
Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov

Laboratory for Computer Science,

Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139

fcastro,liskovg@lcs.mit.edu

Abstract

This paper describes a new replication algorithm that is able

to tolerate Byzantine faults. We believe that Byzantine-

fault-tolerant algorithms will be increasingly important in

the future because malicious attacks and software errors are

increasingly common and can cause faulty nodes to exhibit

arbitrary behavior. Whereas previous algorithms assumed a

synchronous system or were too slow to be used in practice,

the algorithm described in this paper is practical: it works in

asynchronous environments like the Internet and incorporates

several important optimizations that improve the response time

of previous algorithms by more than an order of magnitude. We

implemented a Byzantine-fault-tolerant NFS service using our

algorithm and measured its performance. The results show that

our service is only 3% slower than a standard unreplicated NFS.

1 Introduction

Malicious attacks and software errors are increasingly

common. The growing reliance of industry and gov-

ernment on online information services makes malicious

attacks more attractive and makes the consequences of

successful attacks more serious. In addition, the number

of software errors is increasing due to the growth in size

and complexity of software. Since malicious attacks and

software errors can cause faulty nodes to exhibit Byzan-

tine (i.e., arbitrary) behavior, Byzantine-fault-tolerant al-

gorithms are increasingly important.

This paper presents a new, practical algorithm for

state machine replication [17, 34] that tolerates Byzantine

faults. The algorithm offers both liveness and safety

provided at most bn�1
3
c out of a total of n replicas are

simultaneously faulty. This means that clients eventually

receive replies to their requests and those replies are

correct according to linearizability [14, 4]. The algorithm

works in asynchronous systems like the Internet and it

incorporates important optimizations that enable it to

perform efficiently.

There is a significant body of work on agreement

This research was supported in part by DARPA under contract DABT63-

95-C-005, monitored by Army Fort Huachuca, and under contract

F30602-98-1-0237, monitored by the Air Force Research Laboratory,

and in part by NEC. Miguel Castro was partially supported by a PRAXIS

XXI fellowship.

and replication techniques that tolerate Byzantine faults

(starting with [19]). However, most earlier work (e.g.,

[3, 24, 10]) either concerns techniques designed to

demonstrate theoretical feasibility that are too inefficient

to be used in practice, or assumes synchrony, i.e.,

relies on known bounds on message delays and process

speeds. The systems closest to ours, Rampart [30] and

SecureRing [16], were designed to be practical, but they

rely on the synchrony assumption for correctness, which

is dangerous in the presence of malicious attacks. An

attacker may compromise the safety of a service by

delaying non-faulty nodes or the communication between

them until they are tagged as faulty and excluded from the

replica group. Such a denial-of-service attack is generally

easier than gaining control over a non-faulty node.

Our algorithm is not vulnerable to this type of

attack because it does not rely on synchrony for

safety. In addition, it improves the performance of

Rampart and SecureRing by more than an order of

magnitude as explained in Section 7. It uses only one

message round trip to execute read-only operations and

two to execute read-write operations. Also, it uses

an efficient authentication scheme based on message

authentication codes during normal operation; public-key

cryptography, which was cited as the major latency [29]

and throughput [22] bottleneck in Rampart, is used only

when there are faults.

To evaluate our approach, we implemented a replica-

tion library and used it to implement a real service: a

Byzantine-fault-tolerant distributed file system that sup-

ports the NFS protocol. We used the Andrew bench-

mark [15] to evaluate the performance of our system. The

results show that our system is only 3% slower than the

standard NFS daemon in the Digital Unix kernel during

normal-case operation.

Thus, the paper makes the following contributions:

� It describes the first state-machine replication proto-

col that correctly survives Byzantine faults in asyn-

chronous networks.

� It describes a number of important optimizations that

allow the algorithm to perform well so that it can be

used in real systems.

1



� It describes the implementation of a Byzantine-fault-

tolerant distributed file system.

� It provides experimental results that quantify the cost

of the replication technique.

The remainder of the paper is organized as follows.

We begin by describing our system model, including our

failure assumptions. Section 3 describes the problem

solved by the algorithm and states correctness conditions.

The algorithm is described in Section 4 and some

important optimizations are described in Section 5.

Section 6 describes our replication library and how

we used it to implement a Byzantine-fault-tolerant

NFS. Section 7 presents the results of our experiments.

Section 8 discusses related work. We conclude with a

summary of what we have accomplished and a discussion

of future research directions.

2 System Model

We assume an asynchronous distributed system where

nodes are connected by a network. The network may

fail to deliver messages, delay them, duplicate them, or

deliver them out of order.

We use a Byzantine failure model, i.e., faulty nodes

may behave arbitrarily, subject only to the restriction

mentioned below. We assume independent node failures.

For this assumption to be true in the presence of malicious

attacks, some steps need to be taken, e.g., each node

should run different implementations of the service code

and operating system and should have a different root

password and a different administrator. It is possible

to obtain different implementations from the same code

base [28] and for low degrees of replication one can buy

operating systems from different vendors. N-version

programming, i.e., different teams of programmers

produce different implementations, is another option for

some services.

We use cryptographic techniques to prevent spoofing

and replays and to detect corrupted messages. Our

messages contain public-key signatures [33], message

authentication codes [36], and message digests produced

by collision-resistant hash functions [32]. We denote a

message m signed by node i as hmi
�

i

and the digest of

message m by D(m). We follow the common practice

of signing a digest of a message and appending it to

the plaintext of the message rather than signing the full

message (hmi
�

i

should be interpreted in this way). All

replicas know the others’ public keys to verify signatures.

We allow for a very strong adversary that can

coordinate faulty nodes, delay communication, or delay

correct nodes in order to cause the most damage to the

replicated service. We do assume that the adversary

cannot delay correct nodes indefinitely. We also assume

that the adversary (and the faulty nodes it controls)

are computationally bound so that (with very high

probability) it is unable to subvert the cryptographic

techniques mentioned above. For example, the adversary

cannot produce a valid signature of a non-faulty node,

compute the information summarized by a digest from

the digest, or find two messages with the same digest.

The cryptographic techniques we use are thought to have

these properties [33, 36, 32].

3 Service Properties

Our algorithm can be used to implement any deterministic

replicated service with a state and some operations. The

operations are not restricted to simple reads or writes of

portions of the service state; they can perform arbitrary

deterministic computations using the state and operation

arguments. Clients issue requests to the replicated service

to invoke operations and block waiting for a reply. The

replicated service is implemented by n replicas. Clients

and replicas are non-faulty if they follow the algorithm

in Section 4 and if no attacker can forge their signature.

The algorithm provides both safety and liveness assum-

ing no more than bn�1
3
c replicas are faulty. Safety means

that the replicated service satisfies linearizability [14]

(modified to account for Byzantine-faulty clients [4]): it

behaves like a centralized implementation that executes

operations atomically one at a time. Safety requires the

bound on the number of faulty replicas because a faulty

replica can behave arbitrarily, e.g., it can destroy its state.

Safety is provided regardless of how many faulty

clients are using the service (even if they collude with

faulty replicas): all operations performed by faulty clients

are observed in a consistent way by non-faulty clients.

In particular, if the service operations are designed to

preserve some invariants on the service state, faulty

clients cannot break those invariants.

The safety property is insufficient to guard against

faulty clients, e.g., in a file system a faulty client can

write garbage data to some shared file. However, we

limit the amount of damage a faulty client can do by

providing access control: we authenticate clients and

deny access if the client issuing a request does not have

the right to invoke the operation. Also, services may

provide operations to change the access permissions for

a client. Since the algorithm ensures that the effects of

access revocation operations are observed consistently by

all clients, this provides a powerful mechanism to recover

from attacks by faulty clients.

The algorithm does not rely on synchrony to provide

safety. Therefore, it must rely on synchrony to provide

liveness; otherwise it could be used to implement

consensus in an asynchronous system, which is not

possible [9]. We guarantee liveness, i.e., clients

eventually receive replies to their requests, provided at

most bn�1
3
c replicas are faulty and delay(t) does not

2



grow faster than t indefinitely. Here, delay(t) is the

time between the moment t when a message is sent for

the first time and the moment when it is received by its

destination (assuming the sender keeps retransmitting the

message until it is received). (A more precise definition

can be found in [4].) This is a rather weak synchrony

assumption that is likely to be true in any real system

provided network faults are eventually repaired, yet it

enables us to circumvent the impossibility result in [9].

The resiliency of our algorithm is optimal: 3f+1 is the

minimum number of replicas that allow an asynchronous

system to provide the safety and liveness properties when

up to f replicas are faulty (see [2] for a proof). This

many replicas are needed because it must be possible to

proceed after communicating with n � f replicas, since

f replicas might be faulty and not responding. However,

it is possible that the f replicas that did not respond are

not faulty and, therefore, f of those that responded might

be faulty. Even so, there must still be enough responses

that those from non-faulty replicas outnumber those from

faulty ones, i.e., n� 2f > f . Therefore n > 3f .

The algorithm does not address the problem of fault-

tolerant privacy: a faulty replica may leak information to

an attacker. It is not feasible to offer fault-tolerant privacy

in the general case because service operations may

perform arbitrary computations using their arguments and

the service state; replicas need this information in the

clear to execute such operations efficiently. It is possible

to use secret sharing schemes [35] to obtain privacy even

in the presence of a threshold of malicious replicas [13]

for the arguments and portions of the state that are opaque

to the service operations. We plan to investigate these

techniques in the future.

4 The Algorithm

Our algorithm is a form of state machine replication [17,

34]: the service is modeled as a state machine that is

replicated across different nodes in a distributed system.

Each state machine replica maintains the service state

and implements the service operations. We denote the

set of replicas by R and identify each replica using an

integer in f0; :::; jRj � 1g. For simplicity, we assume

jRj = 3f + 1 where f is the maximum number of

replicas that may be faulty; although there could be

more than 3f+1 replicas, the additional replicas degrade

performance (since more and bigger messages are being

exchanged) without providing improved resiliency.

The replicas move through a succession of configura-

tions called views. In a view one replica is the primary

and the others are backups. Views are numbered con-

secutively. The primary of a view is replica p such that

p = v mod jRj, where v is the view number. View

changes are carried out when it appears that the primary

has failed. Viewstamped Replication [26] and Paxos [18]

used a similar approach to tolerate benign faults (as dis-

cussed in Section 8.)

The algorithm works roughly as follows:
1. A client sends a request to invoke a service operation

to the primary

2. The primary multicasts the request to the backups

3. Replicas execute the request and send a reply to the

client

4. The client waits for f + 1 replies from different

replicas with the same result; this is the result of

the operation.

Like all state machine replication techniques [34],

we impose two requirements on replicas: they must

be deterministic (i.e., the execution of an operation in

a given state and with a given set of arguments must

always produce the same result) and they must start in the

same state. Given these two requirements, the algorithm

ensures the safety property by guaranteeing that all non-

faulty replicas agree on a total order for the execution of

requests despite failures.

The remainder of this section describes a simplified

version of the algorithm. We omit discussion of how

nodes recover from faults due to lack of space. We

also omit details related to message retransmissions.

Furthermore, we assume that message authentication is

achieved using digital signatures rather than the more

efficient scheme based on message authentication codes;

Section 5 discusses this issue further. A detailed

formalization of the algorithm using the I/O automaton

model [21] is presented in [4].

4.1 The Client

A client c requests the execution of state machine

operation o by sending a hREQUEST; o; t; ci
�

c

message

to the primary. Timestamp t is used to ensure exactly-

once semantics for the execution of client requests.

Timestamps for c’s requests are totally ordered such that

later requests have higher timestamps than earlier ones;

for example, the timestamp could be the value of the

client’s local clock when the request is issued.

Each message sent by the replicas to the client includes

the current view number, allowing the client to track the

view and hence the current primary. A client sends

a request to what it believes is the current primary

using a point-to-point message. The primary atomically

multicasts the request to all the backups using the protocol

described in the next section.

A replica sends the reply to the request directly to

the client. The reply has the form hREPLY; v; t; c; i; ri
�

i

where v is the current view number, t is the timestamp of

the corresponding request, i is the replica number, and r

is the result of executing the requested operation.

The client waits for f + 1 replies with valid signatures

from different replicas, and with the same t and r, before

3



accepting the result r. This ensures that the result is valid,

since at most f replicas can be faulty.

If the client does not receive replies soon enough, it

broadcasts the request to all replicas. If the request has

already been processed, the replicas simply re-send the

reply; replicas remember the last reply message they sent

to each client. Otherwise, if the replica is not the primary,

it relays the request to the primary. If the primary does

not multicast the request to the group, it will eventually

be suspected to be faulty by enough replicas to cause a

view change.

In this paper we assume that the client waits for one

request to complete before sending the next one. But we

can allow a client to make asynchronous requests, yet

preserve ordering constraints on them.

4.2 Normal-Case Operation

The state of each replica includes the state of the

service, a message log containing messages the replica

has accepted, and an integer denoting the replica’s current

view. We describe how to truncate the log in Section 4.3.

When the primary, p, receives a client request, m,

it starts a three-phase protocol to atomically multicast

the request to the replicas. The primary starts the

protocol immediately unless the number of messages

for which the protocol is in progress exceeds a given

maximum. In this case, it buffers the request. Buffered

requests are multicast later as a group to cut down on

message traffic and CPU overheads under heavy load; this

optimization is similar to a group commit in transactional

systems [11]. For simplicity, we ignore this optimization

in the description below.

The three phases are pre-prepare, prepare, and commit.

The pre-prepare and prepare phases are used to totally

order requests sent in the same view even when the

primary, which proposes the ordering of requests, is

faulty. The prepare and commit phases are used to ensure

that requests that commit are totally ordered across views.

In the pre-prepare phase, the primary assigns a

sequence number, n, to the request, multicasts a pre-

prepare message with m piggybacked to all the backups,

and appends the message to its log. The message has the

form hhPRE-PREPARE; v; n; di
�

p

;mi, where v indicates

the view in which the message is being sent, m is the

client’s request message, and d is m’s digest.

Requests are not included in pre-prepare messages

to keep them small. This is important because pre-

prepare messages are used as a proof that the request was

assigned sequence number n in view v in view changes.

Additionally, it decouples the protocol to totally order

requests from the protocol to transmit the request to the

replicas; allowing us to use a transport optimized for

small messages for protocol messages and a transport

optimized for large messages for large requests.

A backup accepts a pre-prepare message provided:

� the signatures in the request and the pre-prepare

message are correct and d is the digest for m;

� it is in view v;

� it has not accepted a pre-prepare message for view v

and sequence number n containing a different digest;

� the sequence number in the pre-prepare message is

between a low water mark, h, and a high water mark,

H .

The last condition prevents a faulty primary from

exhausting the space of sequence numbers by selecting

a very large one. We discuss how H and h advance in

Section 4.3.

If backup i accepts the hhPRE-PREPARE; v; n; di
�

p

;mi

message, it enters the prepare phase by multicasting a

hPREPARE; v; n; d; ii
�

i

message to all other replicas and

adds both messages to its log. Otherwise, it does nothing.

A replica (including the primary) accepts prepare

messages and adds them to its log provided their

signatures are correct, their view number equals the

replica’s current view, and their sequence number is

between h and H .

We define the predicate prepared(m; v; n; i) to be true

if and only if replica i has inserted in its log: the request

m, a pre-prepare for m in view v with sequence number

n, and 2f prepares from different backups that match

the pre-prepare. The replicas verify whether the prepares

match the pre-prepare by checking that they have the

same view, sequence number, and digest.

The pre-prepare and prepare phases of the algorithm

guarantee that non-faulty replicas agree on a total order

for the requests within a view. More precisely, they

ensure the following invariant: if prepared(m; v; n; i) is

true then prepared(m0

; v; n; j) is false for any non-faulty

replica j (including i = j) and anym0 such thatD(m0

) 6=

D(m). This is true because prepared(m; v; n; i) and

jRj = 3f+1 imply that at least f+1 non-faulty replicas

have sent a pre-prepare or prepare for m in view v with

sequence number n. Thus, for prepared(m0

; v; n; j)

to be true at least one of these replicas needs to have

sent two conflicting prepares (or pre-prepares if it is the

primary for v), i.e., two prepares with the same view

and sequence number and a different digest. But this is

not possible because the replica is not faulty. Finally, our

assumption about the strength of message digests ensures

that the probability that m 6= m

0 and D(m) = D(m

0

) is

negligible.

Replica imulticasts a hCOMMIT; v; n;D(m); ii

�

i

to the

other replicas when prepared(m; v; n; i) becomes true.

This starts the commit phase. Replicas accept commit

messages and insert them in their log provided they are

properly signed, the view number in the message is equal

to the replica’s current view, and the sequence number is

between h and H

4



We define the committed and committed-local predi-

cates as follows: committed(m; v; n) is true if and only

if prepared(m; v; n; i) is true for all i in some set of

f+1 non-faulty replicas; and committed-local(m; v; n; i)

is true if and only if prepared(m; v; n; i) is true and i has

accepted 2f + 1 commits (possibly including its own)

from different replicas that match the pre-prepare for m;

a commit matches a pre-prepare if they have the same

view, sequence number, and digest.

The commit phase ensures the following invariant: if

committed-local(m; v; n; i) is true for some non-faulty

i then committed(m; v; n) is true. This invariant and

the view-change protocol described in Section 4.4 ensure

that non-faulty replicas agree on the sequence numbers

of requests that commit locally even if they commit in

different views at each replica. Furthermore, it ensures

that any request that commits locally at a non-faulty

replica will commit at f + 1 or more non-faulty replicas

eventually.

Each replica i executes the operation requested by

m after committed-local(m; v; n; i) is true and i’s state

reflects the sequential execution of all requests with

lower sequence numbers. This ensures that all non-

faulty replicas execute requests in the same order as

required to provide the safety property. After executing

the requested operation, replicas send a reply to the client.

Replicas discard requests whose timestamp is lower than

the timestamp in the last reply they sent to the client to

guarantee exactly-once semantics.

We do not rely on ordered message delivery, and

therefore it is possible for a replica to commit requests

out of order. This does not matter since it keeps the pre-

prepare, prepare, and commit messages logged until the

corresponding request can be executed.

Figure 1 shows the operation of the algorithm in the

normal case of no primary faults. Replica 0 is the primary,

replica 3 is faulty, and C is the client.

X

request pre-prepare prepare commit reply

C

0

1

2

3

Figure 1: Normal Case Operation

4.3 Garbage Collection

This section discusses the mechanism used to discard

messages from the log. For the safety condition to hold,

messages must be kept in a replica’s log until it knows that

the requests they concern have been executed by at least

f + 1 non-faulty replicas and it can prove this to others

in view changes. In addition, if some replica misses

messages that were discarded by all non-faulty replicas,

it will need to be brought up to date by transferring all

or a portion of the service state. Therefore, replicas also

need some proof that the state is correct.

Generating these proofs after executing every opera-

tion would be expensive. Instead, they are generated

periodically, when a request with a sequence number di-

visible by some constant (e.g., 100) is executed. We will

refer to the states produced by the execution of these re-

quests as checkpoints and we will say that a checkpoint

with a proof is a stable checkpoint.

A replica maintains several logical copies of the service

state: the last stable checkpoint, zero or more checkpoints

that are not stable, and a current state. Copy-on-write

techniques can be used to reduce the space overhead

to store the extra copies of the state, as discussed in

Section 6.3.

The proof of correctness for a checkpoint is generated

as follows. When a replica i produces a checkpoint,

it multicasts a message hCHECKPOINT; n; d; ii
�

i

to the

other replicas, where n is the sequence number of the

last request whose execution is reflected in the state

and d is the digest of the state. Each replica collects

checkpoint messages in its log until it has 2f + 1 of

them for sequence number n with the same digest d

signed by different replicas (including possibly its own

such message). These 2f + 1 messages are the proof of

correctness for the checkpoint.

A checkpoint with a proof becomes stable and the

replica discards all pre-prepare, prepare, and commit

messages with sequence number less than or equal to

n from its log; it also discards all earlier checkpoints and

checkpoint messages.

Computing the proofs is efficient because the digest

can be computed using incremental cryptography [1] as

discussed in Section 6.3, and proofs are generated rarely.

The checkpoint protocol is used to advance the low

and high water marks (which limit what messages will

be accepted). The low-water mark h is equal to the

sequence number of the last stable checkpoint. The high

water mark H = h + k, where k is big enough so that

replicas do not stall waiting for a checkpoint to become

stable. For example, if checkpoints are taken every 100

requests, k might be 200.

4.4 View Changes

The view-change protocol provides liveness by allowing

the system to make progress when the primary fails. View

changes are triggered by timeouts that prevent backups

from waiting indefinitely for requests to execute. A

backup is waiting for a request if it received a valid request

5



and has not executed it. A backup starts a timer when it

receives a request and the timer is not already running.

It stops the timer when it is no longer waiting to execute

the request, but restarts it if at that point it is waiting to

execute some other request.

If the timer of backup i expires in view v, the

backup starts a view change to move the system to

view v + 1. It stops accepting messages (other than

checkpoint, view-change, and new-view messages) and

multicasts a hVIEW-CHANGE; v+ 1; n; C;P ; ii
�

i

message

to all replicas. Here n is the sequence number of the last

stable checkpoint s known to i, C is a set of 2f + 1 valid

checkpoint messages proving the correctness of s, and

P is a set containing a set P
m

for each request m that

prepared at iwith a sequence number higher thann. Each

setP
m

contains a valid pre-prepare message (without the

corresponding client message) and 2f matching, valid

prepare messages signed by different backups with the

same view, sequence number, and the digest of m.

When the primary p of view v + 1 receives 2f valid

view-change messages for view v+1 from other replicas,

it multicasts a hNEW-VIEW; v+ 1;V ;Oi
�

p

message to all

other replicas, where V is a set containing the valid view-

change messages received by the primary plus the view-

change message for v+1 the primary sent (or would have

sent), andO is a set of pre-prepare messages (without the

piggybacked request). O is computed as follows:

1. The primary determines the sequence number min-s

of the latest stable checkpoint in V and the highest

sequence number max-s in a prepare message in V .

2. The primary creates a new pre-prepare message for

view v+1 for each sequence numbern between min-s

and max-s. There are two cases: (1) there is at least

one set in the P component of some view-change

message in V with sequence number n, or (2) there

is no such set. In the first case, the primary creates

a new message hPRE-PREPARE; v + 1; n; di
�

p

, where

d is the request digest in the pre-prepare message for

sequence number n with the highest view number

in V . In the second case, it creates a new pre-

prepare message hPRE-PREPARE; v + 1; n; dnulli
�

p

,

where d

null is the digest of a special null request;

a null request goes through the protocol like other

requests, but its execution is a no-op. (Paxos [18]

used a similar technique to fill in gaps.)

Next the primary appends the messages in O to its

log. If min-s is greater than the sequence number of its

latest stable checkpoint, the primary also inserts the proof

of stability for the checkpoint with sequence number

min-s in its log, and discards information from the log

as discussed in Section 4.3. Then it enters view v+ 1: at

this point it is able to accept messages for view v + 1.

A backup accepts a new-view message for view v + 1

if it is signed properly, if the view-change messages it

contains are valid for view v + 1, and if the set O is

correct; it verifies the correctness of O by performing a

computation similar to the one used by the primary to

create O. Then it adds the new information to its log as

described for the primary, multicasts a prepare for each

message inO to all the other replicas, adds these prepares

to its log, and enters view v + 1.

Thereafter, the protocol proceeds as described in

Section 4.2. Replicas redo the protocol for messages

between min-s and max-s but they avoid re-executing

client requests (by using their stored information about

the last reply sent to each client).

A replica may be missing some request message m

or a stable checkpoint (since these are not sent in new-

view messages.) It can obtain missing information from

another replica. For example, replica i can obtain a

missing checkpoint state s from one of the replicas

whose checkpoint messages certified its correctness in

V . Since f + 1 of those replicas are correct, replica i will

always obtain s or a later certified stable checkpoint. We

can avoid sending the entire checkpoint by partitioning

the state and stamping each partition with the sequence

number of the last request that modified it. To bring

a replica up to date, it is only necessary to send it the

partitions where it is out of date, rather than the whole

checkpoint.

4.5 Correctness

This section sketches the proof that the algorithm

provides safety and liveness; details can be found in [4].

4.5.1 Safety

As discussed earlier, the algorithm provides safety if all

non-faulty replicas agree on the sequence numbers of

requests that commit locally.

In Section 4.2, we showed that if prepared(m; v; n; i)

is true, prepared(m0

; v; n; j) is false for any non-faulty

replica j (including i = j) and any m

0 such that

D(m

0

) 6= D(m). This implies that two non-faulty

replicas agree on the sequence number of requests that

commit locally in the same view at the two replicas.

The view-change protocol ensures that non-faulty

replicas also agree on the sequence number of requests

that commit locally in different views at different replicas.

A request m commits locally at a non-faulty replica with

sequence number n in view v only if committed(m; v; n)

is true. This means that there is a setR1 containing at least

f + 1 non-faulty replicas such that prepared(m; v; n; i)

is true for every replica i in the set.

Non-faulty replicas will not accept a pre-prepare for

view v

0

> v without having received a new-view message

for v0 (since only at that point do they enter the view). But

any correct new-view message for view v

0

> v contains

correct view-change messages from every replica i in a

6



set R2 of 2f+1 replicas. Since there are 3f+1 replicas,

R1 and R2 must intersect in at least one replica k that is

not faulty. k’s view-change message will ensure that the

fact that m prepared in a previous view is propagated to

subsequent views, unless the new-view message contains

a view-change message with a stable checkpoint with a

sequence number higher than n. In the first case, the

algorithm redoes the three phases of the atomic multicast

protocol form with the same sequence number n and the

new view number. This is important because it prevents

any different request that was assigned the sequence

number n in a previous view from ever committing. In

the second case no replica in the new view will accept any

message with sequence number lower than n. In either

case, the replicas will agree on the request that commits

locally with sequence number n.

4.5.2 Liveness

To provide liveness, replicas must move to a new view if

they are unable to execute a request. But it is important

to maximize the period of time when at least 2f + 1

non-faulty replicas are in the same view, and to ensure

that this period of time increases exponentially until some

requested operation executes. We achieve these goals by

three means.

First, to avoid starting a view change too soon, a replica

that multicasts a view-change message for view v + 1

waits for 2f + 1 view-change messages for view v + 1

and then starts its timer to expire after some time T .

If the timer expires before it receives a valid new-view

message for v + 1 or before it executes a request in the

new view that it had not executed previously, it starts the

view change for view v + 2 but this time it will wait 2T

before starting a view change for view v + 3.

Second, if a replica receives a set of f + 1 valid view-

change messages from other replicas for views greater

than its current view, it sends a view-change message

for the smallest view in the set, even if its timer has

not expired; this prevents it from starting the next view

change too late.

Third, faulty replicas are unable to impede progress

by forcing frequent view changes. A faulty replica

cannot cause a view change by sending a view-change

message, because a view change will happen only if at

least f + 1 replicas send view-change messages, but it

can cause a view change when it is the primary (by not

sending messages or sending bad messages). However,

because the primary of view v is the replica p such that

p = v mod jRj, the primary cannot be faulty for more

than f consecutive views.

These three techniques guarantee liveness unless

message delays grow faster than the timeout period

indefinitely, which is unlikely in a real system.

4.6 Non-Determinism

State machine replicas must be deterministic but many

services involve some form of non-determinism. For

example, the time-last-modified in NFS is set by reading

the server’s local clock; if this were done independently

at each replica, the states of non-faulty replicas would

diverge. Therefore, some mechanism to ensure that all

replicas select the same value is needed. In general, the

client cannot select the value because it does not have

enough information; for example, it does not know how

its request will be ordered relative to concurrent requests

by other clients. Instead, the primary needs to select the

value either independently or based on values provided

by the backups.

If the primary selects the non-deterministic value inde-

pendently, it concatenates the value with the associated

request and executes the three phase protocol to ensure

that non-faulty replicas agree on a sequence number for

the request and value. This prevents a faulty primary from

causing replica state to diverge by sending different val-

ues to different replicas. However, a faulty primary might

send the same, incorrect, value to all replicas. Therefore,

replicas must be able to decide deterministically whether

the value is correct (and what to do if it is not) based only

on the service state.

This protocol is adequate for most services (including

NFS) but occasionally replicas must participate in

selecting the value to satisfy a service’s specification.

This can be accomplished by adding an extra phase to

the protocol: the primary obtains authenticated values

proposed by the backups, concatenates 2f + 1 of them

with the associated request, and starts the three phase

protocol for the concatenated message. Replicas choose

the value by a deterministic computation on the 2f + 1

values and their state, e.g., taking the median. The extra

phase can be optimized away in the common case. For

example, if replicas need a value that is “close enough”

to that of their local clock, the extra phase can be avoided

when their clocks are synchronized within some delta.

5 Optimizations

This section describes some optimizations that improve

the performance of the algorithm during normal-case

operation. All the optimizations preserve the liveness

and safety properties.

5.1 Reducing Communication

We use three optimizations to reduce the cost of

communication. The first avoids sending most large

replies. A client request designates a replica to send

the result; all other replicas send replies containing just

the digest of the result. The digests allow the client to

check the correctness of the result while reducing network

7



bandwidth consumption and CPU overhead significantly

for large replies. If the client does not receive a correct

result from the designated replica, it retransmits the

request as usual, requesting all replicas to send full

replies.

The second optimization reduces the number of

message delays for an operation invocation from 5

to 4. Replicas execute a request tentatively as soon

as the prepared predicate holds for the request, their

state reflects the execution of all requests with lower

sequence number, and these requests are all known to

have committed. After executing the request, the replicas

send tentative replies to the client. The client waits for

2f + 1 matching tentative replies. If it receives this

many, the request is guaranteed to commit eventually.

Otherwise, the client retransmits the request and waits

for f + 1 non-tentative replies.

A request that has executed tentatively may abort if

there is a view change and it is replaced by a null

request. In this case the replica reverts its state to the

last stable checkpoint in the new-view message or to its

last checkpointed state (depending on which one has the

higher sequence number).

The third optimization improves the performance of

read-only operations that do not modify the service

state. A client multicasts a read-only request to all

replicas. Replicas execute the request immediately in

their tentative state after checking that the request is

properly authenticated, that the client has access, and

that the request is in fact read-only. They send the reply

only after all requests reflected in the tentative state have

committed; this is necessary to prevent the client from

observing uncommitted state. The client waits for 2f+1

replies from different replicas with the same result. The

client may be unable to collect 2f+1 such replies if there

are concurrent writes to data that affect the result; in this

case, it retransmits the request as a regular read-write

request after its retransmission timer expires.

5.2 Cryptography

In Section 4, we described an algorithm that uses

digital signatures to authenticate all messages. However,

we actually use digital signatures only for view-

change and new-view messages, which are sent rarely,

and authenticate all other messages using message

authentication codes (MACs). This eliminates the main

performance bottleneck in previous systems [29, 22].

However, MACs have a fundamental limitation rela-

tive to digital signatures — the inability to prove that

a message is authentic to a third party. The algorithm

in Section 4 and previous Byzantine-fault-tolerant algo-

rithms [31, 16] for state machine replication rely on the

extra power of digital signatures. We modified our algo-

rithm to circumvent the problem by taking advantage of

specific invariants, e.g, the invariant that no two different

requests prepare with the same view and sequence num-

ber at two non-faulty replicas. The modified algorithm is

described in [5]. Here we sketch the main implications

of using MACs.

MACs can be computed three orders of magnitude

faster than digital signatures. For example, a 200MHz

Pentium Pro takes 43ms to generate a 1024-bit modulus

RSA signature of an MD5 digest and 0.6ms to verify

the signature [37], whereas it takes only 10.3�s to

compute the MAC of a 64-byte message on the same

hardware in our implementation. There are other public-

key cryptosystems that generate signatures faster, e.g.,

elliptic curve public-key cryptosystems, but signature

verification is slower [37] and in our algorithm each

signature is verified many times.

Each node (including active clients) shares a 16-byte

secret session key with each replica. We compute

message authentication codes by applying MD5 to the

concatenation of the message with the secret key. Rather

than using the 16 bytes of the final MD5 digest, we use

only the 10 least significant bytes. This truncation has

the obvious advantage of reducing the size of MACs and

it also improves their resilience to certain attacks [27].

This is a variant of the secret suffix method [36], which

is secure as long as MD5 is collision resistant [27, 8].

The digital signature in a reply message is replaced by a

single MAC, which is sufficient because these messages

have a single intended recipient. The signatures in all

other messages (including client requests but excluding

view changes) are replaced by vectors of MACs that we

call authenticators. An authenticator has an entry for

every replica other than the sender; each entry is the

MAC computed with the key shared by the sender and

the replica corresponding to the entry.

The time to verify an authenticator is constant but the

time to generate one grows linearly with the number of

replicas. This is not a problem because we do not expect

to have a large number of replicas and there is a huge

performance gap between MAC and digital signature

computation. Furthermore, we compute authenticators

efficiently; MD5 is applied to the message once and the

resulting context is used to compute each vector entry

by applying MD5 to the corresponding session key. For

example, in a system with 37 replicas (i.e., a system

that can tolerate 12 simultaneous faults) an authenticator

can still be computed much more than two orders of

magnitude faster than a 1024-bit modulus RSA signature.

The size of authenticators grows linearly with the

number of replicas but it grows slowly: it is equal to

30 � b

n�1
3
c bytes. An authenticator is smaller than an

RSA signature with a 1024-bit modulus for n � 13 (i.e.,

systems that can tolerate up to 4 simultaneous faults),

which we expect to be true in most configurations.

8



6 Implementation

This section describes our implementation. First we

discuss the replication library, which can be used as

a basis for any replicated service. In Section 6.2 we

describe how we implemented a replicated NFS on top

of the replication library. Then we describe how we

maintain checkpoints and compute checkpoint digests

efficiently.

6.1 The Replication Library

The client interface to the replication library consists of

a single procedure, invoke, with one argument, an input

buffer containing a request to invoke a state machine

operation. The invoke procedure uses our protocol to

execute the requested operation at the replicas and select

the correct reply from among the replies of the individual

replicas. It returns a pointer to a buffer containing the

operation result.

On the server side, the replication code makes a

number of upcalls to procedures that the server part of

the application must implement. There are procedures

to execute requests (execute), to maintain checkpoints of

the service state (make checkpoint, delete checkpoint), to

obtain the digest of a specified checkpoint (get digest),

and to obtain missing information (get checkpoint,

set checkpoint). The execute procedure receives as input

a buffer containing the requested operation, executes the

operation, and places the result in an output buffer. The

other procedures are discussed further in Sections 6.3

and 6.4.

Point-to-point communication between nodes is imple-

mented using UDP, and multicast to the group of replicas

is implemented using UDP over IP multicast [7]. There

is a single IP multicast group for each service, which con-

tains all the replicas. These communication protocols are

unreliable; they may duplicate or lose messages or deliver

them out of order.

The algorithm tolerates out-of-order delivery and

rejects duplicates. View changes can be used to recover

from lost messages, but this is expensive and therefore it

is important to perform retransmissions. During normal

operation recovery from lost messages is driven by

the receiver: backups send negative acknowledgments

to the primary when they are out of date and the

primary retransmits pre-prepare messages after a long

timeout. A reply to a negative acknowledgment may

include both a portion of a stable checkpoint and missing

messages. During view changes, replicas retransmit

view-change messages until they receive a matching new-

view message or they move on to a later view.

The replication library does not implement view

changes or retransmissions at present. This does

not compromise the accuracy of the results given

in Section 7 because the rest of the algorithm is

completely implemented (including the manipulation of

the timers that trigger view changes) and because we

have formalized the complete algorithm and proved its

correctness [4].

6.2 BFS: A Byzantine-Fault-tolerant File System

We implemented BFS, a Byzantine-fault-tolerant NFS

service, using the replication library. Figure 2 shows the

architecture of BFS. We opted not to modify the kernel

NFS client and server because we did not have the sources

for the Digital Unix kernel.

A file system exported by the fault-tolerant NFS service

is mounted on the client machine like any regular NFS

file system. Application processes run unmodified and

interact with the mounted file system through the NFS

client in the kernel. We rely on user level relay processes

to mediate communication between the standard NFS

client and the replicas. A relay receives NFS protocol

requests, calls the invoke procedure of our replication

library, and sends the result back to the NFS client.

Andrew

benchmark

kernel NFS client

replication
library

relay

client

replica 0

replication
library

snfsd

kernel VM

replica n

replication
library

snfsd

kernel VM

Figure 2: Replicated File System Architecture.

Each replica runs a user-level process with the

replication library and our NFS V2 daemon, which we

will refer to as snfsd (for simple nfsd). The replication

library receives requests from the relay, interacts with

snfsd by making upcalls, and packages NFS replies into

replication protocol replies that it sends to the relay.

We implemented snfsd using a fixed-size memory-

mapped file. All the file system data structures, e.g.,

inodes, blocks and their free lists, are in the mapped file.

We rely on the operating system to manage the cache of

memory-mapped file pages and to write modified pages

to disk asynchronously. The current implementation

uses 8KB blocks and inodes contain the NFS status

information plus 256 bytes of data, which is used to store

directory entries in directories, pointers to blocks in files,

and text in symbolic links. Directories and files may also

use indirect blocks in a way similar to Unix.

Our implementation ensures that all state machine

9



replicas start in the same initial state and are deterministic,

which are necessary conditions for the correctness of a

service implemented using our protocol. The primary

proposes the values for time-last-modified and time-

last-accessed, and replicas select the larger of the

proposed value and one greater than the maximum of all

values selected for earlier requests. We do not require

synchronous writes to implement NFS V2 protocol

semantics because BFS achieves stability of modified

data and meta-data through replication [20].

6.3 Maintaining Checkpoints

This section describes how snfsd maintains checkpoints

of the file system state. Recall that each replica maintains

several logical copies of the state: the current state, some

number of checkpoints that are not yet stable, and the last

stable checkpoint.

snfsd executes file system operations directly in the

memory mapped file to preserve locality,and it uses copy-

on-write to reduce the space and time overhead associated

with maintaining checkpoints. snfsd maintains a copy-

on-write bit for every 512-byte block in the memory

mapped file. When the replication code invokes the

make checkpoint upcall, snfsd sets all the copy-on-write

bits and creates a (volatile) checkpoint record, containing

the current sequence number, which it receives as an

argument to the upcall, and a list of blocks. This list

contains the copies of the blocks that were modified

since the checkpoint was taken, and therefore, it is

initially empty. The record also contains the digest of

the current state; we discuss how the digest is computed

in Section 6.4.

When a block of the memory mapped file is modified

while executing a client request, snfsd checks the copy-

on-write bit for the block and, if it is set, stores the block’s

current contents and its identifier in the checkpoint record

for the last checkpoint. Then, it overwrites the block

with its new value and resets its copy-on-write bit.

snfsd retains a checkpoint record until told to discard

it via a delete checkpoint upcall, which is made by the

replication code when a later checkpoint becomes stable.

If the replication code requires a checkpoint to send

to another replica, it calls the get checkpoint upcall. To

obtain the value for a block, snfsd first searches for the

block in the checkpoint record of the stable checkpoint,

and then searches the checkpoint records of any later

checkpoints. If the block is not in any checkpoint record,

it returns the value from the current state.

The use of the copy-on-write technique and the fact

that we keep at most 2 checkpoints ensure that the space

and time overheads of keeping several logical copies

of the state are low. For example, in the Andrew

benchmark experiments described in Section 7, the

average checkpoint record size is only 182 blocks with a

maximum of 500.

6.4 Computing Checkpoint Digests

snfsd computes a digest of a checkpoint state as part

of a make checkpoint upcall. Although checkpoints

are only taken occasionally, it is important to compute

the state digest incrementally because the state may be

large. snfsd uses an incremental collision-resistant one-

way hash function called AdHash [1]. This function

divides the state into fixed-size blocks and uses some

other hash function (e.g., MD5) to compute the digest

of the string obtained by concatenating the block index

with the block value for each block. The digest of the

state is the sum of the digests of the blocks modulo some

large integer. In our current implementation, we use the

512-byte blocks from the copy-on-write technique and

compute their digest using MD5.

To compute the digest for the state incrementally, snfsd

maintains a table with a hash value for each 512-byte

block. This hash value is obtained by applying MD5

to the block index concatenated with the block value at

the time of the last checkpoint. When make checkpoint

is called, snfsd obtains the digest d for the previous

checkpoint state (from the associated checkpoint record).

It computes new hash values for each block whose copy-

on-write bit is reset by applying MD5 to the block index

concatenated with the current block value. Then, it adds

the new hash value to d, subtracts the old hash value

from d, and updates the table to contain the new hash

value. This process is efficient provided the number of

modified blocks is small; as mentioned above, on average

182 blocks are modified per checkpoint for the Andrew

benchmark.

7 Performance Evaluation

This section evaluates the performance of our system

using two benchmarks: a micro-benchmark and the

Andrew benchmark [15]. The micro-benchmark provides

a service-independent evaluation of the performance of

the replication library; it measures the latency to invoke

a null operation, i.e., an operation that does nothing.

The Andrew benchmark is used to compare BFS with

two other file systems: one is the NFS V2 implementation

in Digital Unix, and the other is identical to BFS except

without replication. The first comparison demonstrates

that our system is practical by showing that its latency is

similar to the latency of a commercial system that is used

daily by many users. The second comparison allows us to

evaluate the overhead of our algorithm accurately within

an implementation of a real service.

7.1 Experimental Setup

The experiments measure normal-case behavior (i.e.,

there are no view changes), because this is the behavior

10



that determines the performance of the system. All

experiments ran with one client running two relay

processes, and four replicas. Four replicas can tolerate

one Byzantine fault; we expect this reliability level to

suffice for most applications. The replicas and the

client ran on identical DEC 3000/400 Alpha workstations.

These workstations have a 133 MHz Alpha 21064

processor, 128 MB of memory, and run Digital Unix

version 4.0. The file system was stored by each replica

on a DEC RZ26 disk. All the workstations were

connected by a 10Mbit/s switched Ethernet and had DEC

LANCE Ethernet interfaces. The switch was a DEC

EtherWORKS 8T/TX. The experiments were run on an

isolated network.

The interval between checkpoints was 128 requests,

which causes garbage collection to occur several times in

any of the experiments. The maximum sequence number

accepted by replicas in pre-prepare messages was 256

plus the sequence number of the last stable checkpoint.

7.2 Micro-Benchmark

The micro-benchmark measures the latency to invoke

a null operation. It evaluates the performance of two

implementations of a simple service with no state that

implements null operations with arguments and results

of different sizes. The first implementation is replicated

using our library and the second is unreplicated and

uses UDP directly. Table 1 reports the response times

measured at the client for both read-only and read-

write operations. They were obtained by timing 10,000

operation invocations in three separate runs and we report

the median value of the three runs. The maximum

deviation from the median was always below 0.3% of

the reported value. We denote each operation by a/b,

where a and b are the sizes of the operation argument and

result in KBytes.

arg./res. replicated without

(KB) read-write read-only replication

0/0 3.35 (309%) 1.62 (98%) 0.82

4/0 14.19 (207%) 6.98 (51%) 4.62

0/4 8.01 (72%) 5.94 (27%) 4.66

Table 1: Micro-benchmark results (in milliseconds); the

percentage overhead is relative to the unreplicated case.

The overhead introduced by the replication library is

due to extra computation and communication. For exam-

ple, the computation overhead for the read-write 0/0 op-

eration is approximately 1.06ms, which includes 0.55ms

spent executing cryptographic operations. The remain-

ing 1.47ms of overhead are due to extra communication;

the replication library introduces an extra message round-

trip, it sends larger messages, and it increases the number

of messages received by each node relative to the service

without replication.

The overhead for read-only operations is significantly

lower because the optimization discussed in Section 5.1

reduces both computation and communication overheads.

For example, the computation overhead for the read-only

0/0 operation is approximately 0.43ms, which includes

0.23ms spent executing cryptographic operations, and

the communication overhead is only 0.37ms because the

protocol to execute read-only operations uses a single

round-trip.

Table 1 shows that the relative overhead is lower for

the 4/0 and 0/4 operations. This is because a significant

fraction of the overhead introduced by the replication

library is independent of the size of operation arguments

and results. For example, in the read-write 0/4 operation,

the large message (the reply) goes over the network

only once (as discussed in Section 5.1) and only the

cryptographic overhead to process the reply message is

increased. The overhead is higher for the read-write 4/0

operation because the large message (the request) goes

over the network twice and increases the cryptographic

overhead for processing both request and pre-prepare

messages.

It is important to note that this micro-benchmark

represents the worst case overhead for our algorithm

because the operations perform no work and the

unreplicated server provides very weak guarantees.

Most services will require stronger guarantees, e.g.,

authenticated connections, and the overhead introduced

by our algorithm relative to a server that implements these

guarantees will be lower. For example, the overhead

of the replication library relative to a version of the

unreplicated service that uses MACs for authentication

is only 243% for the read-write 0/0 operation and 4% for

the read-only 4/0 operation.

We can estimate a rough lower bound on the

performance gain afforded by our algorithm relative to

Rampart [30]. Reiter reports that Rampart has a latency

of 45ms for a multi-RPC of a null message in a 10 Mbit/s

Ethernet network of 4 SparcStation 10s [30]. The multi-

RPC is sufficient for the primary to invoke a state machine

operation but for an arbitrary client to invoke an operation

it would be necessary to add an extra message delay and

an extra RSA signature and verification to authenticate

the client; this would lead to a latency of at least 65ms

(using the RSA timings reported in [29].) Even if we

divide this latency by 1.7, the ratio of the SPECint92

ratings of the DEC 3000/400 and the SparcStation 10, our

algorithm still reduces the latency to invoke the read-write

and read-only 0/0 operations by factors of more than 10

and 20, respectively. Note that this scaling is conservative

because the network accounts for a significant fraction

of Rampart’s latency [29] and Rampart’s results were

obtained using 300-bit modulus RSA signatures, which

are not considered secure today unless the keys used to

11



generate them are refreshed very frequently.

There are no published performance numbers for

SecureRing [16] but it would be slower than Rampart

because its algorithm has more message delays and

signature operations in the critical path.

7.3 Andrew Benchmark

The Andrew benchmark [15] emulates a software

development workload. It has five phases: (1) creates

subdirectories recursively; (2) copies a source tree; (3)

examines the status of all the files in the tree without

examining their data; (4) examines every byte of data in

all the files; and (5) compiles and links the files.

We use the Andrew benchmark to compare BFS with

two other file system configurations: NFS-std, which is

the NFS V2 implementation in Digital Unix, and BFS-nr,

which is identical to BFS but with no replication. BFS-nr

ran two simple UDP relays on the client, and on the server

it ran a thin veneer linked with a version of snfsd from

which all the checkpoint management code was removed.

This configuration does not write modified file system

state to disk before replying to the client. Therefore, it

does not implement NFS V2 protocol semantics, whereas

both BFS and NFS-std do.

Out of the 18 operations in the NFS V2 protocol only

getattr is read-only because the time-last-accessed

attribute of files and directories is set by operations

that would otherwise be read-only, e.g., read and

lookup. The result is that our optimization for read-

only operations can rarely be used. To show the impact

of this optimization, we also ran the Andrew benchmark

on a second version of BFS that modifies the lookup

operation to be read-only. This modification violates

strict Unix file system semantics but is unlikely to have

adverse effects in practice.

For all configurations, the actual benchmark code ran

at the client workstation using the standard NFS client

implementation in the Digital Unix kernel with the same

mount options. The most relevant of these options for

the benchmark are: UDP transport, 4096-byte read and

write buffers, allowing asynchronous client writes, and

allowing attribute caching.

We report the mean of 10 runs of the benchmark for

each configuration. The sample standard deviation for

the total time to run the benchmark was always below

2.6% of the reported value but it was as high as 14% for

the individual times of the first four phases. This high

variance was also present in the NFS-std configuration.

The estimated error for the reported mean was below

4.5% for the individual phases and 0.8% for the total.

Table 2 shows the results for BFS and BFS-nr. The

comparison between BFS-strict and BFS-nr shows that

the overhead of Byzantine fault tolerance for this service

is low — BFS-strict takes only 26% more time to run

BFS

phase strict r/o lookup BFS-nr

1 0.55 (57%) 0.47 (34%) 0.35

2 9.24 (82%) 7.91 (56%) 5.08

3 7.24 (18%) 6.45 (6%) 6.11

4 8.77 (18%) 7.87 (6%) 7.41

5 38.68 (20%) 38.38 (19%) 32.12

total 64.48 (26%) 61.07 (20%) 51.07

Table 2: Andrew benchmark: BFS vs BFS-nr. The times

are in seconds.

the complete benchmark. The overhead is lower than

what was observed for the micro-benchmarks because

the client spends a significant fraction of the elapsed time

computing between operations, i.e., between receiving

the reply to an operation and issuing the next request,

and operations at the server perform some computation.

But the overhead is not uniform across the benchmark

phases. The main reason for this is a variation in the

amount of time the client spends computing between

operations; the first two phases have a higher relative

overhead because the client spends approximately 40%

of the total time computing between operations, whereas

it spends approximately 70% during the last three phases.

The table shows that applying the read-only optimiza-

tion to lookup improves the performance of BFS sig-

nificantly and reduces the overhead relative to BFS-nr

to 20%. This optimization has a significant impact in

the first four phases because the time spent waiting for

lookup operations to complete in BFS-strict is at least

20% of the elapsed time for these phases, whereas it is

less than 5% of the elapsed time for the last phase.

BFS

phase strict r/o lookup NFS-std

1 0.55 (-69%) 0.47 (-73%) 1.75

2 9.24 (-2%) 7.91 (-16%) 9.46

3 7.24 (35%) 6.45 (20%) 5.36

4 8.77 (32%) 7.87 (19%) 6.60

5 38.68 (-2%) 38.38 (-2%) 39.35

total 64.48 (3%) 61.07 (-2%) 62.52

Table 3: Andrew benchmark: BFS vs NFS-std. The

times are in seconds.

Table 3 shows the results for BFS vs NFS-std. These

results show that BFS can be used in practice — BFS-

strict takes only 3% more time to run the complete

benchmark. Thus, one could replace the NFS V2

implementation in Digital Unix, which is used daily

by many users, by BFS without affecting the latency

perceived by those users. Furthermore, BFS with the

read-only optimization for the lookup operation is

actually 2% faster than NFS-std.

The overhead of BFS relative to NFS-std is not the

12



same for all phases. Both versions of BFS are faster

than NFS-std for phases 1, 2, and 5 but slower for the

other phases. This is because during phases 1, 2, and 5 a

large fraction (between 21% and 40%) of the operations

issued by the client are synchronous, i.e., operations that

require the NFS implementation to ensure stability of

modified file system state before replying to the client.

NFS-std achieves stability by writing modified state to

disk whereas BFS achieves stability with lower latency

using replication (as in Harp [20]). NFS-std is faster than

BFS (and BFS-nr) in phases 3 and 4 because the client

issues no synchronous operations during these phases.

8 Related Work

Most previous work on replication techniques ignored

Byzantine faults or assumed a synchronous system

model (e.g., [17, 26, 18, 34, 6, 10]). Viewstamped

replication [26] and Paxos [18] use views with a primary

and backups to tolerate benign faults in an asynchronous

system. Tolerating Byzantine faults requires a much more

complex protocol with cryptographic authentication, an

extra pre-prepare phase, and a different technique to

trigger view changes and select primaries. Furthermore,

our system uses view changes only to select a new primary

but never to select a different set of replicas to form the

new view as in [26, 18].

Some agreement and consensus algorithms tolerate

Byzantine faults in asynchronous systems (e.g,[2, 3, 24]).

However, they do not provide a complete solution for

state machine replication, and furthermore, most of them

were designed to demonstrate theoretical feasibility and

are too slow to be used in practice. Our algorithm

during normal-case operation is similar to the Byzantine

agreement algorithm in [2] but that algorithm is unable

to survive primary failures.

The two systems that are most closely related to our

work are Rampart [29, 30, 31, 22] and SecureRing [16].

They implement state machine replication but are more

than an order of magnitude slower than our system and,

most importantly, they rely on synchrony assumptions.

Both Rampart and SecureRing must exclude faulty

replicas from the group to make progress (e.g., to remove

a faulty primary and elect a new one), and to perform

garbage collection. They rely on failure detectors

to determine which replicas are faulty. However,

failure detectors cannot be accurate in an asynchronous

system [21], i.e., they may misclassify a replica as faulty.

Since correctness requires that fewer than 1=3 of group

members be faulty, a misclassification can compromise

correctness by removing a non-faulty replica from the

group. This opens an avenue of attack: an attacker

gains control over a single replica but does not change

its behavior in any detectable way; then it slows correct

replicas or the communication between them until enough

are excluded from the group.

To reduce the probability of misclassification, failure

detectors can be calibrated to delay classifying a replica

as faulty. However, for the probability to be negligible

the delay must be very large, which is undesirable. For

example, if the primary has actually failed, the group will

be unable to process client requests until the delay has

expired. Our algorithm is not vulnerable to this problem

because it never needs to exclude replicas from the group.

Phalanx [23, 25] applies quorum replication tech-

niques [12] to achieve Byzantine fault-tolerance in asyn-

chronous systems. This work does not provide generic

state machine replication; instead, it offers a data reposi-

tory with operations to read and write individual variables

and to acquire locks. The semantics it provides for read

and write operations are weaker than those offered by our

algorithm; we can implement arbitrary operations that ac-

cess any number of variables,whereas in Phalanx it would

be necessary to acquire and release locks to execute such

operations. There are no published performance num-

bers for Phalanx but we believe our algorithm is faster

because it has fewer message delays in the critical path

and because of our use of MACs rather than public key

cryptography. The approach in Phalanx offers the poten-

tial for improved scalability; each operation is processed

by only a subset of replicas. But this approach to scala-

bility is expensive: it requires n > 4f + 1 to tolerate f

faults; each replica needs a copy of the state; and the load

on each replica decreases slowly with n (it is O(1=
p

n)).

9 Conclusions

This paper has described a new state-machine replication

algorithm that is able to tolerate Byzantine faults and can

be used in practice: it is the first to work correctly in

an asynchronous system like the Internet and it improves

the performance of previous algorithms by more than an

order of magnitude.

The paper also described BFS, a Byzantine-fault-

tolerant implementation of NFS. BFS demonstrates that

it is possible to use our algorithm to implement real

services with performance close to that of an unreplicated

service — the performance of BFS is only 3% worse than

that of the standard NFS implementation in Digital Unix.

This good performance is due to a number of important

optimizations, including replacing public-key signatures

by vectors of message authentication codes, reducing

the size and number of messages, and the incremental

checkpoint-management techniques.

One reason why Byzantine-fault-tolerant algorithms

will be important in the future is that they can allow

systems to continue to work correctly even when there

are software errors. Not all errors are survivable;

our approach cannot mask a software error that occurs

13



at all replicas. However, it can mask errors that

occur independently at different replicas, including

nondeterministic software errors, which are the most

problematic and persistent errors since they are the

hardest to detect. In fact, we encountered such a software

bug while running our system, and our algorithm was able

to continue running correctly in spite of it.

There is still much work to do on improving our system.

One problem of special interest is reducing the amount

of resources required to implement our algorithm. The

number of replicas can be reduced by using f replicas

as witnesses that are involved in the protocol only when

some full replica fails. We also believe that it is possible

to reduce the number of copies of the state to f + 1 but

the details remain to be worked out.

Acknowledgments

We would like to thank Atul Adya, Chandrasekhar

Boyapati, Nancy Lynch, Sape Mullender, Andrew Myers,

Liuba Shrira, and the anonymous referees for their helpful

comments on drafts of this paper.

References
[1] M. Bellare and D. Micciancio. A New Paradigm for Collision-

free Hashing: Incrementality at Reduced Cost. In Advances in

Cryptology – Eurocrypt 97, 1997.

[2] G. Bracha and S. Toueg. Asynchronous Consensus and Broadcast

Protocols. Journal of the ACM, 32(4), 1995.

[3] R. Canneti and T. Rabin. Optimal Asynchronous Byzantine

Agreement. Technical Report #92-15, Computer Science

Department, Hebrew University, 1992.

[4] M. Castro and B. Liskov. A Correctness Proof for a Practi-

cal Byzantine-Fault-Tolerant Replication Algorithm. Technical

Memo MIT/LCS/TM-590, MIT Laboratory for Computer Sci-

ence, 1999.

[5] M. Castro and B. Liskov. Authenticated Byzantine Fault

Tolerance Without Public-Key Cryptography. Technical Memo

MIT/LCS/TM-589, MIT Laboratory for Computer Science, 1999.

[6] F. Cristian, H. Aghili, H. Strong, and D. Dolev. Atomic Broadcast:

From Simple Message Diffusion to Byzantine Agreement. In

International Conference on Fault Tolerant Computing, 1985.

[7] S. Deering and D. Cheriton. Multicast Routing in Datagram

Internetworks and Extended LANs. ACM Transactions on

Computer Systems, 8(2), 1990.

[8] H. Dobbertin. The Status of MD5 After a Recent Attack. RSA

Laboratories’ CryptoBytes, 2(2), 1996.

[9] M. Fischer, N. Lynch, and M. Paterson. Impossibility of

Distributed Consensus With One Faulty Process. Journal of the

ACM, 32(2), 1985.

[10] J. Garay and Y. Moses. Fully Polynomial Byzantine Agreement

for n>3t Processors in t+1 Rounds. SIAM Journal of Computing,

27(1), 1998.

[11] D. Gawlick and D. Kinkade. Varieties of Concurrency Control in

IMS/VS Fast Path. Database Engineering, 8(2), 1985.

[12] D. Gifford. Weighted Voting for Replicated Data. In Symposium

on Operating Systems Principles, 1979.

[13] M. Herlihy and J. Tygar. How to make replicated data secure.

Advances in Cryptology (LNCS 293), 1988.

[14] M. Herlihy and J. Wing. Axioms for Concurrent Objects. In ACM

Symposium on Principles of Programming Languages, 1987.

[15] J. Howard et al. Scale and performance in a distributed file system.

ACM Transactions on Computer Systems, 6(1), 1988.

[16] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing

Protocols for Securing Group Communication. In Hawaii

International Conference on System Sciences, 1998.

[17] L. Lamport. Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM, 21(7), 1978.

[18] L. Lamport. The Part-Time Parliament. Technical Report 49,

DEC Systems Research Center, 1989.

[19] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals

Problem. ACM Transactions on Programming Languages and

Systems, 4(3), 1982.

[20] B. Liskov et al. Replication in the Harp File System. In ACM

Symposium on Operating System Principles, 1991.

[21] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,

1996.

[22] D. Malkhi and M. Reiter. A High-Throughput Secure Reliable

Multicast Protocol. In Computer Security Foundations Workshop,

1996.

[23] D. Malkhi and M. Reiter. Byzantine Quorum Systems. In ACM

Symposium on Theory of Computing, 1997.

[24] D. Malkhi and M. Reiter. Unreliable Intrusion Detection in

Distributed Computations. In Computer Security Foundations

Workshop, 1997.

[25] D. Malkhi and M. Reiter. Secure and Scalable Replication in

Phalanx. In IEEE Symposium on Reliable Distributed Systems,

1998.

[26] B. Oki and B. Liskov. Viewstamped Replication: A New Primary

Copy Method to Support Highly-Available Distributed Systems.

In ACM Symposium on Principles of Distributed Computing,

1988.

[27] B. Preneel and P. Oorschot. MDx-MAC and Building Fast MACs

from Hash Functions. In Crypto 95, 1995.

[28] C. Pu, A. Black, C. Cowan, and J. Walpole. A Specialization

Toolkit to Increase the Diversity of Operating Systems. In ICMAS

Workshop on Immunity-Based Systems, 1996.

[29] M. Reiter. Secure Agreement Protocols. In ACM Conference on

Computer and Communication Security, 1994.

[30] M. Reiter. The Rampart Toolkit for Building High-Integrity

Services. Theory and Practice in Distributed Systems (LNCS

938), 1995.

[31] M. Reiter. A Secure Group Membership Protocol. IEEE

Transactions on Software Engineering, 22(1), 1996.

[32] R. Rivest. The MD5 Message-Digest Algorithm. Internet RFC-

1321, 1992.

[33] R. Rivest, A. Shamir, and L. Adleman. A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems.

Communications of the ACM, 21(2), 1978.

[34] F. Schneider. Implementing Fault-Tolerant Services Using The

State Machine Approach: A Tutorial. ACM Computing Surveys,

22(4), 1990.

[35] A. Shamir. How to share a secret. Communications of the ACM,

22(11), 1979.

[36] G. Tsudik. Message Authentication with One-Way Hash

Functions. ACM Computer Communications Review, 22(5), 1992.

[37] M. Wiener. Performance Comparison of Public-Key Cryptosys-

tems. RSA Laboratories’ CryptoBytes, 4(1), 1998.

14


