
Toggle navigation CS107 Spring 2017

• Course materials
◦ Admin
◦ Syllabus
◦ Labs
◦ Assignments
◦ Exams
◦ Gradebook

• Getting help
◦ FAQ
◦ Office hours
◦ Forum & email
◦ Other resources

• Search CS107 site

Guide to makefiles

Written by Kevin Montag, CS107 TA

Makefiles are the Unix programmer's way of managing the

build process for a project. Programming IDEs like Visual

Studio store obscure configuration files based on

selections in a series of disjointed and convoluted settings

https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/index.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/index.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html#
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html#
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/admin.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/admin.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/syllabus.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/syllabus.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/labs.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/labs.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/assignments.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/assignments.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/exams.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/exams.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/cgi-bin/gradebook
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/cgi-bin/gradebook
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html#
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html#
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/faq.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/faq.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/officehours.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/officehours.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/forum_email.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/forum_email.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/resources.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/resources.html

menus. The Unix programmer, on the other hand, keeps

things clean, storing a lightweight and easily-modified text

file (with an admittedly disjointed and convoluted syntax)

directly in the project directory. A well-written makefile

describes all the files and settings used to compile a

project and link it with the appropriate libraries, and makes

compilation trivial from the command line.

How/why to use a makefile

For simple projects with uncomplicated settings, you can

build without a makefile by directly invoking the compiler,

e.g. gcc file1.c file2.c file3.c compiles three

files and links them together into an executable named

a.out. You could add flags such as -Wall (for warnings)

or -std=c99 (to use the updated C99 specification), or -o

[name] to set the name of the resulting executable.

However, manually re-typing these compilation commands

quickly becomes tedious as projects get even slightly

complex, and it is easy to mistype or be inconsistent.

Managing the build with a makefile is much more

convenient and less error-prone and far simpler after a

one-time setup cost.

Using makefiles is simple. The command make invokes the

make program which reads in the file Makefile from the

current directory and executes the build commands

necessary to build the default target. You can also name

just the specific target you want to build, such as make

reassemble or make myprogram. The special target

make clean will remove any previously built products

and let you start fresh. The makefile itself contains the

"recipe" information that specifies the steps required to

build a given target, including what dependencies it has,

what subproducts must be built in what sequence, what

flags to pass to their various tools, and so on.

A makefile with a proper dependency graph will only

rebuild a target when one or more of the components it

depends on has changed. This allows separating the

components of a project which can be built independently.

For example, some program you're working on might make

use of a vector and a linked-list that you've implemented,

neither of which makes any reference to the other in its

implementation. Good design sense places the code for

these structures in separate files, say vector.c/h and

list.c/h . If you make a change to vector.c , nothing

about list.c/h changes with it - the content of these

files stays the same, and in a deeper sense, the code
generated by list.c/h will be no different after

modifying the vector implementation. Thus, if we've

previously compiled the project, it's possible to set things

up so that we can recompile the project (encompassing our

changes to vector.c) without recompiling the code in

list.c/h . In this toy example, the performance gain is

minimal, but in large-scale real-world projects, these sorts

of optimizations can save literally hours of compilation

time whenever a project is built. Makefiles help us to

automatically separate generated code for distinct

components of a project, and automatically decide which

portions of a project need to be built when we want to

compile.

All CS107 projects will be distributed with a pre-written

Makefile which you will typically use as-is, but occasionally

you will have reason to poke around in it and make minor

changes. You don't need to read the rest of this guide to be

a happy and productive user of make, but if you are

curious about how it works and someday aspire to

construct your own Makefiles, read on.

How to write a makefile

The makefile syntax is known for having something of a

learning curve, and it is common practice to copy and

modify old makefiles, rather than generating new ones

from scratch. The best way to get a sense for what's going

on is to dive right in with an example. Below is a simple

makefile that might be used to build a project:

#

A simple makefile for managing build of project composed of C sourc

#

It is likely that default C compiler is already gcc, but explicitly

set, just to be sure

CC = gcc

The CFLAGS variable sets compile flags for gcc:

-g compile with debug information

-Wall give verbose compiler warnings

-O0 do not optimize generated code

-std=c99 use the C99 standard language definition

CFLAGS = -g -Wall -O0 -std=c99

The LDFLAGS variable sets flags for linker

-lm says to link in libm (the math library)

LDFLAGS = -lm

In this section, you list the files that are part of the project.

If you add/change names of source files, here is where you

edit the Makefile.

SOURCES = demo.c vector.c map.c

OBJECTS = $(SOURCES:.c=.o)

TARGET = demo

The first target defined in the makefile is the one

used when make is invoked with no argument. Given the definitions

above, this Makefile file will build the one named TARGET and

assume that it depends on all the named OBJECTS files.

$(TARGET) : $(OBJECTS)

 $(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)

Phony means not a "real" target, it doesn't build anything

The phony target "clean" is used to remove all compiled object file

.PHONY: clean

clean:

 @rm -f $(TARGET) $(OBJECTS) core

Let's go through this makefile and see what's there. Note

that lines beginning with '#' are comments, and are

ignored when the makefile is processed.

Macros

These are the substitutions defined twoard the top of the

makefile (lines that look like CFLAGS = -g -Wall). They

are similar to #define statements in C, and should be

used for any expression which is likely to be used

repeatedly in a makefile. Once a macro has been assigned,

we can reference it later using $(MACRO_NAME) (e.g.

$(CFLAGS) in the example above). When we type make in

a terminal, the file parser will simply replace these macro

references with the assigned content.

In our sample makefile, there are also a few macros whose

values may not be obvious. The line OBJECTS =

$(SOURCES:.c=.o) defines the OBJECTS macro to be

the same as the SOURCES macro, except that every

instance of '.c' is replaced with '.o' - that is, this assignment

is equivalent to OBJECTS = demo.o vector.o map.o.

There are also two built-in macros used by the makefile,

$@ and $^; these evaluate to demo and demo.o

vector.o map.o, respectively, but we will need to learn

a bit about targets before we find out why.

For clarity, it may be worth looking at the content of the

makefile as the parser "sees" it, with comments removed

and macros fully expanded. In this form, our sample

makefile looks like:

demo : demo.o vector.o map.o

 gcc -g -Wall -o demo demo.o vector.o map.o -lm

.PHONY: clean

clean:

 @rm -f demo demo.o vector.o map.o core

Targets

Following our makefile's macro definitions, we see a

number of targets. Targets and their associated actions are

written in the form:

target-name : dependencies

 action

The target name is generally the name of the file that will

be produced when this target is built. The first target listed

in a makefile is the default target, meaning that it is the

target which is built when make is invoked with no

arguments; other targets can be built using make

[target-name] at the command line. It is also worth

mentioning at this point that the Make utility recognizes a

number of implicit targets, and in particular that each of

our object files has an associated implicit target equivalent

to:

[filename].o : [filename].c

 $(CC) $(CFLAGS) -o [filename].o [filename].c

Much of the power of the Make utility comes from its

handling of dependencies. The dependencies of a target

are the files which need to exist and be up to date before

the target itself can be built. In the example above, the

demo target depends on three object files (each of which

can be built with its own implicit target as specified). Make

processes dependencies recursively; if particular

dependency has an associated target, the Make utility will

(re)build the dependency's target before processing the

parent target, ensuring that all dependencies are up to

date before the parent target is processed. Thus, for our

sample makefile, the command make demo actually

behaves more like make demo.o ; make vector.o ;

make map.o ; make demo (the recursion ends at

dependencies which don't have an associated target; this

occurs if, for example, we're depending on a source file like

demo.c, as is the case with the demo.o target). The Make

utility will then examine the timestamps of each file on

which the parent target depends, and will build the parent

target if any of these files have been changed more

recently than the parent file (or if the parent file does not

yet exist). In our case, this means that if the demo

executable already exists in our directory, make demo will

not do anything unless the directory's object files need to

be rebuilt during recursive dependency processing, which

in turn will only occur if any of our source files (demo.c,

vector.c, map.c) have been modified more recently

than their associated object file was built. Thus if we

haven't modified any of our source files, invoking make

demo repeatedly will only build the demo executable once.

Furthermore, if we modify just one of our source files, we

will only rebuild the associated object file, rather than all

three object files.

Finally, each target has an associated command, which will

be run in the shell in order to build the target. Generally,

this is a command which invokes the compiler, but

technically it can be any command which creates a file with

the target's name. When defining the command for a

target, we also have access to a number of special macros,

such as $@ and $^ above. We can see now that these

macros evaluate, respectively, to the name of the current

target and its list of dependencies. Other such target-

dependent macros exist, and information on them is

available in the Make documentation.

Phony targets Note that the clean target in our sample

Makefile doesn't actually create a file named 'clean', and

thus doesn't fit the pattern which we've been describing

for targets. Rather, the clean target is used as a shortcut

for running a command which clears out the project's build

files (the '@' at the beginning of the command tells Make

not to print it to the terminal when it is being run). We flag

targets like this by listing them as "dependencies" of

.PHONY, which is a pseudo-target that we'll never actually

build. When the Make utility encounters a phony target, it

will run the associated command automatically, without

performing any dependency checks.

That's it!

There's plenty more that you can do with a makefile, and a

few more advanced syntactic elements. An inexhaustible

source of make wisdom is the full manual for GNU Make

which will tell you more that you could ever want to know.

Checking out makefiles from some real world projects is

another interesting way to see make in action.

Frequently asked questions
about make

Make is failing with a cryptic error about
Makefile: *** missing

separator. Huh?

In what is widely considered one of the dumber decisions

in the history of computing, make distinguishes between

tabs and spaces in a Makefile. The command lines for a

target must begin with a tab and an equivalent number of

spaces just won't do. Edit your makefile and replace those

errant spaces with a tab to restore Makefile joy.

http://www.gnu.org/software/make/
http://www.gnu.org/software/make/

The compiler warnings from my build
seem a bit garbled, is there something I
can do to get readable messages? See
sample warning below complete with
funny characters:

reassemble.c: In function â:

reassemble.c:48:5: error: expected â before â token

This mismatch is due to gcc getting all fancy and printing

identifiers enclosed in curly "smart quotes", but those

unusual characters are not meshing well with the language

configuration of your terminal. If you set the environment

variable LC_ALL to C, gcc will dumb down its output. Set in

your shell configuration file to make the change

permanent.

https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_unix.html#faq
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_unix.html#faq

