Pthreads
Bootcamp

Richard K. Wolf

Research Programmer
University of lllinois at Chicago

A

Background

Lo

What are
Pthreads?

An API specified by the POSIX 1003.1c-
1995 standard and implemented within
a wide variety of operating systems.

A portable way for developers to create
multithreaded applications across a
wide variety of platforms.

Why Pthreads?

Because they often offer increased
throughput.

s Threads blocked on I/O do not affect other,
running threads.

= Throughput is increased on both
uniprocessor and multiprocessor systems.

Why Pthreads?

Because they can help conserve system
resources.

= Threads share many of the same resources
within a process.

= Creating threads is much cheaper than
creating processes.

Why Pthreads?

Because they offer a more natural
programming model.

Because they're portable.

Considerations

Execution context
Scheduling
Synchronization

Terminology

Processes
Threads
Concurrency
Parallelism
“Synchronous’”
“Asynchronous”

Thread

A single, independent flow of control
within a program.

Process

An entity composed of resources
managed by an operating system and at
least one thread.

Process Virtual Address Space

Stack

Registers main()

SP funcl()

PC
GP1

GP2 etc. ...

main() { Text,
Global Data

|dentity

PID, UIC, GID

Resources

Open files, sockets, etc.

Process

Thread 1

Virtual Address Space

Registers

SP

PC

GP1

GP2 etc. ...

Thread 2

Registers

SP

PC

GP1

GP2 etc. ...

|dentity

PID, UIC, GID

Resources

Open files, sockets, etc.

Stack

main()
funcl()

Stack

main()
func?2()

main() { Text,
Global Data

Concurrency

Refers to tasks that appear to be
running simultaneously, but which may,
In fact, actually be running serially.

Parallelism

Refers to concurrent tasks that actually
run at the same time.

Always implies multiple processors.

Parallel tasks always run concurrently,
but not all concurrent tasks are parallel.

“Asynchronous”

A system call is asynchronous Iif a
thread can continue running without
waiting for the call to complete.

Asynchronous calls are “non-blocking.”

In a singly-threaded program,
asynchronous calls are good.

“Synchronous”

A system call is synchronous if a thread
must wait for the call to complete before
continuing.

Synchronous calls are “blocking” calls.

In a multithreaded program,
synchronous calls are good—think
synchronous!

Scheduling

Threads are mapped from user space to
kernel space by the pthreads library.

Most operating systems utilize kernel threads
(also known as lightweight processes).

User threads are mapped onto kernel threads
In one of three ways:

= Using a one-to-one mapping.

= Using a many-to-one mapping.

= Using a many-to-many mapping.

One-to-One

User Space

Library Interface

Kernel Space

Many-to-One

User Space

Library Interface

Kernel Space

Many-to-Many

User Space

Library Interface

Kernel Space

Programming
Considerations

Lo

What to Thread

Programs that consist of several
Independent tasks.

Most servers.
Certain kinds of simulations.

Thread Models

‘he boss/worker model
"hreads as peers
"he pipeline model

Boss/\Worker

...

—r CZEE
™

Pipelines

Thread Safety

Functions that can be called from
multiple threads without destructive
results are said to be thread safe.

The use of global variables (extern or
static) or static local variables makes a
function thread-unsafe.

Beware of some functions in the
standard library (e.qg., strtok).

Thread Safety

Make threads safe by surrounding
critical code with locks.

Make threads safe by surrounding
critical data with locks (better).

Reentrancy

Functions that are thread-safe but do not rely
on synchronization mechanisms to keep
critical data safe are said be reentrant.

Functions can often be made to be reentrant
by adding an extra argument in their
Interfaces.

Many ANSI C thread-unsafe routines have
reentrant counterparts in pthreads.

Error Handling

Pthreads routines always return either
zero or an error as their return values.

Pthreads routines do not set errno
(because errno Is defined as an extern
Int).

lowever, pthreads defines an errno on

a “per thread” basis for routines and
system calls that rely on errno.

Thread Basics

Lo

Using Pthreads

Include considerations
#include <pthread.h>

Library considerations
cc -0 myapp -Ipthread myapp.c

Pthreads Types

*Type eDescription

epthread t *Thread identifier

epthread_mutex t *Mutex

epthread cond t «Condition Variable

epthread_key t *Access key

spthread_attr t *Thread attributes

epthread _mutexattr t *Mutex attributes

epthread_condattr_t «Condition variable attributes

epthread _once_t *One-time initialization control
context

Data Types

Data types should be considered
opaque!

Can be Initialized by a static initializer or
dynamically via an “init” function call.

Spawning and
EXIting

Creating a thread
“Joining” a thread
“Detached” threads

Thread Routines

Creating a thread:

int pthread_create(pthread_t *thread,

const pthread_attr t *attr,
void * (* start)(void *arg),
void *arg);

Exiting a thread:

Int pthread_ exit(void *value);

Thread Routines

Joining a thread.:

int pthread_join(pthread_t *thread,
void **value);

Detaching a thread:
Int pthread_detach(pthread_t *thread);

Thread Routines

Getting thread info:
pthread_t pthread_self(void);

esting thread equality:

Int pthread_equal(pthread _t threadl,
pthread_t thread?2);

Basic Pthreads

A

Synchronization

Lo

The Problem

Threads are reasonably easy to create.

But ensuring that threads share data
properly iIs much more difficult!

In nearly every multithreaded
application, you will have to establish
some kind of a synchronization strategy.

Race Conditions

A race condition exists whenever two or
more threads compete when trying to
access to the same data.

Synchronization mechanisms are
designed to allow multiple threads to

access shared data and avoid race
conditions.

Example

Imagine a “bank account server” that
spawns a separate thread for every
account transaction.

Now Imagine two people trying to
deposit money into a shared account at
the same time...

Example

Time

Threadl

Balance

Start

$200

First
Operation

Read Balance
($200)

$200

Second
Operation

Third
Operation

Fourth
Operation

Add $150 ($350)

Fifth
Operation

Sixth
Operation

Write Balance
($350)

Synchronization

Pthreads can be synchronized in three
different ways:

= By making threads joinable.

= By using mutexes.

= By using condition variables.

More complex synchronizations can be

built up from mutexes and condition
variables.

Mutexes

A mutex Is a mutually exclusive lock.

All threads agree that only one thread
can lock a mutex at any specific time.

Mutex Routines

Statically create a mutex:
pthread _mutex_t = PTHREAD MUTEX INITIALIZER,;

Dynamically create a mutex:

Int pthread_mutex_ init(
pthread _mutex_t *mutex,
pthread _mutex_attr *pthread _mutex_attr);

Destroy a dynamically created mutex:

Int pthread_mutex_destroy(
pthread _mutex_t *mutex);

Mutex Routines

Locking a mutex:

int pthread_mutex_lock(
pthread_mutex_t *mutex);

Checking for a mutex lock:

Int pthread_mutex_trylock(
pthread_mutex_t *mutex);

Unlocking a mutex:

Int pthread_mutex_unlock(
pthread _mutex_t *mutex);

Considerations

Consdier all mutex operations to be atomic.

Don’t copy a mutex (but you can have as
many pointers to the same mutex as you like).

You only need to destroy mutexes that you
dynamically initialize.

Associate mutexes with the data they protect.
Avoid deadlock!

Deadlock

Threadl

Thread2

pthread _mutex_lock(
&mutexA);

pthread _mutex_lock(
&mutexB);

pthread _mutex_lock(
&mutexA);

pthread_mutex_lock(
&mutexB);

Condition
Variables

Used to signify a condition in which one
or more threads have an interest.

Always associated with a mutex.

How They Work

REaE:

Condition
Variables

Statically create a condition variable:

pthread _cond_t cond =
PTHREAD_COND _INITIALIZER;

Dynamically create a condition variable:

Int pthread_cond_ init(
pthread cond t *cond,
pthread _cond_attr *pthread _cond_ attr);

Destroy a dynamically created condition
variable:

Int pthread_cond_destroy(
pthread _cond _t *cond);

Condition
Variables

Waiting on a condition variable:

Int pthread_cond_ wait(
pthread cond t *cond,
pthread_mutex_t *mutex);

A timed wait for a condition variable:

Int pthread_cond_timedwait(
pthread cond _t *cond
pthread _mutex_t *mutex,
struct timespec *expiration);

Condition
Variables

Signaling a met condition:

Int pthread_cond_signal(
pthread _cond_t *cond);

Broadcasting a met condition:

Int pthread_cond_broadcast(
pthread _cond _t *cond);

Condition Variables

A

Advanced Stuff

Getting and setting thread attributes
pthread _once()

Thread keys

Thread cancellation

Bedtime Reading

Pthreads Programming; Bradford Nichols,
Dick Buttlar, and Jacqueline Proulx Farrell;
O’Rellly & Associates

Programming with POSIX Threads; David R.
Butenhof; Addison-Wesley Professional
Computing Series

Multithreaded Programming with Pthreads;
Bill Lewis and Daniel J. Berg; Prentice Hall

Another

Perspective

The Future of NLM
Development/NetWare Kernel Services
Development: Russell Bateman: Novell

Developer Notes

