
Pthreads
Bootcamp

Richard K. Wolf
Research Programmer
University of Illinois at Chicago

Background

What are
Pthreads?

� An API specified by the POSIX 1003.1c-
1995 standard and implemented within
a wide variety of operating systems.

� A portable way for developers to create
multithreaded applications across a
wide variety of platforms.

Why Pthreads?
� Because they often offer increased

throughput.
� Threads blocked on I/O do not affect other,

running threads.
� Throughput is increased on both

uniprocessor and multiprocessor systems.

Why Pthreads?
� Because they can help conserve system

resources.
� Threads share many of the same resources

within a process.
� Creating threads is much cheaper than

creating processes.

Why Pthreads?
� Because they offer a more natural

programming model.
� Because they’re portable.

Considerations
� Execution context
� Scheduling
� Synchronization

Terminology
� Processes
� Threads
� Concurrency
� Parallelism
� “Synchronous”
� “Asynchronous”

Thread
� A single, independent flow of control

within a program.

Process
� An entity composed of resources

managed by an operating system and at
least one thread.

Virtual Address Space

Identity

Resources

Registers
SP
PC
GP1
GP2 etc. …

PID, UIC, GID

Open files, sockets, etc.

Process

Stack
main()
func1()

main() {
…

}

func1() {
…

}

fund2() {
…

}

Text,
Global Data

Heap

Virtual Address Space
Thread 1

Identity

Resources

Registers
SP
PC
GP1
GP2 etc. …

PID, UIC, GID

Open files, sockets, etc.

Registers
SP
PC
GP1
GP2 etc. …

Process

Thread 2

Stack
main()
func1()

main() {
…

}

func1() {
…

}

fund2() {
…

}

Stack
main()
func2()

Text,
Global Data

Heap

Concurrency
� Refers to tasks that appear to be

running simultaneously, but which may,
in fact, actually be running serially.

Parallelism
� Refers to concurrent tasks that actually

run at the same time.
� Always implies multiple processors.
� Parallel tasks always run concurrently,

but not all concurrent tasks are parallel.

“Asynchronous”
� A system call is asynchronous if a

thread can continue running without
waiting for the call to complete.

� Asynchronous calls are “non-blocking.”
� In a singly-threaded program,

asynchronous calls are good.

“Synchronous”
� A system call is synchronous if a thread

must wait for the call to complete before
continuing.

� Synchronous calls are “blocking” calls.
� In a multithreaded program,

synchronous calls are good—think
synchronous!

Scheduling
� Threads are mapped from user space to

kernel space by the pthreads library.
� Most operating systems utilize kernel threads

(also known as lightweight processes).
� User threads are mapped onto kernel threads

in one of three ways:
� Using a one-to-one mapping.
� Using a many-to-one mapping.
� Using a many-to-many mapping.

One-to-One
User Space

Library Interface

Kernel Space

Many-to-One
User Space

Library Interface

Kernel Space

Many-to-Many
User Space

Library Interface

Kernel Space

Programming
Considerations

What to Thread
� Programs that consist of several

independent tasks.
� Most servers.
� Certain kinds of simulations.

Thread Models
� The boss/worker model
� Threads as peers
� The pipeline model

Boss/Worker

Boss
Worker

Worker

Worker

Peers

Peer

Peer

Peer

Peer

Peer

Peer

Pipelines

Task 1 Task 2 Task 3

Thread Safety
� Functions that can be called from

multiple threads without destructive
results are said to be thread safe.

� The use of global variables (extern or
static) or static local variables makes a
function thread-unsafe.

� Beware of some functions in the
standard library (e.g., strtok).

Thread Safety
� Make threads safe by surrounding

critical code with locks.
� Make threads safe by surrounding

critical data with locks (better).

Reentrancy
� Functions that are thread-safe but do not rely

on synchronization mechanisms to keep
critical data safe are said be reentrant.

� Functions can often be made to be reentrant
by adding an extra argument in their
interfaces.

� Many ANSI C thread-unsafe routines have
reentrant counterparts in pthreads.

Error Handling
� Pthreads routines always return either

zero or an error as their return values.
� Pthreads routines do not set errno

(because errno is defined as an extern
int).

� However, pthreads defines an errno on
a “per thread” basis for routines and
system calls that rely on errno.

Thread Basics

Using Pthreads
� Include considerations

#include <pthread.h>

� Library considerations
cc -o myapp -lpthread myapp.c

Pthreads Types

•One-time initialization control
context

•pthread_once_t

•Condition variable attributes•pthread_condattr_t

•Mutex attributes•pthread_mutexattr_t

•Thread attributes•pthread_attr_t

•Access key•pthread_key_t

•Condition Variable•pthread_cond_t

•Mutex•pthread_mutex_t

•Thread identifier•pthread_t

•Description•Type

Data Types
� Data types should be considered

opaque!
� Can be initialized by a static initializer or

dynamically via an “init” function call.

Spawning and
Exiting

� Creating a thread
� “Joining” a thread
� “Detached” threads

Thread Routines
� Creating a thread:

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void * (* start)(void *arg),
void *arg);

� Exiting a thread:
int pthread_exit(void *value);

Thread Routines
� Joining a thread:

int pthread_join(pthread_t *thread,
void **value);

� Detaching a thread:
int pthread_detach(pthread_t *thread);

Thread Routines
� Getting thread info:

pthread_t pthread_self(void);

� Testing thread equality:
int pthread_equal(pthread_t thread1,
pthread_t thread2);

Demo

Basic Pthreads

Synchronization

The Problem
� Threads are reasonably easy to create.
� But ensuring that threads share data

properly is much more difficult!
� In nearly every multithreaded

application, you will have to establish
some kind of a synchronization strategy.

Race Conditions
� A race condition exists whenever two or

more threads compete when trying to
access to the same data.

� Synchronization mechanisms are
designed to allow multiple threads to
access shared data and avoid race
conditions.

Example
� Imagine a “bank account server” that

spawns a separate thread for every
account transaction.

� Now imagine two people trying to
deposit money into a shared account at
the same time…

Example

$350Write Balance
($350)

Sixth
Operation

$300Write Balance
($300)

Fifth
Operation

$200Add $150 ($350)Fourth
Operation

$200Add $100 ($300)Third
Operation

$200Read Balance
($200)

Second
Operation

$200Read Balance
($200)

First
Operation

$200Start

BalanceThread2Thread1Time

Synchronization
� Pthreads can be synchronized in three

different ways:
� By making threads joinable.
� By using mutexes.
� By using condition variables.

� More complex synchronizations can be
built up from mutexes and condition
variables.

Mutexes
� A mutex is a mutually exclusive lock.
� All threads agree that only one thread

can lock a mutex at any specific time.

Mutex Routines
� Statically create a mutex:

pthread_mutex_t = PTHREAD_MUTEX_INITIALIZER;

� Dynamically create a mutex:
int pthread_mutex_init(
pthread_mutex_t *mutex,
pthread_mutex_attr *pthread_mutex_attr);

� Destroy a dynamically created mutex:
int pthread_mutex_destroy(
pthread_mutex_t *mutex);

Mutex Routines
� Locking a mutex:

int pthread_mutex_lock(
pthread_mutex_t *mutex);

� Checking for a mutex lock:
int pthread_mutex_trylock(
pthread_mutex_t *mutex);

� Unlocking a mutex:
int pthread_mutex_unlock(
pthread_mutex_t *mutex);

Demo

Mutexes

Considerations
� Consdier all mutex operations to be atomic.
� Don’t copy a mutex (but you can have as

many pointers to the same mutex as you like).
� You only need to destroy mutexes that you

dynamically initialize.
� Associate mutexes with the data they protect.
� Avoid deadlock!

Deadlock

pthread_mutex_lock(
&mutexB);4

pthread_mutex_lock(
&mutexA);3

pthread_mutex_lock(
&mutexB);2

pthread_mutex_lock(
&mutexA);1

Thread2Thread1Time

Condition
Variables

� Used to signify a condition in which one
or more threads have an interest.

� Always associated with a mutex.

How They Work
Lock Mutex

Test
Cond.

Unlock
Sleep
Lock

Lock Mutex

Set Cond = TRUE

Unlock Mutex

Wakeup Thread

Unlock
Mutex and
Proceed

Condition
Variables

� Statically create a condition variable:
pthread_cond_t cond =
PTHREAD_COND_INITIALIZER;

� Dynamically create a condition variable:
int pthread_cond_init(
pthread_cond_t *cond,
pthread_cond_attr *pthread_cond_attr);

� Destroy a dynamically created condition
variable:

int pthread_cond_destroy(
pthread_cond_t *cond);

Condition
Variables

� Waiting on a condition variable:
int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex);

� A timed wait for a condition variable:
int pthread_cond_timedwait(
pthread_cond_t *cond
pthread_mutex_t *mutex,
struct timespec *expiration);

Condition
Variables

� Signaling a met condition:
int pthread_cond_signal(
pthread_cond_t *cond);

� Broadcasting a met condition:
int pthread_cond_broadcast(
pthread_cond_t *cond);

Demo

Condition Variables

Advanced Stuff
� Getting and setting thread attributes
� pthread_once()
� Thread keys
� Thread cancellation

Bedtime Reading
� Pthreads Programming; Bradford Nichols,

Dick Buttlar, and Jacqueline Proulx Farrell;
O’Reilly & Associates

� Programming with POSIX Threads; David R.
Butenhof; Addison-Wesley Professional
Computing Series

� Multithreaded Programming with Pthreads;
Bill Lewis and Daniel J. Berg; Prentice Hall

Another
Perspective

� The Future of NLM
Development/NetWare Kernel Services
Development; Russell Bateman; Novell
Developer Notes

