
Programming Distributed Applications using Plan 9 from Bell Labs

Sape Mullender

Dave Presotto

Bell Laboratories

Murray Hill, New Jersey 07974

1. Plan 9 Overview

Sape Mullender

When Plan 9 from Bell Labs was first released in 1995, the principal developers wrote

‘‘By the mid 1980’s, the trend in computing was away from large centralized timeshared computers towards net

works of smaller, personal machines, typically UNIX ‘workstations’. People had grown weary of overloaded,

bureaucratic timesharing machines and were eager to move to small, selfmaintained systems, even if that meant a net

loss in computing power. As microcomputers became faster, even that loss was recovered, and this style of comput

ing remains popular today.

‘‘In the rush to personal workstations, though, some of their weaknesses were overlooked. First, the operating system

they run, UNIX, is itself an old timesharing system and has had trouble adapting to ideas born after it. Graphics and

networking were added to UNIX well into its lifetime and remain poorly integrated and difficult to administer. More

important, the early focus on having private machines made it difficult for networks of machines to serve as seam

lessly as the old monolithic timesharing systems. Timesharing centralized the management and amortization of costs

and resources; personal computing fractured, democratized, and ultimately amplified administrative problems. The

choice of an old timesharing operating system to run those personal machines made it difficult to bind things together

smoothly.

‘‘Plan 9 began in the late 1980’s as an attempt to have it both ways: to build a system that was centrally administered

and costeffective using cheap modern microcomputers as its computing elements. The idea was to build a time

sharing system out of workstations, but in a novel way. Different computers would handle different tasks: small,

cheap machines in people’s offices would serve as terminals providing access to large, central, shared resources such

as computing servers and file servers. For the central machines, the coming wave of sharedmemory multiprocessors

seemed obvious candidates. The philosophy is much like that of the Cambridge Distributed System. The early catch

phrase was to build a UNIX out of a lot of little systems, not a system out of a lot of little UNIXes.

‘‘The problems with UNIX were too deep to fix, but some of its ideas could be brought along. The best was its use of

the file system to coordinate naming of and access to resources, even those, such as devices, not traditionally treated

as files. For Plan 9, we adopted this idea by designing a networklevel protocol, called 9P, to enable machines to

access files on remote systems. Above this, we built a naming system that lets people and their computing agents

build customized views of the resources in the network. This is where Plan 9 first began to look different: a Plan 9

user builds a private computing environment and recreates it wherever desired, rather than doing all computing on a

private machine. It soon became clear that this model was richer than we had foreseen, and the ideas of perprocess

name spaces and filesystemlike resources were extended throughout the system� to processes, graphics, even the

network itself.

‘‘By 1989 the system had become solid enough that some of us began using it as our exclusive computing environ

ment. This meant bringing along many of the services and applications we had used on UNIX. We used this oppor

tunity to revisit many issues, not just kernelresident ones, that we felt UNIX addressed badly. Plan 9 has new com

pilers, languages, libraries, window systems, and many new applications. Many of the old tools were dropped, while

those brought along have been polished or rewritten.’’

Plan 9 had its second public release in 2000. A few thousand users run Plan 9 as their primary operating system today.

The third edition of Plan 9 is available for download at plan9.belllabs.com/plan9 and it can be ordered in a

box containing a Plan 9 CDROM and a set of printed manuals from www.vitanuova.com.

A typical Plan 9 configuration at Bell Labs consists of diskless workstations, PDAs, CPU servers and file servers,

interconnected by wireless and wired Ethernet. To the casual user, the system appears as a single, centralized system.

Most users configure their systems to run interactive programs locally and computeintensive ones on one of the CPU

servers.

The resources in the system are named and accessed using a hierarchical name space. The internal nodes of the name

space are called directories, and the leaf nodes are called files, even though � as we shall see � they often aren’t really

files in the conventional sense. Each file or directory is served by a file system. Some of these are conventional file sys

tems that store files on disk or tertiary storage. Others are only file systems in the sense that they interact with applica

tions through a filesystem interface; they do not store data on disk, however.

Consider, for example, mouse and keyboard of a workstation. The operating system makes mouse events and keys

trokes available through a kernelbased file system that serves /dev/mouse and /dev/cons (the name was derived

from console), much like Unix.

Plan 9 implements process management through another kernelbased file system, called proc(3), normally bound to

/proc. The files in the directory /proc/pid, where pid represents a (decimal) process number, allow examination,

debugging and control of a process. Writing the string ‘‘kill’’ to the file /proc/pid/ctl, for example, will kill the

process whose process identifier is pid. Linux, FreeBSD, NetBSD, etc., now implement portions of this interface too; in

Plan 9, however, writing a string to a process’ ctl file is the only way to kill it.

The name space of a Plan 9 process is a tree, composed of the naming trees of the file systems mounted into its name

space. This is just like in Unix. But where Unix maintains one name space per machine, Plan 9 can maintain many

name spaces, one per process, if desired.

A mount(2) operation takes a connection to a file system (represented by a file descriptor for a pipe or a network con

nection) and attaches it to a point in the name space. That point then represents the root of the mounted file system.

Multiple file systems may be mounted at the same point and the search order for lookups in the name space is deter

mined by the order in which the mount operations were carried out and order parameters to those operations. This is a

union mount (and the semantics are not quite the same as those in FreeBSD).

There is also a bind operation which takes two points in the name space (file or directory names) and makes the for

mer visible in place of the latter. As in mount it is possible to bind multiple directories to one location.

The Plan 9 kernel manages the mount table and redirects operations on files to the appropriate file system. File sys

tems receive these operations and respond to them in the form of messages. The 9P protocol describes these messages.

We shall review them in Section 2.

Applications can be more or less oblivious of the 9P protocol. They use the system calls familiar to several genera

tions of Unix users to read and write files: open, close, read, write, seek, create, etc. The kernel translates these calls

into 9P requests and translates 9P responses back into the return values of these system calls. The mapping of system

calls to 9P requests is not onetoone, by the way.

When a process creates a new process (using the Plan 9 rfork system call), the child process normally inherits its

parent’s name space, either by copying or by sharing. If the name space is shared, mount and unmount operations of the

parent are visible to the child and vice versa. If it’s copied, this is not the case.

Name space inheritance and name space modification are used to configure the environment in which processes run.

As an example, let us consider /dev/mouse and /dev/cons in the context of the window system.

Rio(1) is the window system in Plan 9. Among its tasks is demultiplexing mouse and keyboard input among the pro

cesses running in the windows on the screen. Which process gets a character or mouse event depends on the position of

the mouse and the window that is current. To do this, rio is also a file system. Its name space contains files called

mouse and cons. (There are many more files as well, but we will not discuss them here.) When a window is created

and a process started to run in it, the new process inherits its name space from rio. But rio first mounts its own file sys

tem in the new process’ name space so that, instead of accessing the kernel’s mouse and cons files, it accesses rio’s

instead. Thus, as far as mouse and keyboard input is concerned, processes cannot distinguish between running directly

on the hardware mouse and keyboard, or running in a window. The same is done for screen output so that processes

cannot tell the difference as far as output is concerned either.

As a side effect of this architecture, rio cannot tell either whether it runs on the raw display or in a window. Rio,

therefore, is one of the few windows systems that allows itself to be resized. We have ported MIT’s X Window system

to Plan 9 also and it, of course, cannot tell either whether it runs in a window.

The 9P protocol that connects application to file systems was designed to run well over networks. As a result, it is quite

simple to set up a diskless workstation with 9P connections to remote file systems. Thus, the environment presented to

a user looks pretty much the same wherever the user logs in.

We have seen how Plan 9 manipulates the name space to present virtual versions of /dev/mouse and /dev/cons
to applications running in a window. The Plan 9 name space obviously is not a global one in the sense of DNS or X.500

where a name refers to the same object everywhere. It is clear that truly global name spaces make a lot of sense in many

contexts. It is useful that sape@plan9.belllabs.com refers to Sape Mullender’s mailbox anywhere in the

internet. In Plan 9 the idea is that the same name means the same thing everywhere: /bin/sort is the sorting pro

gram everywhere even though the binaries are different on different machines. The /bin directory is typically popu

lated at boot time by binding into it directories such as /$objtype/bin, /rc/bin, $home/bin/$objtype, and

$home/bin/rc (rc(1) is the name of the Plan 9 shell).

The name space that a process sees is the result of a sequence of mount and bind operations. By repeating this

sequence on another host (with a little interpretation), the same name space can be constructed there. This is used when

a user starts a shell on the cpu server giving the user the same environment on the cpu server as on the terminal. The

terminal’s operating system actually exports its file systems to the user on the cpu server so that programs running on

the cpu server continue to have access to devices on the terminal.

2. Plan 9 File Systems

Dave Presotto

The 9P protocol provides access (locally or remotely) to a hierarchical set of objects. The objects can be actual bits on a

disk, e.g., a file system, or an abstraction provided by a kernel device or user level process.

9P has remained pretty much unchanged since the original release of Plan 9 in 1995. This is the version we will be

teaching in this tutorial The next release will finally have a new version of the protocol, 9P2000. It is philosophically

the same as the previous 9P. However, it has been enhanced in a number ways:

� mtu negotiation (for encapsulating 9P streams inside 9P streams)

� variable length fields for file name elements and user ids

� larger (64 bit) object and file ID’s

� message restructuring to reduce the number of messages and hence round trip delays

� blind encapsulation of authentication information to make 9P2000 authentication protocol agnostic

Through a trick (hack?) in the marshaling routines that convert 9P messages between C structures and their line

encodings, servers talking 9P2000 can talk to both old 9P clients and newer 9P2000 clients. The marshaling routines

just convert between the old and new versions.

We’ll also introduce this version and some of the differences that will be important to programmers.

2.1. Client Side, setting up communications

The client side of 9P is painless. All clients use 9P indirectly via UNIXlike system calls (open, read, write, ...). Object

naming and access controls are much like Unix file names, i.e., ’/’ separated path elements and 9 bit rwxrwxrwx permis

sions. Details differ but the ideas and feel are the same. Putting all process accessible objects in the same namespace

removes the distinction between where things are implemented making the system much more distributable.

It is the kernel’s job to convert system calls into 9P messages, write them onto the appropriate communications chan

nel (TCP, IL, serial, etc), and convert and demultiplex the replies.

Clients add new services into their namespace in four basic ways:

1) binding local kernel devices (com ports, disk drives, etc)

bind ’#p’ /dev

2) mounting locally advertised services from /srv.

mount /srv/cs /net

3) directly dialing and mounting new servers.

4) importing a complete name space from another system.

2.1.1. Local Switchbard, #s

#s is a local switchboard for connections to services. It is normally bound onto /srv. A server process can leave a file

descriptor there for other processes to reopen. The following example implements what would be called a named pipe

in Unix:

int
postpipe(void)
{

int pfd[2];
inf fd;

if(pipe(pfd) < 0)
sysfatal("pipe failed: %r");

fd = create("/srv/quux", ORDWR, 0666);
if(fd < 0)

sysfatal("can’t create /srv/quux: %r");
sprint(buf, "%d", pfd[1]);
if(write(fd, buf, strlen(buf)) < 0)

sysfatal("posting: %r");
close(fd);
close(pfd[1]);
return pfd[0];

}

Postpipe() returns one end of the pipe. A client process opening /srv/quux will have a file descriptor to the other

end. If the client now mounts this file descriptor somewhere in its name space (see mount(2)), any access at or below

that spot in the name space will result in 9P messages sent through the pipe to the server.

2.1.2. Dialing a Network Service

A process could also directly dial a server using dial(2). This will be covered in the network section. The result is once

again a file descriptor that can be mounted into the client’s name space. The command srv(4) can be used, to call up a

server, post its file descriptor into /srv, and optionally mount it into your name space. By posting it, we make it avail

able for other users on the system should they also want to connect to the same resource.

2.1.3. Importing a Remote Namespace

Finally, one can import a complete namespace from another machine and use it to access resources on that machine.

The client program is called import(4) and the server side exportfs(4). Import takes a remote system name, a path on the

remote system, and an optional local path on your system. It effectively mounts the remote namespace starting at the

remote path at the local path in your namespace. For example:

import achille.cs.bell.labs.com /net.alt

makes the external IP stack from our gateway system accessible from my local system. This is a handy way to imple

ment a cheap firewall. We’ll talk more about this in the networking section.

Import/exportfs performs its authentication up front before 9P is started. We’ll expand on this in the authentication

section.

Combining two of these ideas we can allow processes on two machines to talk. Before starting the processes, import

the /srv directory of each machine onto the other. That way each process can use the postpipe() routine shown above to

create named pipes visible on both machines.

2.2. Server Side, talking 9P

How difficult a server is to write depends on how robust and responsive it needs to be. At the very least, it has to under

stand 9P messages, process them, and act on them. A 9P connection consists of request messages from the client fol

lowed by replies from the server. If any action can block, the server may need to be multithreaded to provide acceptable

response. Since multiple users may send requests on a single connection, the server may also need to handle user

authentication and access controls. Finally, since blocked requests may be aborted, a certain amount of asynchrony may

be involved. A singlethreaded server with no asynchrony is pretty easy to write. A long lived, multithreaded one, with

a lot of asynchrony and memory allocation can take years to make solid. Start small, copy

/sys/src/cmd/ramfs.c and work your way to something more complex.

2.2.1. Tags

9P messages are not necessarily processed in order. The server is encouraged not to let one blocked request delay

another. Therefore a 16 bit tag is included in every message to match replies to their requests.

2.2.2. FID’s

9P, unlike NFS, is a stateful protocol. Each message contains a 32 bit FID. The FIDs are chosen by the client and rep

resent indices for the shared state known by both sides. Associated with each FID is an object instance and the authenti

cated user id performing the access. FID’s are relative to a single connection so that when a connection is closed, FID

state is lost.

Whenever a process mounts a connection to a server into its namespace, an attach request is sent to the server con

taining both a FID for the server’s root and a user id of the attaching user plus any authenticating information. The

attach FID is a handle for the root of the name space. The client may then clone that FID to a new FID and walk the

cloned FID to any object in the space, subject to permissions. This new FID can be stored away to be walked again later

or opened so that reads and writes can be performed on the referenced object.

For example, each process has associated with it 2 FID’s; its root FID and its current directory FID. Paths starting

with ’/’ are resolved by cloning the root FID and walking each element. Resolving relative paths starts with cloning the

current directory FID. A call walks a path and the resulting FID is saved as the current directory FID.

In general, it is illegal to have multiple conflicting operations outstanding on a single FID. To prevent this, walks are

disallowed following an open. In addition, the server is free to impose added restrictions by serializing or reordering

concurrent read and write requests.

2.2.3. Server structure:

The following can be taken as a template for a server program:

#include <u.h>
#include <libc.h>
#include <fcall.h>

typedef struct Fsrpc Fsrpc;
struct Fsrpc
{

...
Fcallwork; /* Plan 9 incoming Fcall */
Fcallreply; /* Plan 9 reply Fcall */
uchar*buf; /* Data buffer */

};

void (*fcalls[])(Fsrpc*) =
{

[Tnop] Xnop,
[Tsession] Xsession,
[Tflush] Xflush,
[Tattach] Xattach,
[Tclone] Xclone,
[Twalk] Xwalk,
[Topen] slave,
[Tcreate] Xcreate,
[Tclunk] Xclunk,
[Tread] slave,
[Twrite] slave,
[Tremove] Xremove,
[Tstat] Xstat,
[Twstat] Xwstat,
[Tclwalk] Xclwalk,

};

The array fcalls has one function per message type. It is up to the function to look up the state associated with any

included FIDs, perform the request, and reply.

void
main(void)
{

char buf[16*1024];
Fsrpc *r;

fmtinstall(’F’, fcallconv);
...
for(;;) {

r = getsbuf();
if(r == 0)

fatal("Out of service buffers");

do
n = read9p(netfd, r>buf, sizeof(r>buf));

while(n == 0);

if(n < 0)
fatal("server read");

if(convM2S(r>buf, &r>work, n) == 0)
fatal("format error");

DEBUG(DFD, "%F0, &r>work);
(fcalls[r>work.type])(r);

}
}

The main loop processes one message at a time. It leaves replying up to the per message function. That way, if the

function might block it can launch a thread to handle the blocking request and return without replying. The new thread

is responsible for performing the reply.

The standard reply routine is shown below:

void
reply(Fsrpc *r, char *err)
{

char data[MAXFDATA+MAXMSG];
int n;

r>reply.tag = r>work.tag;
r>reply.fid = r>work.fid;
if(err) {

r>reply.type = Rerror;
strncpy(r>reply.ename, err, ERRLEN);

}
else

r>reply.type = r>work.type + 1;

DEBUG(DFD, " %F0, &r>reply);

n = convS2M(&r>reply, data);
if(write(1, data, n)!=n)

sysfatal("mount write");
free(r);

}

Any reply may return an arbitrarylength error string instead of the expected reply.

2.2.4. Flush, aborting blocked requests

The big fly in the ointment is the flush request. It contains two tag’s, it’s own and the target tag. The intent is to termi

nate some previous request and represents the only asynchrony in the protocol. The function processing the flush must

find the thread handling the previous request, cause it to terminate, and then reply to the flush. This is often difficult

since it may requires sending a note (see and handling it correctly in the noted thread. To avoid a note at a bad time,

there usually needs to be some synchronization mechanisms (rendezvous(2), lock(2), or qlock(2)) between the different

threads. Be afraid, be very afraid: This is the source of most server errors.

2.2.5. The 9P library, for simpler servers

Russ Cox at Harvard has provided a library for writing 9P server, 9p(2). This library provides scaffolding for the server.

With it, the programmer need supply only the message processing routines and the library does the rest, posting a file in

/srv and providing the main loop of the server. It’s respond routine is much like the reply routine shown above. The

9P library even provides routines for creating a file hierarchy and will automatically walk it, stat directories, and per

form access checks. When the server is straightforward, many programmers find libp9 very useful.

2.2.6. Marshaling

Section 5 of the Plan 9 manual (included with your notes) describes the 9P messages. The unmarshaled version of a 9P

message is the Fcall structure. It contains unions for the contents of the different message types. A server’s message

functions take an Fcall structure as a request and produce another as a reply. ConvM2S and convS2M respectively

unmarshal and marshal Fcall structures. ConvM2D and convD2M do the same for Dir structures, the C structure repre

senting a directory entry.

2.2.7. Authentication

9P allows each user to be separately authenticated as he mounts the connection into his name space. However, most

servers (i.e. all except the actual file servers) authenticate once up front and perform all accesses as a single user. See

auth(2) for the client and srvauth(2) for the server. If srvauth returns 0, then the connection has been successfully

authenticated and the server process is now running as the authenticated user. The process is still in the old name space

so that it has access to the same files it did before authenticating until after a subsequent newns(2) call. A variant of

these routines, authnonce(2) and srvauthnonce(2) also return a 64 bit secret than can be used to create encryption keys

for the conversation. For example:

static int
p9auth(int fd)
{

uchar key[16], digest[SHA1dlen];
char fromclientsecret[21], fromserversecret[21];
int i;

if(authnonce(fd, key+4) < 0) return 1;

if(ealgs == nil) return fd;

/* exchange random numbers */
srand(truerand());
for(i = 0; i < 4; i++)

key[i] = rand();
if(write(fd, key, 4) != 4 || readn(fd, key+12, 4) != 4)

return 1;

/* scramble into two secrets */
sha1(key, sizeof(key), digest, nil);
mksecret(fromclientsecret, digest);
mksecret(fromserversecret, digest+10);

fflag = 0;

/* set up encryption */
return pushssl(fd, ealgs, fromclientsecret,

fromserversecret, nil);
}

This code authenticates to a server (as the current user) and sets up encryption on the connection. Mksecret just sprints

the key into a form acceptable to our ssl link encryption device. The corresponding server code is:

static int
srvp9auth(int fd, char *user)
{

uchar key[16], digest[SHA1dlen];
char fromclientsecret[21], fromserversecret[21];
int i;

if(srvauthnonce(fd, user, key+4) < 0) return 1;
fchown(fd, user);

if(ealgs == nil) return fd;

/* exchange random numbers */
srand(truerand());
for(i = 0; i < 4; i++)

key[i+12] = rand();
if(readn(fd, key, 4) != 4 || write(fd, key+12, 4) != 4)

return 1;

/* scramble into two secrets */
sha1(key, sizeof(key), digest, nil);
mksecret(fromclientsecret, digest);
mksecret(fromserversecret, digest+10);

fflag = 0;

/* set up encryption */
return pushssl(fd, ealgs, fromserversecret,

fromclientsecret, nil);
}

Here fchown is a routine that changes the ownership of the network directory (described later) to the user id just authen

ticated. See pushssl(2) and ssl(3) for information on setting up encryption on a connection.

3. Plan 9 Networking

Dave Presotto

Plan 9 has no sockets. Instead, multiplexed devices and protocol connections (TCP, UDP, etc) are all in the namespace

and look like file systems. They’re accessed and controlled by reading and writing files. Hence they can be exported or

imported.

3.1. Multiplexed Devices

The simplest example of a multiplexed device is an ethernet:

% cd /net/ether0
% ls l
drxrxrx l 0 presotto presotto 0 Apr 11 13:00 0
drxrxrx l 0 presotto presotto 0 Apr 11 13:00 1
rwrwrw l 0 presotto presotto 0 Apr 11 13:00 addr
rwrwrw l 0 presotto presotto 0 Apr 11 13:00 clone
% cat addr; echo
00104b9b8172

At the top level there are two files and three directories. Each directory represents a conversation, in this case one per

ethernet type in use.

Inside each conversation directory are a number of files representing different aspects of the conversation; control,

data, statistics, packet type:

% cd 0
% ls l
rwrwrw l 0 presotto presotto 0 Apr 11 13:00 ctl
rwrwrw l 0 presotto presotto 0 Apr 11 13:00 data
rrr l 0 presotto presotto 0 Apr 11 13:00 ifstats
rrr l 0 presotto presotto 0 Apr 11 13:00 stats
rrr l 0 presotto presotto 0 Apr 11 13:00 type
% cat ctl

0
% cat stats
in: 139707
out: 118657
crc errs: 0
overflows: 0
soft overflows: 0
framing errs: 0
buffer errs: 0
output errs: 0
prom: 0
addr: 00104b9b8172
%

Reading the control file tells you which conversation directory you’re in. Writing it controls the conversation:

% echo connect 32 > ctl
% cat type

32
%

A free conversation can be found (or created) by opening the clone file, which returns the fd of the ctl file of the

new conversation:

% cat clone;echo
2

ether0@pt109% ls l
drxrxrx l 0 presotto presotto 0 Apr 11 13:00 0
drxrxrx l 0 presotto presotto 0 Apr 11 13:00 1
drxrxrx l 0 presotto presotto 0 Apr 11 13:00 2
rwrwrw l 0 presotto presotto 0 Apr 11 13:00 addr
rwrwrw l 0 presotto presotto 0 Apr 11 13:00 clone
%

Finally, reading and writing the data file results in sending and receiving data.

3.2. Protocol Directories

Protocols, like TCP are a bit more complex than multiplexed devices but not much:

% cd /net/tcp
% ls l
drxrxrx I 0 presotto presotto 0 Apr 11 13:00 0
drxrxrx I 0 network presotto 0 Apr 11 13:00 1
rwrwrw I 0 network presotto 0 Apr 11 13:00 clone
rrr I 0 network presotto 0 Apr 11 13:00 stats

The stats file for each protocol type is our equivalent of a MIB, just easier to access.

% cat stats
MaxConn: 512
ActiveOpens: 16
PassiveOpens: 0
EstabResets: 0
CurrEstab: 1
InSegs: 5779
OutSegs: 5514
RetransSegs: 28
RetransTimeouts: 3
InErrs: 0
OutRsts: 2
CsumErrs: 0
HlenErrs: 0
LenErrs: 0
OutOfOrder: 0
%

The clone file acts the same as the one for the ethernet, i.e., opening it finds a free conversation. A side effect of

opening an unused conversation is that ownership of the the conversations files are is changed to your user id. You can

then chmod(2) them as you see fit.

The main difference between protocols and network devices is the ability of servers to receive new calls. This is per

formed using the listen file.

% cd 0
% ls l
rwrw I 0 presotto presotto 0 Apr 11 13:00 ctl
rwrw I 0 presotto presotto 0 Apr 11 13:00 data
rwrw I 0 presotto presotto 0 Apr 11 13:00 err
rwrw I 0 presotto presotto 0 Apr 11 13:00 listen
rrr I 0 presotto presotto 0 Apr 11 13:00 local
rrr I 0 presotto presotto 0 Apr 11 13:00 remote
rrr I 0 presotto presotto 0 Apr 11 13:00 status
%

After announcing that this connection is listening on a particular port, we then listen for a call by opening the listen file.

This file is very similar to the clone file at the top level directory. When it returns, it will return with the open fd of the

ctl file of the incoming call.

% echo announce 25 > ctl
% cat listen

3
% echo go away don’t bother me > ../3/data

3.3. Network Addressing

A uniform interface to protocols and devices is not sufficient to support the transparency we require. Since each net

work uses a different addressing scheme, the ASCII strings written to a control file have no common format. As a

result, every tool must know the specifics of the networks it is capable of addressing. Moreover, since each machine

supplies a subset of the available networks, each user must be aware of the networks supported by every terminal and

server machine. This is obviously unacceptable.

Several possible solutions were considered and rejected; one deserves more discussion. We could have used a user

level file server to represent the network name space as a Plan 9 file tree. This global naming scheme has been imple

mented in other distributed systems. The file hierarchy provides paths to directories representing network domains.

Each directory contains files representing the names of the machines in that domain; an example might be the path

/net/name/usa/edu/mit/ai. Each machine file contains information like the IP address of the machine. We

rejected this representation for several reasons. First, it is hard to devise a hierarchy encompassing all representations of

the various network addressing schemes in a uniform manner. Datakit and Ethernet address strings have nothing in

common. Second, the address of a machine is often only a small part of the information required to connect to a service

on the machine. For example, the IP protocols require symbolic service names to be mapped into numeric port num

bers, some of which are privileged and hence special. Information of this sort is hard to represent in terms of file opera

tions. Finally, the size and number of the networks being represented burdens users with an unacceptably large amount

of information about the organization of the network and its connectivity. In this case the Plan 9 representation of a

resource as a file is not appropriate.

If tools are to be network independent, a thirdparty server must resolve network names. A server on each machine,

with local knowledge, can select the best network for any particular destination machine or service. Since the network

devices present a common interface, the only operation which differs between networks is name resolution. A symbolic

name must be translated to the path of the clone file of a protocol device and an ASCII address string to write to the

ctl file. A connection server (CS) provides this service.

The format we chose for addresses is a string composed of three ’!’ separated elements. An example would be the

SMTP server at Stanford’s CS department:

/net/tcp!cs.stanford.edu!smtp

The first element is a path in our namespace indicating the protocol directory. The second is a machine name inter

preted relative to that protocol type. The final is the service on that machine. As we show later, it’s up to CS to convert

that into an IP address, port number, etc. No other program has to know such specifics. They can just deal with it as a

string.

3.4. Network Database

On most systems several files such as /etc/hosts, /etc/networks, /etc/services, /etc/hosts.equiv,

/etc/bootptab, and /etc/named.d hold network information. Much time and effort is spent administering

these files and keeping them mutually consistent. Tools attempt to automatically derive one or more of the files from

information in other files but maintenance continues to be difficult and error prone.

Since we were writing an entirely new system, we were free to try a simpler approach. One database on a shared

server contains all the information needed for network administration. Two ASCII files comprise the main database:

/lib/ndb/local contains locally administered information and /lib/ndb/global contains information

imported from elsewhere. The files contain sets of attribute/value pairs of the form attr=value, where attr and value are

alphanumeric strings. Systems are described by multiline entries; a header line at the left margin begins each entry fol

lowed by zero or more indented attribute/value pairs specifying names, addresses, properties, etc. For example, the

entry for our CPU server specifies a domain name, an IP address, an Ethernet address, a Datakit address, a boot file, and

supported protocols.

sys = helix
dom=helix.research.belllabs.com
bootf=/mips/9power
ip=135.104.9.31 ether=0800690222f0
dk=nj/astro/helix
proto=il flavor=9cpu

If several systems share entries such as network mask and gateway, we specify that information with the network or

subnetwork instead of the system. The following entries define a Class B IP network and a few subnets derived from it.

The entry for the network specifies the IP mask, file system, and authentication server for all systems on the network.

Each subnetwork specifies its default IP gateway.

ipnet=mhastronet ip=135.104.0.0 ipmask=255.255.255.0
fs=bootes.research.belllabs.com
auth=1127auth

ipnet=unixroom ip=135.104.117.0
ipgw=135.104.117.1

ipnet=thirdfloor ip=135.104.51.0
ipgw=135.104.51.1

ipnet=fourthfloor ip=135.104.52.0
ipgw=135.104.52.1

Database entries also define the mapping of service names to port numbers for TCP, UDP, and IL.

tcp=echo port=7
tcp=discard port=9
tcp=systat port=11
tcp=daytime port=13

Many programs, such as the connection server and database server, read the database directly so consistency prob

lems are rare. However the database files can become large. To speed searches, we build hash table files for each

attribute we expect to search often. The hash file entries point to entries in the master files. Every hash file contains the

modification time of its master file so we can avoid using an outofdate hash table. Searches for attributes that aren’t

hashed or whose hash table is outofdate still work, they just take longer.

3.5. Connection Server

On each system a user level connection server process, CS, translates symbolic names to addresses. CS uses informa

tion about available networks, the network database, and other servers (such as DNS) to translate names. CS is a file

server serving a single file, /net/cs. A client writes a symbolic name to /net/cs then reads one line for each

matching destination reachable from this system. The lines are of the form filename message, where filename is the

path of the clone file to open for a new connection and message is the string to write to it to make the connection. The

following example illustrates this. Ndb/csquery is a program that prompts for strings to write to /net/cs and

prints the replies.

% ndb/csquery
> net!helix!9fs
/net/il/clone 135.104.9.31!17008
/net/dk/clone nj/astro/helix!9fs

CS provides metaname translation to perform complicated searches. The special network name net selects any net

work in common between source and destination supporting the specified service. A host name of the form $attr is the

name of an attribute in the network database. The database search returns the value of the matching attribute/value pair

most closely associated with the source host. Most closely associated is defined on a per network basis. For example,

the symbolic name tcp!$auth!rexauth causes CS to search for the auth attribute in the database entry for the

source system, then its subnetwork (if there is one) and then its network.

% ndb/csquery
> net!$auth!rexauth
/net/il/clone 135.104.9.34!17021
/net/dk/clone nj/astro/p9auth!rexauth
/net/il/clone 135.104.9.6!17021
/net/dk/clone nj/astro/musca!rexauth

Normally CS derives naming information from its database files. For domain names however, CS first consults

another user level process, the domain name server (DNS). If no DNS is reachable, CS relies on its own tables.

Like CS, the domain name server is a user level process providing one file, /net/dns. A client writes a request of

the form domainname type, where type is a domain name service resource record type. DNS performs a recursive

query through the Internet domain name system producing one line per resource record found. The client reads

/net/dns to retrieve the records. Like other domain name servers, DNS caches information learned from the net

work. DNS is implemented as a multiprocess shared memory application with separate processes listening for network

and local requests.

3.6. Library routines

The sections on multiplexed devices and protocol directories described the details of making and receiving connections

across a network. The dance is straightforward but tedious. Library routines are provided to relieve the programmer of

the details.

3.6.1. Connecting

The dial library call establishes a connection to a remote destination. It returns an open file descriptor for the data
file in the connection directory.

int dial(char *dest, char *local, char *dir, int *cfdp)

dest is the symbolic name/address of the destination.

local is the local address. Since most networks do not support this, it is usually zero.

dir is a pointer to a buffer to hold the path name of the protocol directory representing this connection. Dial
fills this buffer if the pointer is nonzero.

cfdp is a pointer to a file descriptor for the ctl file of the connection. If the pointer is nonzero, dial opens

the control file and tucks the file descriptor here.

Most programs call dial with a destination name and all other arguments zero. Dial uses CS to translate the sym

bolic name to all possible destination addresses and attempts to connect to each in turn until one works. Specifying the

special name net in the network portion of the destination allows CS to pick a network/protocol in common with the

destination for which the requested service is valid. For example, assume the system olive.cs.belllabs.com
supports the cpu service using both the IL and TCP protocols on a few different
interfaces 135.104.9.15 and 135.104.9.17. The call

fd = dial("net!olive.cs.belllabs.com!cpu", 0, 0, 0, 0);

tries in succession to connect to
il!135.104.9.15!17013

tcp!135.104.9.15!17013

il!135.104.9.17!17013

tcp!135.104.9.17!17013

Dial also accepts addresses instead of symbolic names. For example, the destinations

tcp!135.104.117.5!513 and tcp!research.belllabs.com!login are equivalent references to the

same machine.

3.6.2. Listening

A program uses four routines to listen for incoming connections. It first announce()s its intention to receive connec

tions, then listen()s for calls and finally accept()s or reject()s them. Announce returns an open file

descriptor for the ctl file of a connection and fills dir with the path of the protocol directory for the announcement.

int announce(char *addr, char *dir)

Addr is the symbolic name/address announced; if it does not contain a service, the announcement is for all services not

explicitly announced. Thus, one can easily write the equivalent of the inetd program without having to announce

each separate service. An announcement remains in force until the control file is closed.

Listen returns an open file descriptor for the ctl file and fills ldir with the path of the protocol directory for the

received connection. It is passed dir from the announcement.

int listen(char *dir, char *ldir)

Accept and reject are called with the control file descriptor and ldir returned by listen. Some networks such

as Datakit accept a reason for a rejection; networks such as IP ignore the third argument.

int accept(int ctl, char *ldir)
int reject(int ctl, char *ldir, char *reason)

The following code implements a typical TCP listener. It announces itself, listens for connections, and forks a new

process for each. The new process echoes data on the connection until the remote end closes it. The "*" in the symbolic

name means the announcement is valid for any addresses bound to the machine the program is run on.

int
echo_server(void)
{

int dfd, lcfd;
char adir[40], ldir[40];
int n;
char buf[256];

afd = announce("tcp!*!echo", adir);
if(afd < 0)

return 1;

for(;;){
/* listen for a call */
lcfd = listen(adir, ldir);
if(lcfd < 0)

return 1;

/* fork a process to echo */
switch(fork()){
case 0:

/* accept the call and open the data file */
dfd = accept(lcfd, ldir);
if(dfd < 0)

return 1;

/* echo until EOF */
while((n = read(dfd, buf, sizeof(buf))) > 0)

write(dfd, buf, n);
exits(0);

case 1:
perror("forking");

default:
close(lcfd);
break;

}

}
}

3.7. The IL Protocol

When we first built Plan 9, none of the standard IP protocols was suitable for transmission of 9P messages over an Eth

ernet or the Internet. TCP had a high overhead and did not preserve delimiters. UDP, while cheap, does not provide

reliable sequenced delivery. Early versions of the system used a custom protocol that was efficient but unsatisfactory

for internetwork transmission. When we implemented IP, TCP, and UDP we looked around for a suitable replacement

with the following properties:

� Reliable datagram service with sequenced delivery

� Runs over IP

� Low complexity, high performance

� Adaptive timeouts

None met our needs so a new protocol was designed. IL is a lightweight protocol designed to be encapsulated by IP. It

is a connectionbased protocol providing reliable transmission of sequenced messages between machines. No provision

is made for flow control since the protocol is designed to transport RPC messages between client and server. A small

outstanding message window prevents too many incoming messages from being buffered; messages outside the window

are discarded and must be retransmitted. Connection setup uses a two way handshake to generate initial sequence num

bers at each end of the connection; subsequent data messages increment the sequence numbers allowing the receiver to

resequence out of order messages. In contrast to other protocols, IL does not do blind retransmission. If a message is

lost and a timeout occurs, a query message is sent. The query message is a small control message containing the current

sequence numbers as seen by the sender. The receiver responds to a query by retransmitting missing messages. This

allows the protocol to behave well in congested networks, where blind retransmission would cause further congestion.

Like TCP, IL has adaptive timeouts. A roundtrip timer is used to calculate acknowledge and retransmission times in

terms of the network speed. This allows the protocol to perform well on both the Internet and on local Ethernets.

Since then machines have gotten faster and the performance of TCP became more than good enough. Also, TCP’s

congestion avoidance make it better across a congested Internet than IL. Therefore, we tend to offer most services on

both and use IL locally and TCP externally. We may eventually decide that the dichotomy isn’t worth the effort.

4. Programming with Threads

Sape Mullender

Back in the good old days of centralized systems and Teletypes programs were, by and large, deterministic. The pro

gram dictated what input would be processed next and when output would occur. Deterministic programs are still com

mon today, of course, but distributed computing and programs with graphical user interfaces have made programs with

indeterministic input and output processes very common too.

Editors, browsers, file servers, window systems, mail servers are examples of ‘deterministic programs running in an

indeterministic environment’. Writing and debugging them is non trivial. In effect, there have been two major schools

of structuring such programs.

The first is the ‘eventloop’ approach: Central to the program is an event loop structured more or less like this:

for (;;) {
event = getevent();
switch(state + Nstates*event>type) {

...
}

}

There are two big problems with this approach. One is that it is not possible to use blocking system calls; the other is

that subroutines can’t do I/O � the main event loop is the only place where the program can block. Unix provides

nonblocking versions of its system calls and select for blocking on a list a possible events. Programming in this fash

ion destroys program sructure and makes for very hard debugging.

The other major approach is to use threads. Threads are lightweight processes sharing a single address space. Posix

threads, which are used on a variety of Unix systems are probably the best known example. They are implemented as a

library in user space and use nonblocking system calls and select internally, while offering blocking system calls to the

application. There are other, kernel based (e.g., Amoeba) or kernelsupported (e.g., Scheduler Activations) implementa

tions of threads also.

Threads allow proper structuring of distributed and nondeterministic applications, but most threadbased applications

have other problems. Unless the application has some control (or at least knowledge) of the way threads are scheduled,

the application writer has to be very careful to avoid race conditions while accessing and updating shared data struc

tures. Most shared data will need to be locked before access and unlocked after. This avoids the race conditions, but it

may introduce deadlock.

Locking is very hard to get right. Programmers forget to set or clear locks, they set the wrong ones for the data in

question, they don’t realize locks are needed, or they try to set one they already hold. It would be nice to have threads

without the hassle of needing locks. It would also be nice to have threads without the need for special nonblocking ver

sions of all system calls and without having to write a library that provides threaded versions of all the system calls.

In Plan 9, we use such a thread package. It consists of fewer than 2000 lines of C and it is used extensively in all the

major nondeterministic applications: rio, the window system, acme, the shell/editor. sam, the editor, juke and music, the

pop and classical jukebox players, ntpfs, wikifs, authfs and other file systems, and the list goes on.

There are three major ingredients to the package: channels, threads, and procs. Channels provide synchronous or

buffered communication between threads. Procs are Plan 9 processes sharing their address space. Apart from address

space sharing, they are ordinary Plan 9 processes and subject to normal, preemptive scheduling. Procs can contain one

or more threads. The threads in a proc are coroutines: at most one of the threads in a proc is runnable and this thread

has to yield the processor to another thread. Inside a proc, therefore, the application has control over when a thread

gives up the processor to another thread in the same proc. Threads have no explicit control over the scheduling of

threads in other procs.

Proc

Address space

Thread

Channel

Figure 1. Threaded application structure

Plan 9 has no nonblocking versions of system calls; a read call on a terminal, for instance, blocks until input is pro

vided on the terminal. While it blocks, it is still the active thread in the proc, so all other threads in that proc are blocked

too. As a result, threaded applications in Plan 9 are typically structured as a single proc that may have many threads and

that does all the work of the application, plus a number of procs that are all singlethreaded that do the I/O. These

threads communicate over the channels mentioned earlier. The structure is illustrated in Figure 1.

Channels provide a communication mechanism between threads. The basic operations on a channel are send and

receive. A channel transmits elements of a fixed size which is specified when the channel is created. Since the threads

using channels are in shared memory, it is common to use a channel of pointers to the actual data. This saves data copy

ing and it allows communication of variablesize data structures. Channels can be buffered or nonbuffered. In the

nonbuffered case, a rendezvous between sender and receiver takes place: the sender waits until the receiver receives

and vice versa. They can be used between threads in the same proc or threads in different procs.

The alt operation groups multiple send and recv operations, allowing reception from, an transmission to, one of a

group of channels. If none of the operations in the alt can proceed (when buffers are empty/full and unbuffered

send/recv operations have to wait for the rendezvous) it blocks until an operation can proceed. If multiple operations in

the alt can ‘fire’, one of them is chosen at random (to avoid starvation). Alt returns the index of the operation that fired.

For more details, we recommend you examine the man pages.

Figure 2. Plan 9 Flight information display

Let us examine a Plan 9 application to see how threading is used. The Plan 9 EFIS (Electronic Flight Information Sys

tem) uses an aviation database and a GPS to display useful information about VFR or IFR flights in progress. Figure 2

shows a screen shot. The application consists of 5 procs, a single central proc, a GPS proc, a mouse proc, a keyboard

proc and a database proc. The last of these communicates with the aviation database which is maintained by a separate

application. Only the central proc is multithreaded. The mouse proc looks like this (and the keyboard and gps procs

looks very similar):

void
mouseproc(void *arg)
{

int n;
char buf[1+5*12];
Mouse m;
Mousectl *mc;

mc = arg;
for(;;){

n = read(mc>mfd, buf, sizeof buf);
if(n != 1+4*12){

_drawprint(2, "mouse: bad count %d not 49: %r0, n);
continue;

}
m.xy = Pt(atoi(buf+1+0*12), atoi(buf+1+1*12));
m.buttons = atoi(buf+1+2*12);
m.msec = atoi(buf+1+3*12);
send(mc>c, &m);

}
}

The central proc takes care of the screen graphics. It has a little over 30 threads. Each button, tab, text entry widget,

etc. has its own thread. These threads alt on five channels: the mouse, keyboard and resize channels on which the asso

ciated events arrive, the ctl channel on which application requests arrive, such as ‘‘change background color’’ ‘‘change

icon’’, ‘‘set state,’’ and the exit channel, which tells the thread to clean up and exit. When an interesting event occurs,

the widget thread sends a description on its event channel, where it is picked up by another part of the application. The

implementation of these widgets is in the Plan 9 control(2) library.

These threads have very small stacks (1 or 2 KB), so they consume very little memory; at the same time they greatly

simplify the structure of the program: the management of the buttons, sliders, etc. does not contaminate the structure of

the main loop of the program, which looks like this:

for(;;) {
switch(alt(alts)) {
case Efisin:

... // Mouse event received
case Tab:

... // GPS/Info/Plan/Mode tab
case Chartout:

... // Map update request sent
case Chartin:

... // Updated map received
case Gpsin:

... // GPS fix received
case Zoom:

... // Zoom request
case Quit:

threadexitsall(nil);
}

}

Even though there are 5 processes and 30 threads, there is not a single lock or mutex in the application code. The thread

library itself, however, does need locks; but the complexity of that code has been amortized over dozens of applications.

Channels are protected against simultaneous access from different procs and this makes them eminently suitable for

all sorts of synchronization between threads and procs. A simple example is buffer management in an environment with

one or more producers and consumers: Create two buffered channels empty and full and initialize them as follows:

empty = chancreate(sizeof(Buf *), Nbuf);
full = chancreate(sizeof(Buf *), Nbuf);

for (i = 0; i < Nbuf; i++)
sendp(empty, &buf[i]);

When a producer needs an empty buffer, it reads (recvp()) its address from empty. The producer blocks if there are no

more empty buffers. It could also read the address of an empty buffer using nbrecvp, the nonblocking version of the

receive call and, for example, give an error message when nil is returned. The producer fills the buffer and sends its

address to full. Consumers get their buffers from full and return the empty ones on codeempty.The

File servers typically need as many threads as they have simultaneous client requests to process. One possibility is to

create a new thread for each incoming request and to have those threads exit when they’ve returned their reply. It is

more efficient to use a pool of idle threads. These threads, when they are available to accept new work, will receive

from a channel on which work is posted. The central work dispatcher sends work on this channel using nonblocking

send. If the send fails, there are no idle workers and a new worker can be created to take on the job.

We now have a few years of experience programming with channels and threads and it has become clear that this has

been much easier than any of the other techniques we have used. But, as with all things, channels, threads and procs are

not a panacea. A disciplined programming style contributes more to correct and debuggable software than anything

else. You may have noticed we program in C, not in C++ or Java. Objectorientation is a property of disciplined pro

gramming, programming languages only provide a bit of syntactic sugar. Languages cannot force bad programmers to

write good code.

The Plan 9 thread library was created long after the Plan 9 kernel interface had been defined. As a result, some things

in the thread library are downright clumsy. It would be nice if the operating system had support for multiple (small!)

stack segments. Now, we malloc(2) stacks and we find every now and then that we allocated too little and we get

obscure crashes. Note (signal in Unix terms) handling is also complicated. One day, perhaps, we’ll bite some of these

bullets and build some of the thread support into the operating system kernel.

A final remark is that there is a Linux version of the thread library that will need some polishing before it is once

again completely usable, but it is there for those who are interested. Write to sape@plan9.belllabs.com.

