
© Alan Burns and Andy Wellings, 2001

Atomic Actions, Concurrent
Processes and Reliability

Goal
To understand how concurrent processes can
reliably cooperate in the presence of errors

© Alan Burns and Andy Wellings, 2001

Topics

n Atomic actions
n Backward error recovery
n Forward error recovery
n Asynchronous notifications
n POSIX signals
n Asynchronous Event Handling in RTJ
n Asynchronous Transfer of Control (ATC) in Ada
n ATC in Java

© Alan Burns and Andy Wellings, 2001

Atomic Actions — Motivation
n Concurrent processes enable parallelism in the real world to be

reflected in programs
n The interaction between 2 processes has been expressed in terms

of a single communication; this is not always the case
n E.g., withdrawal from a bank account may involve a ledger process

and a payment process in a sequence of communications to
authenticate the drawer, check the balance and pay the money

n It may be necessary for more than two processes to interact in this
way to perform the required action

n The processes involved must see a consistent system state
n With concurrent processes, it is all too easy for groups of processes

to interfere with one other
n What is required is for each group of processes to execute their

joint activity as an indivisible or atomic action

© Alan Burns and Andy Wellings, 2001

Atomic Actions — Definition

n are not aware of the existence of any other active process,
and no other active process is aware of the activity of the
processes during the time the processes are performing the
action

n do not communicate with other processes while the action is
being performed

n can detect no state change except those performed by
themselves and if they do not reveal their state changes
until the action is complete

n can be considered, so far as other processes are
concerned, to be indivisible and instantaneous, such that
the effects on the system are as if they were interleaved as
opposed to concurrent

An action is atomic if the processes performing it:

© Alan Burns and Andy Wellings, 2001

Nested Actions

n Although an atomic action is viewed as being indivisible,
it can have an internal structure

n To allow modular decomposition of atomic actions, the
notion of a nested atomic action is introduced

n The processes involved in a nested action must be a
subset of those involved in the outer level of the action

n If this were not the case, a nested action could smuggle
information concerning the outer level action to an
external process.

n The outer level action would then no longer be
indivisible

© Alan Burns and Andy Wellings, 2001

Atomic Transactions

n In operating systems and databases, the term atomic
transaction is often used

n An atomic transaction has all the properties of an atomic
action plus the added feature that its execution is
allowed either to succeed or fail

n By failure, it is meant that an error has occurred from
which the transaction cannot recover — normally a
processor failure

n With an atomic transaction, all components used are
returned to their original state (that is the state they were
before the transaction commenced)

n Atomic transactions are sometimes called recoverable
actions or atomic actions

© Alan Burns and Andy Wellings, 2001

Properties of Atomic Transactions
n Failure atomicity — the transaction must complete successfully or

have no effect
n Synchronization atomicity (or isolation) — partial execution

cannot be observed by any concurrently executing transaction
n Not entirely suitable for programming fault-tolerant systems

because they imply that some form of recovery mechanism will be
supplied by the system

n Such a mechanism would be fixed, with the programmer having
no control over its operation

n Atomic transactions provide a form of backward error recovery but
do not allow recovery procedures to be performed

n Notwithstanding these points, atomic transactions do have a role
in protecting the integrity of a real-time system database

© Alan Burns and Andy Wellings, 2001

Requirements for Atomic Actions

n Well-defined boundaries
– A start, end and a side boundary
– The start and end boundaries are the locations in each process

where the action is deemed to start and end
– The side boundary separates those processes involved in the

action from those in the rest of the system

n Indivisibility
– No exchange of information between processes active inside

and those outside (resource managers excluded).
– The value of any shared data after the actions is determined by

the strict sequencing of the actions in some order
– There is no synchronization at the start. Processes can enter at

different times
– Processes are not allowed to leave the atomic action until all are

willing and able to leave

© Alan Burns and Andy Wellings, 2001

Requirements for Atomic Actions

n Nesting
– Atomic actions may be nested as long as they do not overlap with

other atomic actions
– Only strict nesting is allowed (two structures are strictly nested if

one is completely contained within the other)

n Concurrency
– It should be possible to execute different atomic actions

concurrently
– Sequential execution could impair the performance of the overall

system and should be avoided
– Nevertheless, the overall effect of running a collection of atomic

actions concurrently must be the same as that which would be
obtained from serialising their executions

n They must allow recovery procedures to be programmed

© Alan Burns and Andy Wellings, 2001

Nested Atomic Actions

time

P1

P6P5P4P3P2P1

Action A

Action B

© Alan Burns and Andy Wellings, 2001

action A with (P2, P3, . . .) do
 . . .
 -- can only communication with p2, P3 etc
 -- and use local variables
end A;

Language Structure

n No mainstream language or OS supports atomic
action

© Alan Burns and Andy Wellings, 2001

Atomic Actions in Ada

n The extended rendezvous in Ada enables a common form
of atomic action where a task communicates with another
task to request some computation; the called task
undertakes this execution and then replies via the out
parameters of the rendezvous

n The atomic action takes the form of an accept statement;
it possesses synchronization atomicity as long as;
– it does not update any variable that another task can access, and
– it does not rendezvous with any other task

n An atomic action in Ada for three tasks could be
programmed with a nested rendezvous, however, this
would not allow any parallelism within the action

n An alternative model is to create an action controller and
to program the required synchronization

© Alan Burns and Andy Wellings, 2001

Ada and Atomic Actions

n Each atomic action is implemented by a package
n Roles are identified, each role is represented by a procedure in the package

specification
n A task must associate itself with a role
n Each role can only have one active task

Task 1

Task 2

Task 3

Controller Protected Object
Action Procedure 1

Action Procedure 2

Action Procedure 3

Controller Entry/
Subprograms

© Alan Burns and Andy Wellings, 2001

Ada Structure

Action Controller

Role 1

Entry Protocol

action component

Exit Protocol

leave

Role 2

Entry Protocol

action component

Exit Protocol

leave

Role 3

Entry Protocol

action component

Exit Protocol

leave

© Alan Burns and Andy Wellings, 2001

Role 3Role 2

Structure

Action Controller

Role 1

Entry Protocol

action component action component action component

Entry Protocol

Exit Protocol

Entry Protocol

Exit ProtocolExit Protocol

leave leaveleave

© Alan Burns and Andy Wellings, 2001

Ada Code
package Action_X is
 procedure Code_For_First_Task(--params); -- Role1
 procedure Code_For_Second_Task(--params);-- Role2
 procedure Code_For_Third_Task(--params); -- Role3
end Action_X;

package body Action_X is

 protected Action_Controller is
 entry First;
 entry Second;
 entry Third;
 entry Finished;
 private
 First_Here : Boolean := False;
 Second_Here : Boolean := False;
 Third_Here : Boolean := False;
 Release : Boolean := False;
 end Action_Controller;

 protected body Action_Controller is
 entry First when not First_Here is
 begin First_Here := True; end First;
 -- similarly for second, third

 entry Finished when Release or Finished'Count = 3 is
 begin
 if Finished'count = 0 then
 Release := False; First_Here := False;
 Second_Here := False; Third_Here := False;
 else Release := True; end if;
 end Finished;
 end Action_Controller;

 procedure Code_For_First_Task(--params) is
 begin
 Action_Controller.First;
 -- acquire resources; the action itself,
 -- communication via resources
 Action_Controller.Finished;
 -- release resources
 end Code_For_First_Task;
 -- similar for second and third task
begin
 -- any initialization of local resources
end Action_X;

Ada Code

n No recovery yet
n Only part encapsulation — can not stop communication

with other tasks (unless insist on no with clauses??)
n Action controller could use semaphores, monitors etc

© Alan Burns and Andy Wellings, 2001

Atomic Actions in Java

n First, an interface can be defined for a three-way atomic
action
public interface ThreeWayAtomicAction
{
 public void role1();
 public void role2();
 public void role3();
}

n Using this interface, it is possible to provide several
action controllers that implement a variety of models

n Applications can then choose the appropriate controller
without having to change their code

© Alan Burns and Andy Wellings, 2001

Structure

Action Controller

Role 1

Entry Protocol

action component

Exit Protocol

leave

Role 2

Entry Protocol

action component

Exit Protocol

leave

Role 3

Entry Protocol

action component

Exit Protocol

leave

© Alan Burns and Andy Wellings, 2001

Role 3Role 2

Structure

Action Controller

Role 1

Entry Protocol

action component action component action component

Entry Protocol

Exit Protocol

Entry Protocol

Exit ProtocolExit Protocol

leave leaveleave

public class AtomicActionControl implements ThreeWayAtomicAction
{
 protected Controller Control;
 public AtomicActionControl() // constructor
 {
 Control = new Controller();
 }

 class Controller
 {
 protected boolean firstHere, secondHere, thirdHere;
 protected int allDone;
 protected int toExit;
 protected int numberOfParticipants;

 Controller()
 {
 firstHere = false;
 secondHere = false;
 thirdHere = false;
 allDone = 0;
 numberOfParticipants = 3;
 toExit = numberOfParticipants;
 }

 synchronized void first() throws InterruptedException
 {
 while(firstHere) wait();
 firstHere = true;
 }

 synchronized void second() throws InterruptedException
 {
 while(secondHere) wait();
 secondHere = true;
 }

 synchronized void third() throws InterruptedException
 {
 while(thirdHere) wait();
 thirdHere = true;
 }

 synchronized void finished() throws InterruptedException
 {
 allDone++;
 if(allDone == numberOfParticipants) {
 notifyAll();
 } else while(allDone != numberOfParticipants) {
 wait();
 }
 toExit--;
 if(toExit == 0) {
 firstHere = false;
 secondHere = false;
 thirdHere = false;
 allDone = 0;
 toExit = numberOfParticipants;
 notifyAll();
 // release processes waiting for the next action
 }
 }
 }

 public void role1()
 {
 boolean done = false;
 while(!done) {
 try {
 Control.first();
 done = true;
 } catch (InterruptedException e) { // ignore }
 }

 // perform action

 done = false;
 while(!done) {
 try {
 Control.finished();
 done = true;
 } catch (InterruptedException e) { // ignore }
 }
 };

Entry protocol

Exit protocol

 public void role2()
 {
 // similar to role1
 }

 public void role3()
 {
 // similar to role1
 }
}

© Alan Burns and Andy Wellings, 2001

A Four-Way Atomic Action

public interface FourWayAtomicAction
 extends ThreeWayAtomicAction {
 public void role4();
}

public class NewAtomicActionControl
 extends AtomicActionControl
 implements FourWayAtomicAction
{
 public NewAtomicActionControl()
 {
 C = new RevisedController();
 }

 class RevisedController extends Controller
 {
 protected boolean fourthHere;

 RevisedController() {
 super();
 fourthHere = false;
 numberOfParticipants = 4;
 toExit = numberOfParticipants;
 }

 synchronized void fourth() throws InterruptedException
 {
 while(fourthHere) wait();
 fourthHere = true;
 }

 synchronized void finished()
 throws InterruptedException
 {
 super.finished();
 if(allDone == 0) {
 fourthHere = false;
 notifyAll();
 }
 }
 }

Have overridden the finish methods

All calls now dispatch to this method,
consequently it must call the parent
method

 public void role4()
 {
 boolean done = false;
 while(!done) {
 try {
 // As C is of type Controller, it must first
 // be converted to a RevisedController in order
 // to call the fourth method
 ((RevisedController)C).fourth();
 done = true;
 } catch (InterruptedException e) { // ignore }
 }
 // perform action
 done = false;
 while(!done) {
 try {
 Control.finished();
 done = true;
 } catch (InterruptedException e) { // ignore }
 }
 }
}

© Alan Burns and Andy Wellings, 2001

Backward Error Recovery — Conversations

n Consider 3 processes, each process names participates
in the action via an action statement

n Within the statement, there is a recovery block: eg P1:
action A with (P2, P3) do

 ensure <acceptance test>
 by
 -- primary module
 else by
 -- alternative module
 else by
 -- alternative module
 else error
end A;

n On entry, the state of a process is saved; the set of entry points
forms the recovery line

© Alan Burns and Andy Wellings, 2001

Conversations

n Whilst inside, a process is only allowed to communicate
with other processes active in the conversation and general
resource managers

n In order to leave, all processes active in must have passed
their acceptance test

n If passed, the conversation is finished and all recovery
points are discarded

n If any process fails the test, all processes have their state
restored and they execute their alternative modules

n Conversations can be nested, but only strict nesting is
allowed

n If all alternatives fail, recovery must be performed at a
higher level

© Alan Burns and Andy Wellings, 2001

Conversations

n In the original definition of conversations, all
processes taking part must have entered before any of
the other processes can leave

n Here, if a process does not enter, as long as the other
processes active in the conversation do not wish to
communicate with it then the conversation can complete

n If a process does attempt communication, it can either
block and wait for the process to arrive or it can continue

n This allows conversations to be specified where
participation is not compulsory

n It allows processes with deadlines to leave the
conversation, continue and if necessary take some
alternative action

© Alan Burns and Andy Wellings, 2001

Criticisms of Conversations

n Conversations can be criticised; when a conversation fails,
all the processes are restored and all enter their alternatives

n This forces the same processes to communicate again to
achieve the desired effect

n This may be not what is required; in practice when one
process fails to achieve its goal in a primary module, it may
wish to communicate with a completely new group of
processes in its secondary module

n Also, the acceptance test for this secondary module may be
quite different

n There is no way to express these requirements using
conversations

n Dialogs and Colluquys — — SEE BOOK

© Alan Burns and Andy Wellings, 2001

Atomic Actions and Forward Error Recovery

n If an exception occurs in one process, it is raised
asynchronously in all processes active in the action
action A with (P2, P3) do

 -- the action
exception

 when exception_a =>
 -- sequence of statements
 when exception_b =>
 -- sequence of statements
 when others =>
 raise atomic_action_failure;

end A;

n Both termination and resumption models are possible
n If there is no handler in any one processes active in the action

or one of the handlers fails then the atomic action fails with a
standard exception atomic_action_failure; This exception is
raised in all the involved processes

© Alan Burns and Andy Wellings, 2001

Resolution of Concurrently Raised Exceptions

n Many process may raise different exceptions at the same time;
this is likely if the error can not be uniquely identified by the error
detection facility in action components

n If two exceptions are simultaneously raised, there may be two
separate handlers in each process; the two exceptions in
conjunction constitute a third which is the exception which
indicates that both the other two exceptions have occurred.

n To resolve concurrently raised exceptions, exception trees can be
used; here the handler is that at the root of the smallest subtree
that contains all the exceptions

n It is not clear how to combined any parameters associated with
this exception

n Each atomic action component can declare its own unique
exception tree

© Alan Burns and Andy Wellings, 2001

Exceptions and Nested Atomic Actions

time

P1

P6P5P4P3P2P1

Action A

Action B Exception raised
here

© Alan Burns and Andy Wellings, 2001

Exceptions and Nested Atomic Actions

n One process active in an action may raise an exception
when other processes in the same action are involved in
a nested action

n All processes involved must participate in the recovery
action; unfortunately, the internal action is indivisible!

© Alan Burns and Andy Wellings, 2001

Exceptions and Nested Atomic Actions

Two possible solutions to this problem
1 Hold back the raising of the exception until the internal

action has finished
– The exception may be associated with the missing of a deadline
– The error condition detected may indicate that the internal action

may never terminate because some deadlock condition has arisen

2 Allow internal actions to have a predefined abortion
exception; this indicates that an exception has been raised
in a surrounding action and that the pre-conditions under
which it was invoked are no longer valid
– If raised, the internal action should abort itself. Once the action has

been aborted, the containing action can handle the original
exception. If cannot abort itself, it must signal failure exception.

– If no abortion exception is defined, the surrounding action must wait
for the internal action to complete

© Alan Burns and Andy Wellings, 2001

Asynchronous Notifications
n None of the major RT languages/OSs support atomic actions
n They do support asynchronous notifications: a mechanism

whereby one process can gain the attention of another without the
latter waiting

n This can be used as a basis for error recovery between concurrent
systems

n As with exception handling: resumption and termination models:
n The resumption model behaves like a software interrupt
n With the termination model, each process specifies a domain of

execution during which it is prepared to receive an asynchronous
event; after an event has be handled, control is returned to the
interrupted process at a location different to that where the event
was delivered

© Alan Burns and Andy Wellings, 2001

The User Need for Asynchronous Notification

n Fundamental requirement: to enable a process to
respond quickly to a condition detected by another
process

n Error recovery — to support atomic actions
n Mode changes — where changes between modes are

expected but cannot be planned.
– a fault may lead to an aircraft abandoning its take-off and

entering into an emergency mode of operation;
– an accident in a manufacturing process may require an

immediate mode change to ensure an orderly shutdown of the
plant.

– The processes must be quickly and safely informed that the
mode in which they are operating has changed, and that they
now need to undertake a different set of actions

© Alan Burns and Andy Wellings, 2001

The User Need for Asynchronous Notification

n Scheduling using partial/imprecise computations —
there are many algorithms where the accuracy of the
results depends on how much time can be allocated to
their calculation.
– numerical computations, statistical estimations and heuristic

searches may all produce an initial estimation of the required
result, and then refine that result to a greater accuracy.

– At run-time, a certain amount of time can be allocated to an
algorithm, and then, when that time has been used, the process
must be interrupted to stop further refinement of the result.

n User interrupts — Users in a general interactive
computing environment, users often wish to stop the
current processing because they have detected an error
condition and wish to start again

© Alan Burns and Andy Wellings, 2001

Polling

Polling for the notification is too slow. It can be argued that
the process could be aborted and recreated quickly
enough, however, this is probably more error prone than
providing direct support

© Alan Burns and Andy Wellings, 2001

Asynchronous Event Handling

n RTJ asynchronous events (ASE) are similar to POSIX
signals (there is a class which allows POSIX signals to
be mapped onto RTJ events)

n There are three main classes associated ASEs:
– AsynEvent
– AsyncEventHandler
– BoundAsyncEventHandler

n Each AsyncEvent can have one or more handlers
n When the event occurs all the handlers associated with

the event are scheduled for execution
n The firing of an event can also be associated with the

occurrence of an implementation-dependent external
action by using the bindTo method

© Alan Burns and Andy Wellings, 2001

Asynchronous Events
public class AsyncEvent
{
 public AsyncEvent();

 public synchronized void addHandler(AsyncEventHandler handler);
 public synchronized void removeHandler(
 AsyncEventHandler handler);
 public void setHandler(AsyncEventHandler handler);

 public void bindTo(java.lang.String happening);
 // bind to external event

 public ReleaseParameters createReleaseParameters();
 // creates a ReleaseParameters object representing the
 //characteristics of this event

 public void fire();
 // Execute the run() methods of the set of handlers
 ...
}

© Alan Burns and Andy Wellings, 2001

Asynchronous Event Handlers

public abstract class AsyncEventHandler implements Schedulable
{
 public AsyncEventHandler(SchedulingParameters scheduling,
 ReleaseParameters release, MemoryParameters memory,
 MemoryArea area, ProcessingGroupParameters group);

 public void addToFeasibility();
 public void removeFromFeasibility();

 protected int getAndClearPendingFireCount();

 public abstract void handleAsyncEvent();
 // Override to define the action to be taken by the handler

 public final void run();

 ...
}

© Alan Burns and Andy Wellings, 2001

Bound Asynchronous Event Handlers

public abstract class BoundAsyncEventHandler
 extends AsyncEventHandler
{
 public BoundAsyncEventHandler();
 // other constructors
}

© Alan Burns and Andy Wellings, 2001

Timers (see later)

public abstract class Timer extends AsyncEvent
{
 protected Timer(HighResolutionTimer t, Clock c,
 AsyncEventHandler handler);
 public ReleaseParameters createReleaseParameters();

 public AbsoluteTime getFireTime();
 public void reschedule(HighResolutionTimer time);
 public Clock getClock();

 public void disable();
 public void enable();

 public void start(); // start the timer ticking
}

© Alan Burns and Andy Wellings, 2001

POSIX Signals

n Used for a class of environment-detected synchronous
errors (such as divide by zero, illegal pointer)

n There are a number of pre-defined signals each of which
is allocated an integer value. e.g. SIGALARM, SIGILL

n Also an implementation-defined number of signals which
are available for application use: SIGRTMIN .. SIGRTMAX

n Each signal has a default handler, which usually
terminates the receiving process

n A process can block, handle or ignore a signal
n A signal which is not blocked and not ignored is delivered

as soon as it is generated; a signal which is blocked is
pending delivery

© Alan Burns and Andy Wellings, 2001

C Interface to POSIX Signals
union sigval {
 int sival_int;
 void *sival_ptr;
};

typedef struct {
 int si_signo; /* signal number */
 int si_code; /* cause of signal */
 union sigval si_value; /* integer or pointer */
} siginfo_t;

typedef ... sigset_t; /* implementation dependent */

Mainly
used for
message
queues,
timers and
real-time
signals

struct sigaction { /* information about the handler */
 void (*sa_handler) (int signum);
 /* non real-time handler */
 void (*sa_sigaction) (int signum, siginfo_t *data,
 void *extra); /*real-time handler */
 sigset_t sa_mask; /* signals to mask during handler */
 int sa_flags; /*indicates if signal is to be queued */
};

int sigaction(int sig, const struct sigaction *reaction,
 struct sigaction *old_reaction);
/* sets up a handler */

signal
handler

old handler

/* the following functions allow a process
 to wait for a signal */

int sigsuspend(const sigset_t *sigmask);
/* wait for a non-blocking signal and the handler to complete */

int sigwaitinfo(const sigset_t *set, siginfo_t *info);
/* as sigsuspend, but handler not called */
/* information returned returned */

int sigtimedwait(const sigset_t *set, siginfo_t *info,
 const struct timespec *timeout);
/* as sigwaitinfo with timeout */

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
/* manipulates a signal mask, how:
/* = SIG_BLOCK -> the set is added to the current set
/* = SIG_UNBLOCK -> the set is subtracted
/* = SIG_SETMASK -> the given set becomes the mask */

/* allow a signal set to be created and manipulated */
int sigemptyset(sigset_t *s); /* initialise a set to empty */
int sigfillset(sigset_t *s); /* initialise a set to full */
int sigaddset(sigset_t *s, int signum); /* add a signal */
int sigdelset(sigset_t *s, int signum); /* remove a signal */
int sigismember(const sigset_t *s, int signum);

/* returns 1 if member */

int kill (pid_t pid, int sig);
 /* send the signal sig to the process pid */

int sigqueue(pid_t pid, int sig,
 const union sigval value);

/* send signal and data */

© Alan Burns and Andy Wellings, 2001

Mode Change Example

#include <sig.h>

#define MODE_A 1
#define MODE_B 2
#define MODE_CHANGE SIGRTMIN +1

int mode = MODE_A;

void change_mode(int signum, siginfo_t *data,
 void *extra) {
 /* signal handler */
 mode = data->si_value_int;
}

int main() {
 sigset_t mask, omask;
 struct sigaction s, os;
 int local_mode;

 SIGEMPTYSET(&mask); /* create a signal mask */
 SIGADDSET(&mask, MODE_CHANGE);

 s.sa_flags = SA_SIGINFO; /* use 3 argument handler */
 s.sa_mask = mask; /* additional signals blocked
 during handler */
 s.sa_sigaction = &change_mode;
 s.sa_handler = &change_mode;

 SIGACTION(MODE_CHANGE, &s, &os);
/* assign handler */

 while(1) {

 SIGPROCMASK(SIG_BLOCK, &mask, &omask);

 local_mode = mode;
 SIGPROCMASK(SIG_UNBLOCK, &mask, &omask);
 /* periodic operation using mode*/
 switch(local_mode) {
 case MODE_A:
 ...
 break;
 case MODE_B:
 ...
 break;
 default:
 ...
 }
 SLEEP(. . .);
 }
 ...
}

signals
masked
here

Signal occuring here
are acted upon
immediately;
however, the
application only
responds on each
iteration

Note, sleep wakes up if signal called

© Alan Burns and Andy Wellings, 2001

POSIX Threads and Atomic Actions

n Two approaches to implementing an atomic action-like
structure between threads:

1 Use a signals, setjmp and longjmp to program the required
coordination. Unfortunately, longjmp and all the thread system calls are
async-signal unsafe. This means that any communication and
synchronization between threads using mutexes and condition
variables must be encapsulated between calls for blocking and
unblocking signals. The resulting algorithm can become complex.

2 Use thread creation and cancelling to program the required recovery.
As threads are cheap, this approach does not have the same
performance penalty as more heavy-weight process structure.

n The need for these approaches comes from the use of the
resumption model; a more straightforward structure is
obtainable if a termination model is supported

© Alan Burns and Andy Wellings, 2001

Asynchronous Notification in Ada

n The abort statements
n Asynchronous Transfer of Control (the asynchronous

select statement)

© Alan Burns and Andy Wellings, 2001

The Abort Statement

n Intended for use in response to those error conditions
where recovery by the errant task is not deemed
possible

n Any task may abort any other named task
n Tasks which are aborted become abnormal and are

prevented from interacting with other tasks
n Any non-completed tasks that depend on the aborted

tasks also become abnormal
n When a task becomes abnormal, every construct it is

executing is aborted immediately unless it is included in
an abort-deferred operation

© Alan Burns and Andy Wellings, 2001

Abort Completion

n If a construct is blocked outside an abort-deferred
operation (other than at an entry call), it is immediately
completed

n Other constructs must complete no later than
– the end of activation of a task
– when it activates another task
– the start or end of an entry call, accept statement, delay

statement or abort statement
– the start of the execution of a select statement, or the sequence

of statements in an exception handler

A task which does not reach any of
these points need not be terminated!

Real-Time Annex
requires any delay to
be documented

© Alan Burns and Andy Wellings, 2001

Abort-deferred Operations

n a protected action

n waiting for an entry call to complete (after having
initiated the attempt to cancel it as part of the abort)

n waiting for termination of dependent tasks

n executing an Initialize, Finalize, or assignment

operation of a controlled object
n certain actions within these operations result in bounded

error:

– the execution of an asynchronous select statement

– the creation of tasks whose master is within the operation

© Alan Burns and Andy Wellings, 2001

Use of the Abort Statement

n "An abort statement should be used only in situations
requiring unconditional termination." ARM 9.8

n "The existence of this statement causes intolerable
overheads in the implementation of every other feature
of tasking. Its 'successful' use depends on a valid
process aborting a wild one before the wild one aborts a
valid process — or does any other serious damage. The
probability of this is negligible. If processes can go wild,
we are much safer without aborts." C.A.R. Hoare (On
Ada 83)

Even so, the abort is considered to be a valid real-time
requirement, and Ada makes every effort to ensure that
the facility can be used as safely as possible, given its
inherently dangerous nature.

Even so, the abort is considered to be a valid real-time
requirement, and Ada makes every effort to ensure that
the facility can be used as safely as possible, given its
inherently dangerous nature.

© Alan Burns and Andy Wellings, 2001

asynchronous_select ::=
 select
 triggering_alternative
 then abort
 abortable_part
 end select;

triggering_alternative ::=
 triggering_statement
 [sequence_of_statement]
triggering_statement ::= entry_call_statement |
 delay_statement
abortable_part ::= sequence_of_statements

The Asynchronous Select Statement

must not contain an accept statement

© Alan Burns and Andy Wellings, 2001

Semantics I

n First the triggering statement is executed
n If the entry call is queued (or the delay time has not

passed), the abortable part begins its execution
n If the abortable part completes before the completion of

the entry call (or before the delay time expires), the
entry call (or delay) is cancelled

n When cancellation of the entry call or the delay
completes, the select statement is finished

n Cancellation of the delay happens immediately,
cancellation of the entry call may have to wait if the
rendezvous or protected action is in progress (until it
has finished)

© Alan Burns and Andy Wellings, 2001

Semantics II

n If the triggering event completes, the abortable part is
aborted (if not already completed) and any finalisation
code is executed

n When these activities have finished, the optional
sequence of statements following the triggering event is
executed

n Note: If the triggering entry call is executed, then even if
the abortable part completes, the optional sequence of
statements following the triggering event is executed

n If the triggering event occurs before the abortable can
start, the abortable part is not executed

© Alan Burns and Andy Wellings, 2001

Example: Rendezvous Available Immediately

task Server is
 entry ATC_Event;
end Server;

task body Server is

begin
 ...
 accept ATC_Event do

 Seq2;
 end ATC_Event;
 ...
end Server;

task To_Interrupt;
task body To_Interrupt is
begin
 ...
 select

 Server.ATC_Event;

 Seq3;

 then abort

 Seq1;

 end select

 Seq4;

end To_Interrupt;

© Alan Burns and Andy Wellings, 2001

task To_Interrupt;
task body To_Interrupt is
begin
 ...
 select

 Server.ATC_Event;

 Seq3;

 then abort

 Seq1;

 end select

 Seq4;

end To_Interrupt;

No Rendezvous before Seq1 Finishes

task Server is
 entry ATC_Event;
end Server;

task body Server is

begin
 ...
 accept ATC_Event do

 Seq2;
 end ATC_Event;
 ...
end Server;

aborted

© Alan Burns and Andy Wellings, 2001

Rendezvous Finishes before Seq1

task Server is
 entry ATC_Event;
end Server;

task body Server is

begin
 ...
 accept ATC_Event do

 Seq2;
 end ATC_Event;
 ...
end Server;

task To_Interrupt;
task body To_Interrupt is
begin
 ...
 select

 Server.ATC_Event;

 Seq3;

 then abort

 Seq1;

 end select

 Seq4;

end To_Interrupt;

aborted

© Alan Burns and Andy Wellings, 2001

Rendezvous Finishes after Seq1

task Server is
 entry ATC_Event;
end Server;

task body Server is

begin
 ...
 accept ATC_Event do

 Seq2;
 end ATC_Event;
 ...
end Server;

task To_Interrupt;
task body To_Interrupt is
begin
 ...
 select

 Server.ATC_Event;

 Seq3;

 then abort

 Seq1;

 end select

 Seq4;

end To_Interrupt;

© Alan Burns and Andy Wellings, 2001

Sequence of Events
if the rendezvous is available immediately then

Server.ATC_Event is issued

Seq2 is executed

Seq3 is executed

Seq4 is executed

else if no rendezvous starts before Seq1 finishes then

Server.ATC_Event is issued

Seq1 is executed

Server.ATC_Event is cancelled

Seq4 is executed

© Alan Burns and Andy Wellings, 2001

Sequence of Events Continued
else if the rendezvous finishes before Seq1 finishes then

Server.ATC_Event is issued
partial execution of Seq1 occurs concurrently with Seq2
Seq1 is aborted and finalised
Seq3 is executed
Seq4 is executed

else (the rendezvous finishes after Seq1 finishes)

Server.ATC_Event is issued
Seq1 is executed concurrently with partial execution of Seq2
Server.ATC_EVENT cancellation is attempted

 execution of Seq2 completes
Seq3
Seq4

end

© Alan Burns and Andy Wellings, 2001

Exceptions and ATC

n With the asynchronous select statement, two activities

are potentially executing concurrently

n Both can raise exceptions

n The one from the abortable part is lost, if the abortable

part is aborted

© Alan Burns and Andy Wellings, 2001

Example of ATC — Error Recovery
type Error_ID is (Err1, Err2, Err3);

package Error_Notification is new Broadcasts(Error_ID);

Error_Occurred : Error_Notification.Broadcast;

task type Interested_Party;

task Error_Monitor;

task body Error_Monitor is

begin

 ...

 -- when error detected

 Error_Occurred.Send(Error);

 ...
end Error_Monitor

a protected type

© Alan Burns and Andy Wellings, 2001

Error Recovery II
task body Interested_Party is
 Reason : Error_ID;
begin
 loop
 select
 Error_Occurred.Receive(Reason);
 case Reason is
 when Err1 => -- appropriate recovery action
 when Err2 => -- appropriate recovery action
 when Err3 => -- appropriate recovery action
 end case;
 then abort
 loop -- normal operation end loop;
 end select;
 end loop;
end Interested_Party;

© Alan Burns and Andy Wellings, 2001

Deadline Overrun Detection

with Ada.Real_Time; use Ada.Real_Time;

task Critical;

task body Critical is
 Deadline : Real_Time.Time := ...;
begin
 ...
 select
 delay until Deadline;
 -- recovery action
 then abort
 -- enter time critical section of code
 end select;
 ...
end Critical;

© Alan Burns and Andy Wellings, 2001

Mode Changes
with Persistent_Signals; use Persistent_Signals;

with Calendar; use Calendar;

...

type Mode is (Non_Critical, Critical);

Change_Mode : Persistent_Signal;

task Sensor_Monitoring;

task body Sensor_Monitor is

 Current_Mode : Mode := Non_Critical;

 Next_Time : Time := Clock;

 Critical_Period : constant Duration := 1.0;

 Non_Critical_Period : constant Duration := 10.0;

 Current_Period : Duration := Non_Critical_Period;

begin

© Alan Burns and Andy Wellings, 2001

Mode Change II
 loop
 select Change_Mode.Wait;
 if Current_Mode = Critical then
 Current_Mode := Non_Critical;
 Current_Period := Non_Critical_Period;
 else Current_Mode := Critical;
 Current_Period := Critical_Period; end if;
 Next_Time := Clock; -- say
 then abort
 loop
 -- read sensor etc.
 delay until Next_Time;
 Next_Time := Next_Time + Current_Period;
 end loop;
 end select;
 end loop;
end Sensor_Monitor;

© Alan Burns and Andy Wellings, 2001

Understanding ATC

n Interaction with the Delay Statement
n Interaction with Timed Entry Calls
n Interaction with Multiple Entry Calls
n Nested ATC
n Interaction with Exceptions

© Alan Burns and Andy Wellings, 2001

Interaction with the Delay Statement

task body A is
 T : Time;
 D : Duration;
begin
 ...
 select
 delay until T;
 then abort
 delay D;
 end select;
end A;

task body B is
 T : Time;
 D : Duration;
begin
 ...
 select
 delay D;
 then abort
 delay until T;
 end select;
end B;

Are these equivalent?

© Alan Burns and Andy Wellings, 2001

Interaction with Timed Entry Calls
task body A is

 T : Time;

begin

 select

 delay until T;

 S1;

 then abort

 Server.Entry1;

 S2;

 end select;

end A;

task body B is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 then abort

 delay until T;

 S2

 end select;

end B;

task body C is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 or

 delay until T;

 S2

 end select;

end C;

Very similar structures, all slightly different behaviours

© Alan Burns and Andy Wellings, 2001

Rendezvous Starts and Finishes Before Timeout

task body A is

 T : Time;

begin

 select

 delay until T;

 S1;

 then abort

 Server.Entry1;

 S2;

 end select;

end A;

abort

task body B is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 then abort

 delay until T;

 S2

 end select;

end B;

task body C is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 or

 delay until T;

 S2

 end select;

end C;

abort

© Alan Burns and Andy Wellings, 2001

Rendezvous Starts Before Timeout but Finishes After Timeout

task body C is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 or

 delay until T;

 S2

 end select;

end C;

task body A is

 T : Time;

begin

 select

 delay until T;

 S1;

 then abort

 Server.Entry1;

 S2;

 end select;

end A;

task body B is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 then abort

 delay until T;

 S2

 end select;

end B;

abort

© Alan Burns and Andy Wellings, 2001

Timeout Occurs Before the Rendezvous Starts

task body C is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 or

 delay until T;

 S2

 end select;

end C;

task body B is

 T : Time;

begin

 select

 Server.Entry1;

 S1;

 then abort

 delay until T;

 S2

 end select;

end B;

abort

task body A is

 T : Time;

begin

 select

 delay until T;

 S1;

 then abort

 Server.Entry1;

 S2;

 end select;

end A;

© Alan Burns and Andy Wellings, 2001

Timed Entry Calls

n Rendezvous with Server starts and finishes before
timeout
– A executes the rendezvous and then attempts S2, if S2 does not

complete before the timeout it is abandoned and S1 is executed
– B executes the rendezvous and then S1
– C executes the rendezvous and S1

n The rendezvous starts before the timeout but finishes
after the timeout
– A executes the rendezvous and S1
– B executes the rendezvous, S1 and part of S2
– C executes the rendezvous and S1

© Alan Burns and Andy Wellings, 2001

Timed Entry Calls II

n The timeout occurs before the rendezvous started
– A executes S1
– B executes part or all of S2 and possibly the rendezvous and S1
– C executes S2

© Alan Burns and Andy Wellings, 2001

A Timed Entry Call?
task body C is
 T : Time;
begin
 Occurred := False;
 select
 delay until T;
 then abort
 Server1.Entry1(Occurred);
 -- Occurred set to True in Server1
 end select;
 if Occurred then
 S1;
 else
 S2;
 end if;
end C;

© Alan Burns and Andy Wellings, 2001

Interaction with Multiple Entry Calls

task body A is

 T : Time;

begin

 ...

 select

 TaskC.Entry1;

 then abort

 TaskD.Entry1;

 end select;

end A;

task body B is

 T : Time;

begin

 ...

 select

 TaskD.Entry1;

 then abort

 TaskC.Entry1;

 end select;

end B;

© Alan Burns and Andy Wellings, 2001

Consider:

1. TaskC.Entry1 becomes available first:
– TaskA will rendezvous with TaskC and possibly TaskD (if the

rendezvous becomes available before the rendezvous with
TaskC completes)

– TaskB will rendezvous with TaskC and possibly TaskD

2. TaskD.Entry1 becomes ready first:
– Similar to above

3. TaskC.Entry1 and TaskD.Entry1 are both ready:
– TaskA will rendezvous with TaskC only
– TaskB will rendezvous with TaskD only

© Alan Burns and Andy Wellings, 2001

Nested Asynchronous Select Statements

task body A is
begin
 ...
 select
 B.Entry1;
 then abort
 select
 C.Entry1;
 then abort
 Seq;

 end select;
 end select;
 ...
end A;

Here task A will wait for an entry
call to become complete from
tasks B or C. If none arrive
before Seq has finished its
execution, C will be cancelled
and then B will potentially also be
cancelled.

© Alan Burns and Andy Wellings, 2001

Interaction with Exceptions

n If Seq1 raises an exception and the triggering event
does not occur, the exception is propagated from the
select statement

n If the triggering event occurs, then any exception raised
by S1 is lost (to avoid the possibility of parallel
exceptions being raised from the select statement)

task body Server is
begin
 ...
 accept ATC_Event do
 Seq2;
 end ATC_Event;
 ...
end Server;

 select
 Server.ATC_Event;
 Seq3;
 then abort
 Seq1
 end select
 ...

© Alan Burns and Andy Wellings, 2001

Ada and Atomic Actions

n Each atomic action is implemented by a package
n Roles are identified, each role is represented by a procedure in the package

specification
n A task must associate itself with a role
n Each role can only have one active task

Task 1

Task 2

Task 3

Controller Protected Object
Action Procedure 1

Action Procedure 2

Action Procedure 3

Controller Entry/
Subprograms

© Alan Burns and Andy Wellings, 2001

Backward Error Recovery: Conversations

n Each procedure will contain a recovery block

n We will use ATC to inform each task if one of the other tasks
in the conversation has failed

package Conversation is
 procedure T1(Params : Param); -- called by task 1
 procedure T2(Params : Param); -- called by task 2
 procedure T3(Params : Param); -- called by task 3
 Atomic_Action_Failure : exception;
end Conversation;

with Recovery_Cache;
package body Conversation is

 Primary_Failure, Secondary_Failure,
 Tertiary_Failure : exception;
 type Module is (Primary, Secondary, Tertiary);

 protected Controller is
 entry Wait_Abort;
 entry Done;
 entry Cleanup;
 procedure Signal_Abort;
 private
 Killed : Boolean := False;
 Releasing_Done : Boolean := False;
 Releasing_Cleanup : Boolean := False;
 Informed : Integer := 0;
 end Controller;

© Alan Burns and Andy Wellings, 2001

The Protected Controller

n The Wait_Abort entry is the asynchronous event on which
the tasks will wait whilst performing their part of the action

n Each task calls Done if it has finished without error; only when
all three tasks have called Done will they be allowed to leave

n If a task recognises an error condition (because of a raised
exception or the failure of the acceptance test), it will call
Signal_Abort; this will set the flag Killed to true

n Note, that as backward error recovery will be performed, the
tasks are not concerned with the actual cause of the error

n When Killed becomes true, all tasks in the action receive
the asynchronous event and undertake recovery

n Once the event has been handled, all tasks must wait on
Cleanup so that they all can leave the conversation together

 -- local PO for communication between actions
 protected body Controller is

 entry Wait_Abort when Killed is
 begin

Informed := Informed + 1;
 if Informed = 3 then
 Killed := False;
 Informed := 0;
 end if;
 end Wait_Abort;

 procedure Signal_Abort is
 begin
 Killed := True;
 end Signal_Abort;

 entry Done when Done'Count = 3 or
 Releasing_Done is

 begin
 if Done'Count > 0 then Releasing_Done := True;
 else Releasing_Done := False; end if;
 end Done;

end Controller;

 entry Cleanup when Cleanup'Count = 3 or
 Releasing_Cleanup is

 begin
 if Cleanup'Count > 0 then
 Releasing_Cleanup := True;
 else Releasing_Cleanup := False; end if;
 end Cleanup;

 procedure T1 (Params : Param) is

 procedure T1_Primary is
 begin
 select
 Controller.Wait_Abort;
 Controller.Cleanup; -- wait for all to finish
 raise Primary_Failure;
 then abort
 begin
 -- code to implement atomic action,
 if Acceptance_Test = Failed then
 Controller.Signal_Abort;
 else
 Controller.Done;
 end if;
 exception
 when others =>
 Controller.Signal_Abort;
 end;
 end select;
 end T1 Primary;

similarly for T1_Secondary
and T1_Tertiary

 begin
 My_Recovery_Cache.Save(. . .);
 for Try in Module loop
 begin case Try is
 when Primary => T1_Primary; return;
 when Secondary => T1_Secondary; return;
 when Tertiary => T1_Tertiary; end case;
 exception
 when Primary_Failure => My_Recovery_Cache.Restore(…);
 when Secondary_Failure => Recovery_Cache.Restore(…);
 when Tertiary_Failure => Recovery_Cache.Restore(…);
 raise Atomic_Action_Failure;
 when others => Recovery_Cache.Restore(…);
 raise Atomic_Action_Failure;
 end;
 end loop;
 end T1_Part;

end Conversation;
similarly for T2

and T3

© Alan Burns and Andy Wellings, 2001

State Transition Diagram
Save state

Restore state and try alternative module

Executing and also waiting for an abort

Signal abort action Abort triggered Waiting on Done

Waiting on cleanup

Exit version normally

Raising exception for module failure

fail acceptance test aborted
pass acceptance test

© Alan Burns and Andy Wellings, 2001

Forward Error Recovery

package Action is
 procedure T1(Params: Param); -- called by task 1
 procedure T2(Params: Param); -- called by task 2
 procedure T3(Params: Param); -- called by task 3

 Atomic_Action_Failure : exception;
end Action;

with Ada.Exceptions; use Ada.Exceptions;

package body Action is
 type Vote_T is (Commit, Aborted);
 protected Controller is
 entry Wait_Abort(E: out Exception_Id);
 entry Done;
 procedure Cleanup (Vote: Vote_T);
 procedure Signal_Abort(E: Exception_Id);
 entry Wait_Cleanup(Result : out Vote_t);
 private
 Killed : Boolean := False;
 Releasing_Cleanup : Boolean := False;
 Releasing_Done : Boolean := False;
 Reason : Exception_Id := Null_Id;
 Final_Result : Vote_t := Commit;
 Informed : Integer := 0;
 end Controller;

 protected body Controller is
 entry Wait_Abort(E: out Exception_id) when Killed is
 begin
 E := Reason; Informed := Informed + 1;
 if Informed = 3 then
 Killed := False; Informed := 0;
 end if;
 end Wait_Abort;

 entry Done when Done’Count = 3 or Releasing_Done is
 begin
 if Done’Count > 0 then Releasing_Done := True;

else Releasing_Done := False; end if;
 end Done;

 procedure Cleanup(Vote: Vote_T) is
 begin
 if Vote = Aborted then
 Final_Result := Aborted;
 end if;
 end Cleanup;

 procedure Signal_Abort(E: Exception_id) is
 begin
 Killed := True;
 Reason := E;
 end Signal_Abort;

 entry Wait_Cleanup (Result : out Vote_T) when
 Wait_Cleanup'Count = 3 or Releasing_Cleanup is
 begin
 Result := Final_Result;
 if Wait_Cleanup'Count > 0 then
 Releasing_Cleanup := True;
 else
 Releasing_Cleanup := False;
 Final_Result := Commit;
 end if;
 end Wait_Cleanup;

 end Controller;

 procedure T1(Params: Param) is
 X : Exception_Id; Decision : Vote_T;
 begin
 select
 Controller.Wait_Abort(X); Raise_Exception(X);
 then abort
 begin
 -- code to implement atomic action
 Controller.Done;
 exception when E: others =>
 Controller.Signal_Abort(Exception_Identity(E));
 end;
 end select;

 exception
 when E: others => if Handled_Ok then
 Controller.Cleanup(Commit);
 else Controller.Cleanup(Aborted); end if;
 Controller.Wait_Cleanup(Decision);
 if Decision = Aborted then
 raise Atomic_Action_Failure; end if;
 end T1_Part;

 -- similarly for T2 and T3
end Action;

© Alan Burns and Andy Wellings, 2001

F.E.C.: State Transition Diagram
Enter Action

Exit action failed

Executing and also waiting for an abort

Signal abort action Abort triggered and
raising exception Waiting on Done

Exception handled

Exit action normally

Waiting Cleanup

exception raised aborted action complete

© Alan Burns and Andy Wellings, 2001

Asynchronous Transfer of Control in Java

n Early versions of Java allowed one thread to
asynchronously effect another thread through

public final void suspend() throws SecurityException;
public final void resume() throws SecurityException;

public final void stop() throws SecurityException;
public final void stop(Throwable except)
 throws SecurityException;

n The stop method, causes the thread to stop its current
activity and throw a ThreadDeath exception

n All of the above methods are now obsolete and therefore
should not be used

© Alan Burns and Andy Wellings, 2001

ATC in Java

n Standard Java now only supports (in the Thread class):
public void interrupt() throws SecurityException;
public boolean isInterrupted();

public void destroy();

n When a thread interrupts another thread:
– If the interrupted thread is blocked in wait, sleep or join, it is

made runnable and the InterruptedException is thrown
– If the interrupted thread is executing, a flag is set indicating that an

interrupt is outstanding; there is no immediate effect on the
interrupted thread

– Instead, the called thread must periodically test to see if it has been
interrupted using the isInterrupted method

n The destroy method is similar to the Ada abort facility and
destroys the thread without any cleanup

© Alan Burns and Andy Wellings, 2001

ATC in RTJ

n Similarities between Ada and RTJ models
– it is necessary to indicate which regions of code can receive the

ATC request
– ATC are deferred during task/thread interaction and finalization

n Differences
– The RTJ model is integrated with the Java exception handling facility

whereas the Ada model is integrated into the select statement and
entry-handling mechanisms

– The RTJ model requires each method to indicate that it is prepared
to allow the ATC to occur; ATC are deferred until the thread is
executing within such a method.

– Ada's default is to allow the ATC if a subprogram has been called
from within the select-then-abort statement; a deferred response
must be explicitly handled

© Alan Burns and Andy Wellings, 2001

ATC in RTJ

n Allows one thread to interrupt another thread
n Integrated into the Java exception handling and interrupt facility
n RTJ requires each method to indicate if it is prepared to allow an

ATC
n Use of ATC requires

– declaring an AsynchronouslyInterruptedException (AIE)

– identifying methods which can be interrupted using a throw clause
– signaling an AsynchronouslyInterruptedException to a thread

(t)

n Calling interrupt()throws a generic AIE
n ATC are deferred during synchronized methods and finally clauses

© Alan Burns and Andy Wellings, 2001

import nonInterruptibleServices.*;

public class InterruptibleService
{ // AIE is short for AsynchronouslyInterruptedException
 public AIE stopNow = AIE.getGeneric();

 public boolean Service() throws AIE
 {
 //code interspersed with calls to nonInterruptibleServices
 }
}

Example of ATC

public InterruptibleService IS = new InterruptibleService();

// code of thread, t
if(IS.Service()) { ... }
else { ... };

// now another thread interrupts t:

t.interrupt;

© Alan Burns and Andy Wellings, 2001

Semantics: when AIE is signalled

n If t is executing within an ATC-deferred section, the AIE is marked
as pending

n If t is executing in a method which has no AIE declared in its
throws list, the AIE is marked as pending

n A pending AIE is thrown as soon as t returns to (or enters) a
method with an AIE declared in its throws list

n If t is executing within a try block within a method which has
declared an AIE in its throws list, the try block is terminated and
control is transferred to catch clauses; if no appropriate catch
clause is found, the AIE is propagated to the calling method

n If an appropriate handler is executed, processing of the AIE is
completed (unless the AIE is propagated from within the handler)

n If t is executing outside a try block within a method which has
declared an AIE in its throws list, the method is terminated and the
AIE is thrown immediately in the calling method

© Alan Burns and Andy Wellings, 2001

Semantics: when AIE is signalled

n If t is blocked inside a wait, sleep or join method
called from within a method which has an AIE declared
in its throws list, t is rescheduled and the AIE is thrown

n If t is blocked inside a wait, sleep or join method
called from within a method which has no AIE declared
in its throws list, t is rescheduled and the AIE is
marked as pending

© Alan Burns and Andy Wellings, 2001

Catching an AIE

n Once an ATC has been thrown and control is passed to
an appropriate exception handler, it is necessary to
ascertain whether the caught ATC is the one expected
by the interrupted thread.

n If it is, the exception can be handled.
n If it is not, the exception should be propagated to the

calling method.
n The happened method defined in the class
AsynchronouslyInterruptedException is used
for this purpose

© Alan Burns and Andy Wellings, 2001

Example Continued
import NonInterruptibleServices.*;
public class InterruptibleService
{
 public AIE stopNow = AIE.getGeneric();

 public boolean Service() throws AIE
 {
 try {
 //code interdispersed with calls to NonInterruptibleServices
 }
 catch AIE AI {
 if(stopNow.happened(true)) { //handle the ATC }
 // no else clause, the true parameter indicates that
 // if the current exception is not stopNow,
 // it is to be immediately propagated
 // to the calling method
 }
 }
}

© Alan Burns and Andy Wellings, 2001

Alternative Handler

 catch AIE AI {
 if(stopNow.happened(false)) {
 //handle the ATC
 } else {
 //cleanup
 AI.propagate();
 }
 }

© Alan Burns and Andy Wellings, 2001

AIE

public class AsynchronouslyInterruptedException extends
 java.lang.InterruptedException
{
 ...
 public synchronized void disable();
 public boolean doInterruptible (Interruptible logic);

 public synchronized boolean enable();
 public synchronized boolean fire();

 public boolean happened (boolean propagate);

 public static AsynchronouslyInterruptedException getGeneric();
 // returns the AsynchronouslyInterruptedException which
 // is generated when RealtimeThread.interrupt() is invoked

 public void propagate();
}

© Alan Burns and Andy Wellings, 2001

Interruptible

public interface Interruptible
{
 public void interruptAction (
 AsynchronouslyInterruptedException exception);

 public void run (
 AsynchronouslyInterruptedException exception)
 throws AsynchronouslyInterruptedException;
}

n An object which wishes to provide an interruptible method
does so by implementing the Interruptible interface.

n The run method is the method that is interruptible; the
interruptedAction method is called by the system if
the run method is interrupted

© Alan Burns and Andy Wellings, 2001

Interruptible

n Once this interface is implemented, the implementation can
be passed as a parameter to the doInterruptible
method in the AIE class

n The method can then be interrupted by calling the fire
method in the AIE class

n Further control over the AIE is given by
– disable
– enable
– isEnabled

n A disabled AIE is deferred until it is enabled

Only one task can be executing a doInterruptible at once

© Alan Burns and Andy Wellings, 2001

Pending AIE: none

Nested ATCs

Interruptible A

AIE3.doInterruptible(A)

AIE2.doInterruptible(B)

Interruptible B

AIE1.doInterruptible(C)

Interruptible C

Non Interruptible
Method Call

Non InterruptibleMethodNon InterruptibleMethod
AIE2.fire()

Pending AIE: AIE2

AIE1.fire()

Pending AIE: AIE3

Discarded

AIE3.fire()

© Alan Burns and Andy Wellings, 2001

Timeouts (see later)

n With Real-Time Java, there is a subclass of
AsynchronouslyInterruptedException called Timed

n Both absolute and Realtive times can be used

public class Timed extends AsynchronouslyInterruptedException
implements java.io.Serializable

{
 public Timed(HighResolutionTime time) throws
 IllegalArgumentException;

 public boolean doInterruptible (Interruptible logic);

 public void resetTime(HighResolutionTime time);
}

© Alan Burns and Andy Wellings, 2001

RTJ and Atomic Actions

n Consider forward error recovery, use same approach as
Ada

Thread 1
Controller Object

synchronized
methodsThread 2

Thread 3

role 1

role 2

role 3

Interface

role 1

role 2

role 3

Object

© Alan Burns and Andy Wellings, 2001

Use of doInterruptible

Controller

AIE1

Action

EH

role1

doInterruptible

signalAbort

AIE1.fire()
AIE2.fire()

AIE3.fire()

AIE2

Action

EH

role2

doInterruptible
AIE3

Action

EH

role3

doInterruptible

© Alan Burns and Andy Wellings, 2001

RTJ and Atomic Actions

import javax.realtime.AIE;

public class AtomicActionException extends AIE
{
 public static Exception cause;
 public static boolean wasInterrupted;
}

public class AtomicActionFailure extends Exception
{};

shared between
objects of the
class

public interface ThreeWayRecoverableAtomicAction {
 public void role1() throws AtomicActionFailure;
 public void role2() throws AtomicActionFailure;
 public void role3() throws AtomicActionFailure;
}

public class RecoverableAction
 implements ThreeWayRecoverableAtomicAction
{
 protected RecoverableController Control;
 private final boolean abort = false;
 private final boolean commit = true;

 private AtomicActionException aae1, aae2, aae3;

 public RecoverableAction() { // constructor
 Control = new RecoverableController();
 // for recovery
 aae1 = new AtomicActionException();
 aae2 = new AtomicActionException();
 aae3 = new AtomicActionException(); }

 class RecoverableController {
 protected boolean firstHere, secondHere, thirdHere;
 protected int allDone;
 protected int toExit, needed;
 protected int numberOfParticipants;
 private boolean committed = commit;
 RecoverableController() { // constructor
 // for synchronization
 firstHere = false;
 secondHere = false;
 thirdHere = false;
 allDone = 0;
 numberOfParticipants = 3;
 toExit = numberOfParticipants;
 needed = numberOfParticipants;
 }

 synchronized void first() throws InterruptedException
 { while(firstHere) wait();
 firstHere = true; }

 synchronized void second() throws InterruptedException
 { while(secondHere) wait();
 secondHere = true; }

 synchronized void third() throws InterruptedException
 { while(thirdHere) wait();
 thirdHere = true;}

 synchronized void signalAbort(Exception e) {
 allDone = 0;
 AtomicActionException.cause = e;
 AtomicActionException.wasInterrupted = true;
 // raise an AsynchronouslyInterruptedException
 // in all participants
 aae1.fire();
 aae2.fire();
 aae3.fire();
 }

 private void reset() {
 firstHere = false; secondHere = false;
 thirdHere = false; allDone = 0;
 toExit = numberOfParticipants;
 needed = numberOfParticipants;
 notifyAll();
 }

 synchronized void done() throws InterruptedException
 {
 allDone++;
 if(allDone == needed) {
 notifyAll();
 } else while(allDone != needed) {
 wait();
 }
 toExit--;
 if(toExit == 0) {
 reset();
 }
 }

 synchronized void cleanup(boolean abort)
 { if(abort) { committed = false; }; }

 synchronized boolean waitCleanup()
 throws InterruptedException
 {
 allDone++;
 if(allDone == needed) {
 notifyAll();
 } else while(allDone != needed) {
 wait();
 }
 toExit--;
 if(toExit == 0) {
 reset();
 }
 return committed;
 };
 };

 public void role1() throws AtomicActionFailure,
 AIE
 {
 boolean Ok;
 // no AIE until inside the atomic action
 boolean done = false;
 while(!done) {
 try {
 Control.first();
 done = true;
 } catch (InterruptedException e) {
 // ignore
 }
 }

En
try

 p
ro

to
co

l

 Ok = aae1.doInterruptible
 (new Interruptible() {
 public void run(AIE e) throws AIE {
 try {
 // perform action
 // if necessary call e.disable() and e.enable() to
 // defer AIE
 Control.done();
 }
 catch(Exception x) {
 if(x.getClass().getName() == "AIE")
 ((AIE) x).propagate();
 else
 Control.signalAbort(x);
 }
 }

 public void interruptAction(AIE e)
 { // no action required }
 }
);

 if(!Ok) throw new AtomicActionFailure();
 if(aae1.wasInterrupted) {
 try {
 // try to recover
 Control.cleanup(commit);
 if(Control.waitCleanup() != commit) {
 throw new AtomicActionFailure();
 };
 }
 catch(Exception x) {
 throw new AtomicActionFailure();
 }
 };
 }

 public void role2() throws AtomicActionFailure, AIE
 {// similar to role1 };

 public void role3() throws AtomicActionFailure, AIE
 {// similar to role1 };

}

© Alan Burns and Andy Wellings, 2001

Summary

n When processes interact, it is necessary to constrain their
IPC so that recovery procedures can be programmed

n Atomic actions are a mechanism by which programs,
consisting of many tasks, can be structured to facilitate
damage confinement and error recovery

n Actions are atomic if they can be considered, so far as other
processes are concerned, to be indivisible and
instantaneous, such that the effects on the system are as if
they are interleaved as opposed to concurrent

n An atomic action has well-defined boundaries and can be
nested

© Alan Burns and Andy Wellings, 2001

Summary

n A conversation is an atomic action with backward error
recovery facilities

n On entry, the state of the process is saved; whilst inside,
a process is only allowed to communicate with other
processes active in the conversation and general
resource managers

n In order to leave, all processes active in the conversation
must have passed their acceptance test

n If any process fails its acceptance test, all processes
have their state restored and they execute their
alternative modules.

n Conversations can be nested and if all alternatives in an
inner conversation fail then recovery must be performed
at an outer level

© Alan Burns and Andy Wellings, 2001

Summary

n Forward error recovery via exception handlers can also be
added to atomic actions

n If an exception is raised by one process then all active in the
action must handle it

n Two issues with this approach are the resolution of
concurrently raised exceptions and exceptions in internal
actions

n An asynchronous notification mechanism can be used to
help program recovery

n POSIX provides signal and a thread cancelling mechanism
n A signal can be handled, blocked or ignored; unfortunately,

it is not easy to program recoverable actions using a
resumption model of asynchronous events

© Alan Burns and Andy Wellings, 2001

Summary

n Ada and Real-Time provide an asynchronous transfer of
control mechanism based on the termination model

n Ada’s is built on top of the select statement
n RTJ is integrated into the exception and thread interrupt

mechanisms
n This termination approach, in combination with

exceptions, allows for an elegant implementation of a
recoverable action

