not accept

r

Simulating Authentication

 Nonauthenticated algorithm for clock synchronization for
process p for round k
cobegin

if Ck-1(t) = kP /* ready to start Ck */

broadcast (round k) fi /* using the broadcast primitive*/

//

if accepted the message (round k) /* according to the primitive */

 Ck(t) := kP + a fi /* start Ck */

coend

 Message overhead: O(n2)

Restricted Models of failure

 Now assume arbitrary failure

 For other types of failures, including
crash, sr-omission, the algorithm can
be easily modified to achieve the
optimality in the number of fault
processes.

Summary

 A unified solution for synchronizing clocks.

 In practice, quality of synchronization
remains relatively poor

 At best synchronization will be limited by
quality of physical clocks, rates of physical
clock drift, and uncertainty in latencies

??? //

	Add Fault Tolerance – order & time
	Why do we care about the “Time” in a distributed system?
	Physical Clocks
	Physical Clocks in Distributed Systems
	Logical Clocks
	PowerPoint Presentation
	THE PAPER
	ORDERING EVENTS
	Relation “has happened before” (I)
	Example (I)
	Example (II)
	Relation “has happened before” (II)
	Logical clocks
	Implementation rules
	Defining a total order
	Anomalous behaviors
	Example
	Strong clock condition
	Physical clock conditions
	Observations
	Slide 21
	Slide 22
	Why do clock synchronization?
	Famous example
	Slide 25
	Synchronization with failures
	The System Model
	Clock synchronization goals
	Clocks and True Time
	Authenticated Algorithm
	Slide 31
	Achieving Optimal Accuracy
	Optimality (informal description)
	Unauthenticated algorithm
	Unauthenticated algorithm (II)
	N > 3f +1
	Simulating Authentication
	Restricted Models of failure
	Summary
	Slide 40

