Atomic Actions, Concurrent
Processes and Reliapility

Goal

To understand how concurrent processes can
reliably cooperate in the presence of errors

Topics

m Atomic actions

m Backward error recovery

m Forward error recovery

m Asynchronous notifications

m POSIX signals

m Asynchronous Event Handling in RTJ

m Asynchronous Transfer of Control (ATC) in Ada
m ATCinJava

© Alan Burnsand Andy Wellings, 2001

Atomic Actions — Motivation

Concurrent processes enable parallelism in the real world to be
reflected in programs

The interaction between 2 processes has been expressed in terms
of a single communication; this is not always the case

E.g., withdrawal from a bank account may involve a ledger process
and a payment process in a sequence of communications to
authenticate the drawer, check the balance and pay the money

It may be necessary for more than two processes to interact in this
way to perform the required action

m The processes involved must see a consistent system state

With concurrent processes, it is all too easy for groups of processes
to interfere with one other

What is required is for each group of processes to execute their
joint activity as an indivisible or atomic action

© Alan Burnsand Andy Wellings, 2001

Atomic Actions — Definition

An action is atomic If the processes performing it:

m are not aware of the existence of any other active process,
and no other active process is aware of the activity of the
processes during the time the processes are performing the
action

m do not communicate with other processes while the action is
being performed

m can detect no state change except those performed by
themselves and if they do not reveal their state changes
until the action is complete

m can be considered, so far as other processes are
concerned, to be indivisible and instantaneous, such that
the effects on the system are as If they were interleaved as
opposed to concurrent S ——

Nested Actions

Although an atomic action is viewed as being indivisible,
It can have an internal structure

To allow modular decomposition of atomic actions, the
notion of a nested atomic action is introduced

The processes involved in a nested action must be a
subset of those involved in the outer level of the action

If this were not the case, a nested action could smuggle
Information concerning the outer level action to an
external process.

The outer level action would then no longer be
iIndivisible

© Alan Burnsand Andy Wellings, 2001

Atomic Transactions

In operating systems and databases, the term atomic
transaction is often used

An atomic transaction has all the properties of an atomic
action plus the added feature that its execution is
allowed either to succeed or fall

By failure, it is meant that an error has occurred from
which the transaction cannot recover — normally a
processor failure

With an atomic transaction, all components used are
returned to their original state (that is the state they were
before the transaction commenced)

Atomic transactions are sometimes called recoverable
actions or atomic actions

© Alan Burnsand Andy Wellings, 2001

Propertl es of Atomlc Transactl ons

Failure atomicity — the transaction must complete successfully or
have no effect

Synchronization atomicity (or isolation) — partial execution
cannot be observed by any concurrently executing transaction

Not entirely suitable for programming fault-tolerant systems
because they imply that some form of recovery mechanism will be
supplied by the system

Such a mechanism would be fixed, with the programmer having
no control over its operation

Atomic transactions provide a form of backward error recovery but
do not allow recovery procedures to be performed

Notwithstanding these points, atomic transactions do have a role
In protecting the integrity of a real-time system database

© Alan Burnsand Andy Wellings, 2001

Reguirements for Atomic Actions

m Well-defined boundaries
— A start, end and a side boundary

— The start and end boundaries are the locations in each process
where the action is deemed to start and end

— The side boundary separates those processes involved in the
action from those in the rest of the system

m Indivisibility
— No exchange of information between processes active inside
and those outside (resource managers excluded).

— The value of any shared data after the actions is determined by
the strict sequencing of the actions in some order

— There is no synchronization at the start. Processes can enter at
different times

— Processes are not allowed to leave the atomic action until all are
willing and able to leave

© Alan Burnsand Andy Wellings, 2001

Reguirements for Atomic Actions

m Nesting

— Atomic actions may be nested as long as they do not overlap with
other atomic actions

— Only strict nesting is allowed (two structures are strictly nested if
one is completely contained within the other)

m Concurrency

— It should be possible to execute different atomic actions
concurrently

— Sequential execution could impair the performance of the overall
system and should be avoided

— Nevertheless, the overall effect of running a collection of atomic
actions concurrently must be the same as that which would be
obtained from serialising their executions

m They must allow recovery procedures to be programmed

© Alan Burnsand Andy Wellings, 2001

ed Atomic Actlons

/ \

Action A

Pl

.ndy Wellings, 2001

L anguage Structure

— — — — — —
action Awth (P2, P3, . . .) do
-- can only communication wwth p2, P3 etc
-- and use | ocal variables
end A

m No mainstream language or OS supports atomic
action

© Alan Burnsand Andy Wellings, 2001

Atomic Actionsin Ada

The extended rendezvous in Ada enables a common form
of atomic action where a task communicates with another
task to request some computation; the called task
undertakes this execution and then replies via the out
parameters of the rendezvous

The atomic action takes the form of an accept statement;
It possesses synchronization atomicity as long as;
— It does not update any variable that another task can access, and
— it does not rendezvous with any other task

An atomic action in Ada for three tasks could be
programmed with a nested rendezvous, however, this
would not allow any parallelism within the action

An alternative model is to create an action controller and
to program the required synchronization © e Bt e Ay Wlings 201

x

Ada and Atoml C Actl oNs

{ |
1
Action Procedure 1
/ Controller Protected Objec“
Task 2 Action Procedure 2 Controller Entry/ JJ
Subprograms

L /
m Each atomic action isimplemented by a package
m Roles are identified, each role is represented by a procedure in the package
specification
m A task must associate itself with arole
m Each role can only have one active task

Task 3 :
——» Action Procedure 3
|

© Alan Burnsand Andy Wellings, 2001

Ada Structure

Action Controller

Role 1

Entry Protocol

action component

Exit Protocol

|eave

Role 2

Entry Protocol

action component

Exit Protocol

|leave

Role 3

Entry Protocol

action component

Exit Protocol

|eave

© Alan Burnsand Andy Wellings, 2001

Role 1

Entry Protocol

action compon

Exit Protocol

|eave

Structure

Action Controller

A

Role 2

v

Entry Protoc

action compo

Exit Protocol

|eave

t

Role 3

Entry Protocol

ction componen

Exit Protocol

|eave

| gumn ol

© Alan Burnsand Andy Wellings, 2001

dCde -

Rol el
-- Rol e2
Rol e3

package Action X is
procedure Code For First Task(--parans)
Second_Task(- - par ans)

procedure Code For _
procedure Code For Third Task(--parans)

end Action_X;
package body Action X is
protected Action _Controller is

entry First;
entry Second;

entry Third;
entry Finished,;
: = Fal se;

private
First Here : Bool ean :
. Bool ean : = Fal se;

Second _Here :
Third Here : Bool ean : = Fal se;
Rel ease : Bool ean
end Action_Controller

. = Fal se;
© Alan Burnsand Andy Wellings, 2001

protected body Action Controller is
entry First when not First Here is
begin First Here := True; end First,;
-- simlarly for second, third

entry Finished when Rel ease or Fini shed' Count

begi n
| f Finished count = 0 then
Rel ease := False; First Here := Fal se;
Second Here := False; Third Here := Fal se;
el se Release := True; end if;

end Fi ni shed;
end Action _Controller;

= 31S

Ada Code

procedure Code For First Task(--parans) is
begi n
Action _Controller.First;
-- acquire resources; the action itself,
-- conmmuni cation via resources
Action_Controller. Finished,
-- rel ease resources

end Code For First Task;
-- simlar for second and third task
begi n
-- any initialization of |ocal resources
end Action_X;

m No recovery yet

m Only part encapsulation — can not stop communication
with other tasks (unless insist on no with clauses??)

m Action controller could use semaphores, monitors etc

Atomic Actions in Java

m First, an interface can be defined for a three-way atomic

action
public interface ThreeWayAt om cActi on

{
public void rolel();
public void role2();
public void role3();

}
m Using this interface, it is possible to provide several
action controllers that implement a variety of models

m Applications can then choose the appropriate controller
without having to change their code

© Alan Burnsand Andy Wellings, 2001

Role 1

Entry Protocol

action component

Exit Protocol

|eave

Structure

Action Controller

Role 2

Entry Protocol

action component

Exit Protocol

|leave

Role 3

Entry Protocol

action component

Exit Protocol

|eave

© Alan Burnsand Andy Wellings, 2001

Role 1

Entry Protocol

action compon

Exit Protocol

|eave

Structure

Action Controller

A

Role 2

v

Entry Protoc

action compo

Exit Protocol

|eave

t

Role 3

Entry Protocol

ction componen

Exit Protocol

|eave

| gumn ol

© Alan Burnsand Andy Wellings, 2001

public class Atom cActionControl inplenents ThreeWayAt om cActi on

{
protected Controller Control;

public Atom cActionControl() // constructor

{
Control = new Controller();
}
class Controller
{

protected boolean firstHere, secondHere, thirdHere,;
protected int all Done;

protected int toExit;

protected int nunber O Partici pants;

Controller()

{
firstHere = fal se;
secondHere = fal se;
thirdHere = fal se;
al | Done = O;
nunber O Parti ci pants = 3;
toEXit = nunber O Parti ci pants;

synchroni zed void first() throws InterruptedException

{
while(firstHere) wait();

firstHere = true;

}

synchroni zed void second() throws | nterruptedException

{

whi | e(secondHere) wait();
secondHere = true;

}

synchroni zed void third() throws |InterruptedException

{
whil e(thirdHere) wait();

thirdHere = true;

synchroni zed void finished() throws InterruptedException

{
al | Done++;
| f(al | Done == nunberOf Partici pants) {
noti fyAl | ();
} else while(all Done !'= nunberO Participants) {
wait();
}
t oEXi t--;
i f(toExit == 0) {
firstHere = fal se;
secondHere = fal se;
thirdHere = fal se;
al | Done = O;
toExit = nunmber O Parti ci pants;
noti fyAl | ();
/] release processes waiting for the next action
}

public void rolel()
{
bool ean done = fal se;
whi | e(!done) {
try { Entry protocol
Control .first();
done = true;
} catch (InterruptedException e) { // ignore }

}

[/ performaction

done = fal se;
whi | e(! done) {
try { EXit protocol
Control . finished();
done = true;
} catch (InterruptedExceptione) { // ignore }

}
}

public void rol e2()
{

}

[/ simlar to rol el

public void rol e3()
{

}
}

[/ simlar to rol el

A Four-Way Atomic Actl on

public interface Four WayAt om cActi on
ext ends ThreeWayAt om cActi on {

public void role4();
}

public class NewAt om cActi onContr ol

ext ends At om cActi onContr ol
| mpl ement's Four WAy At om cActi on

{
publ i ¢ NewAt om cActi onControl ()
{

}

C = new Revi sedController();

© Alan Burnsand Andy Wellings, 2001

cl ass Revi sedControll er extends Controll er

{

prot ect ed bool ean fourthHere;

Revi sedControl ler() {
super () ;
fourthHere = fal se;
nunber O Partici pants = 4;
toExit = nunber O Parti ci pants;

}

synchroni zed void fourth() throws |InterruptedException

{
whi | e(fourthHere) wait();

fourthHere = true;

synchroni zed void finished()
t hrows I nterruptedException
{
super. finished();
| f(all Done == 0) {
fourthHere = fal se;
noti fyAl | ();

}
}

Have overridden the finish methods

All calls now dispatch to this method,
consequently it must call the parent
method

public void role4()

{
bool ean done = fal se;
whi | e(! done) {
try {
/] As Cis of type Controller, it nmust first
/'l be converted to a RevisedController in order
/[l to call the fourth nethod
((Revi sedController)C .fourth();
done = true;
} catch (InterruptedException e) { // ignore }
}
[l performaction
done = fal se;
whi | e(! done) {
try {
Control . finished();
done = true;
} catch (InterruptedExceptione) { // ignore }
}
}

}

Backward Error Recovery — Conversations

m Consider 3 processes, each process names participates
In the action via an action statement

m Within the statement, there is a recovery block: eg P1.:
action Awth (P2, P3) do
ensure <acceptance test>

by

-- primary nodul e
el se by

-- alternative nodul e
el se by

-- alternati ve nodul e
el se error

m Onentry, the state of a process is saved; the set of entry points
formsthe recovery line

© Alan Burnsand Andy Wellings, 2001

Conversations

Whilst inside, a process is only allowed to communicate
with other processes active in the conversation and general
resource managers

In order to leave, all processes active in must have passed
their acceptance test

If passed, the conversation is finished and all recovery
points are discarded

If any process fails the test, all processes have their state
restored and they execute their alternative modules

Conversations can be nested, but only strict nesting Is
allowed

If all alternatives fall, recovery must be performed at a
higher level

© Alan Burnsand Andy Wellings, 2001

Conversations

In the original definition of conversations, all
processes taking part must have entered before any of
the other processes can leave

Here, If a process does not enter, as long as the other
processes active in the conversation do not wish to
communicate with it then the conversation can complete

If a process does attempt communication, it can either
block and wait for the process to arrive or it can continue

This allows conversations to be specified where
participation is not compulsory

It allows processes with deadlines to leave the
conversation, continue and Iif necessary take some
alternative action

© Alan Burnsand Andy Wellings, 2001

Criticisms of Conversations

Conversations can be criticised; when a conversation fails,
all the processes are restored and all enter their alternatives

This forces the same processes to communicate again to
achieve the desired effect

This may be not what is required; in practice when one
process fails to achieve its goal in a primary module, it may
wish to communicate with a completely new group of
processes in its secondary module

Also, the acceptance test for this secondary module may be
quite different

There is no way to express these requirements using
conversations

Dialogs and Colluguys ——SEE BOOK

© Alan Burnsand Andy Wellings, 2001

Atomic Actions and Forward Error Recovery

m If an exception occurs in one process, it Is raised

asynchronously in all processes active in the action

action Awth (P2, P3) do
-- the action
exception
when exception_a =>
-- sequence of statenents
when exception_ b =>
-- sequence of statenents
when ot hers =>
rai se atomc_action failure;
end A,

m Both termination and resumption models are possible

m If there is no handler in any one processes active in the action
or one of the handlers fails then the atomic action fails with a
standard exception atomic_action failure; This exception Is
raised in all the involved processes

© Alan Burnsand Andy Wellings, 2001

Resolution of Concurrently Raised Exceptions

m Many process may raise different exceptions at the same time;
this is likely if the error can not be uniquely identified by the error
detection facility in action components

m If two exceptions are simultaneously raised, there may be two
separate handlers in each process; the two exceptions in
conjunction constitute a third which is the exception which
Indicates that both the other two exceptions have occurred.

m To resolve concurrently raised exceptions, exception trees can be
used; here the handler is that at the root of the smallest subtree
that contains all the exceptions

m Itis not clear how to combined any parameters associated with
this exception

m Each atomic action component can declare its own unigue
exception tree

© Alan Burnsand Andy Wellings, 2001

Exceptlons and Nested Atomic Actions
Action A
P1
>< Excdpti bn raised
here
v v \ 4 v
P1 P2 P3 P4 P5 P6

.ndy Wellings, 2001

Nested Atoml C Actl ons

Exceptions and

m One process active in an action may raise an exception
when other processes in the same action are involved in

a hested action

m All processes involved must participate in the recovery
action; unfortunately, the internal action is indivisible!

© Alan Burnsand Andy Wellings, 2001

Exceptions and Nested Atomic Actions

Two possible solutions to this problem

1 Hold back the raising of the exception until the internal
action has finished
— The exception may be associated with the missing of a deadline
— The error condition detected may indicate that the internal action
may never terminate because some deadlock condition has arisen
2 Allow internal actions to have a predefined abortion
exception; this indicates that an exception has been raised
In a surrounding action and that the pre-conditions under
which it was invoked are no longer valid

— If raised, the internal action should abort itself. Once the action has
been aborted, the containing action can handle the original
exception. If cannot abort itself, it must signal failure exception.

— If no abortion exception is defined, the surrounding action must wait
for the internal action to complete

© Alan Burnsand Andy Wellings, 2001

Asynchronous Notifications

None of the major RT languages/OSs support atomic actions

m They do support asynchronous notifications: a mechanism

whereby one process can gain the attention of another without the
latter waiting

This can be used as a basis for error recovery between concurrent
systems

m As with exception handling: resumption and termination models:
m The resumption model behaves like a software interrupt
m With the termination model, each process specifies a domain of

execution during which it is prepared to receive an asynchronous
event; after an event has be handled, control is returned to the
Interrupted process at a location different to that where the event
was delivered

© Alan Burnsand Andy Wellings, 2001

The User Need for Asynchronous Notification

m Fundamental requirement: to enable a process to
respond quickly to a condition detected by another
process

m Error recovery — to support atomic actions

m Mode changes — where changes between modes are
expected but cannot be planned.

— a fault may lead to an aircraft abandoning its take-off and
entering into an emergency mode of operation;

— an accident in a manufacturing process may require an
Immediate mode change to ensure an orderly shutdown of the
plant.

— The processes must be quickly and safely informed that the
mode in which they are operating has changed, and that they
now need to undertake a different set of actions

© Alan Burnsand Andy Wellings, 2001

The User Need for Asynchronous Notification

m Scheduling using partial/imprecise computations —
there are many algorithms where the accuracy of the
results depends on how much time can be allocated to
their calculation.

— numerical computations, statistical estimations and heuristic
searches may all produce an initial estimation of the required
result, and then refine that result to a greater accuracy.

— At run-time, a certain amount of time can be allocated to an
algorithm, and then, when that time has been used, the process
must be interrupted to stop further refinement of the result.

m User interrupts — Users in a general interactive
computing environment, users often wish to stop the
current processing because they have detected an error
condition and wish to start again

© Alan Burnsand Andy Wellings, 2001

Polling

Polling for the notification is too slow. It can be argued that
the process could be aborted and recreated quickly
enough, however, this is probably more error prone than
providing direct support

© Alan Burnsand Andy Wellings, 2001

Asynchronous Event Handllng

RTJ asynchronous events (ASE) are similar to POSIX
signals (there is a class which allows POSIX signals to
be mapped onto RTJ events)

There are three main classes associated ASES:
— AsynEvent

— AsyncEvent Handl er

— BoundAsyncEvent Handl er

m Each AsyncEvent can have one or more handlers
m When the event occurs all the handlers associated with
the event are scheduled for execution

The firing of an event can also be associated with the
occurrence of an implementation-dependent external
action by using the bi ndTo method

© Alan Burnsand Andy Wellings, 2001

S Events

chrono

>
| <
-

public class AsyncEvent

{

public AsyncEvent();

publ i c synchroni zed voi d addHand| er (AsyncEvent Handl er handl er);

publ i c synchroni zed voi d renoveHandl er (
AsyncEvent Handl er handl er);

public void set Handl er (AsyncEvent Handl er handl er);

public void bindTo(java.lang. String happeni ng);
/1 bind to external event

publ i c Rel easeParaneters createRel easeParaneters();
/] creates a Rel easeParaneters object representing the
//characteristics of this event

public void fire();
/|l Execute the run() nethods of the set of handlers

© Alan Burnsand Andy Wellings, 2001

Asynch nous Event H andlers

public abstract class AsyncEvent Handl er i npl enents Schedul abl e

{

publ i ¢ AsyncEvent Handl er (Schedul i ngPar anet ers schedul i ng,
Rel easeParaneters rel ease, MenoryParaneters nenory,
Menor yArea area, Processing@ oupParaneters group);

public void addToFeasi bility();
public void renoveFronfteasibility();

protected int get AndCl ear Pendi ngFi reCount () ;

public abstract void handl eAsyncEvent ();
/[l Override to define the action to be taken by the handl er

public final void run();

© Alan Burnsand Andy Wellings, 2001

Bound Asynchronous Event Handlers

publ i c abstract class BoundAsyncEvent Handl er
ext ends AsyncEvent Handl er

{
publ i ¢ BoundAsyncEvent Handl er () ;

/] other constructors

}

© Alan Burnsand Andy Wellings, 2001

Timers (see later
cl ass Ti ner extends AsyncEvent

publ i c abstract
d ock c,

{
protected Ti mer (H ghResol utionTi ner t,
AsyncEvent Handl er handl er);

publ i c Rel easeParaneters createRel easeParaneters();

Absol uteTinme getFireTi nme();

public
public void reschedul e(H ghResol utionTinmer tine),;
public O ock getd ock();
public void disable();
public void enabl e();
[l start the tinmer ticking

public void start();
© Alan Burnsand Andy Wellings, 2001

OSI X Signals -

m Used for a class of environment-detected synchronous

errors (such as divide by zero, illegal pointer)
m There are a number of pre-defined signals each of which

IS allocated an integer value. e.g. SIGALARM, SIGILL

m Also an implementation-defined number of signals which
are avallable for application use: SIGRTMIN .. SIGRTMAX

m Each signal has a default handler, which usually

terminates the receiving process
m A process can block, handle or ignore a signal
m A signal which is not blocked and not ignored is delivered
as soon as it is generated; a signal which is blocked is

© Alan Burnsand Andy Wellings, 2001

pending delivery

Cl nterface to POSI X Signals

uni on S|gval {
I nt sival _int;
voi d *sival _ptr;

b Mainly
) | usedfor
t ypedef struct { message
I nt si_signo; /* signal nunber */ - | queues
int si_code; [/* cause of signal */ timers and
uni on sigval si_value; /* integer or pointer */ real-time
} siginfo_t; = | signals

typedef ... sigset _t; /* inplenentation dependent */

© Alan Burnsand Andy Wellings, 2001

struct sigaction { /* information about the handler */
void (*sa _handler) (int signunj;
/[* non real -time handl er */
void (*sa_sigaction) (int signum siginfo_ t *data,
void *extra); /*real-tinme handler */
sigset t sa mask; /* signals to mask during handler */
int sa flags; /*indicates if signal is to be queued */

'

handler

N
- N

I nt sigaction(int sig, const struct sigaction *reaction,
struct sigaction *old reaction);

/* set handl * | N /
sets up a an er V

old handler

signal

/* the followng functions allow a process
to wait for a signal */

I nt sigsuspend(const sigset t *signmask);
/* wait for a non-bl ocking signal and the handler to conplete */

i nt sigwaltinfo(const sigset t *set, siginfo t *info);
/* as sigsuspend, but handler not called */
/[* information returned returned */

I nt sigtinmedwal t(const sigset t *set, siginfo t *info,
const struct tinespec *tineout);
/* as sigwaitinfo with tineout */

| nt sigprocnmask(int how, const sigset t *set, sigset t *oset);
/* mani pul ates a signal nmask, how

/* = SIGBLOCK -> the set is added to the current set

/* = SI G UNBLOCK -> the set is subtracted

/[* = SIG SETMASK -> the given set becones the mask */

/* allow a signal set to be created and mani pul ated */
I nt sigenptyset(sigset t *s); /* initialise a set to enpty */
int sigfillset(sigset t *s); /* initialise a set to full */
I nt sigaddset(sigset t *s, int signum; /* add a signal */
I nt sigdel set(sigset t *s, int signum; /* renove a signal */
I nt sigi snmenber(const sigset t *s, int signum;

/[* returns 1 if nenber */

int kill (pid.t pid, int sig);
/* send the signal sig to the process pid */

I nt sigqueue(pid t pid, int sig,
const union sigval value);
/* send signal and data */

M ode Cha nge Exampl e

#i ncl ude <sig. h>

#define MODE A 1
#define MODE B 2
#defi ne MODE CHANGE SI GRTM N +1

I nt node = MODE A,
voi d change node(int signum siginfo t *data,
void *extra) {

/* signal handler */
node = data->si_val ue_int;

© Alan Burnsand Andy Wellings, 2001

I nt mai n() {
sigset t mask, omask;
struct sigaction s, os;
I nt | ocal node;

SI GEMPTYSET(&ask); /* create a signal nmask */
S| GADDSET(&rask, MODE CHANGE) ;

s.sa flags = SA SIG@NFQ, /* use 3 argunent handler */

s.sa _mask = mask; /* additional signals blocked
duri ng handl er */

S.sa_sigaction = &hange_node;

s.sa _handl er = &change_ node;

SI GACTI ON(MODE_ CHANGE, &s, &0S);
/* assign handler */

whil e(1) {

SI GPROCMASK(SI G_BLOCK, &mask, &omask);

signals
| ocal nobde = node; masked
S| GPROCMASK(SI G UNBLOCK, &nmask, &omask): here

[* periodic operation using node*/

swtch(local node) { \
case MODE_A:
o Signal occuring here
br eak; are acted upon
case MODE B: immediately:
o > however, the
br eak; application only
def aul t: responds on each
Iteration
}
SLEEP(. . .);

_/

Note, deep wakes up if signal called

POSI X Threads and Atomic Actions

m Two approaches to implementing an atomic action-like
structure between threads:

1 Use a signals, setjmp and longjmp to program the required
coordination. Unfortunately, longjmp and all the thread system calls are
async-signal unsafe. This means that any communication and
synchronization between threads using mutexes and condition
variables must be encapsulated between calls for blocking and
unblocking signals. The resulting algorithm can become complex.

2 Use thread creation and cancelling to program the required recovery.
As threads are cheap, this approach does not have the same
performance penalty as more heavy-weight process structure.

m The need for these approaches comes from the use of the
resumption model; a more straightforward structure is
obtainable if a termination model is supported

© Alan Burnsand Andy Wellings, 2001

~ Asynchronous Natification in Ada

m The abort statements

m Asynchronous Transfer of Control (the asynchronous
select statement)

© Alan Burnsand Andy Wellings, 2001

The Abort Statement

m Intended for use in response to those error conditions
where recovery by the errant task is not deemed

possible
m Any task may abort any other named task
m Tasks which are aborted become abnormal and are

prevented from interacting with other tasks
m Any non-completed tasks that depend on the aborted

tasks also become abnormal
m When a task becomes abnormal, every construct it is

executing is aborted immediately unless it is included In

© Alan Burnsand Andy Wellings, 2001

an abort-deferred operation

Abort Completion

m |f a construct is blocked outside an abort-deferred
operation (other than at an entry call), it is immediately
completed

m Other constructs must complete no later than
— the end of activation of a task
— when it activates another task

— the start or end of an entry call, accept statement, delay
statement or abort statement

— the start of the execution of a select statement, or the sequence
of statements in an exception handler

A task which does not reach any of Real-Time Annex

these points need not be terminated! requires any delay to
be documented

© Alan Burnsand Andy Wellings, 2001

Abort deferred Operatlons

a protected action

waiting for an entry call to complete (after having
Initiated the attempt to cancel it as part of the abort)
waiting for termination of dependent tasks
executinganlinitialize, Fi nali ze, or assignment

operation of a controlled object

certain actions within these operations result in bounded
error:

— the execution of an asynchronous select statement
— the creation of tasks whose master is within the operation

© Alan Burnsand Andy Wellings, 2001

Use of the Abort Statement

m "An abort statement should be used only in situations
requiring unconditional termination." ARM 9.8

m "The existence of this statement causes intolerable
overheads in the implementation of every other feature
of tasking. Its 'successful' use depends on a valid
process aborting a wild one before the wild one aborts a
valid process — or does any other serious damage. The
probability of this is negligible. If processes can go wild,
we are much safer without aborts." C.A.R. Hoare (On
Ada 83)

Even so, the abort is considered to be a valid real-time
requirement, and Ada makes every effort to ensure that
the facility can be used as safely as possible, given its
Inherently dangerous nature.

The Asynchronous Select Statement

asynchronous_sel ect
sel ect
triggering alternative
t hen abort
abort abl e_part
end sel ect;

triggering alternative ::=
triggering_statenent
[sequence_of st atenent]

triggering statenment ::= entry call _statenent |
del ay st at enent
abortabl e part ::= sequence_of statenents

must not contain an accept statement

© Alan Burnsand Andy Wellings, 2001

Semantics |

First the triggering statement is executed

If the entry call is queued (or the delay time has not
passed), the abortable part begins its execution

If the abortable part completes before the completion of
the entry call (or before the delay time expires), the
entry call (or delay) is cancelled

When cancellation of the entry call or the delay
completes, the select statement is finished

Cancellation of the delay happens immediately,
cancellation of the entry call may have to wait if the
rendezvous or protected action is in progress (until it
has finished)

© Alan Burnsand Andy Wellings, 2001

Semantics | |

If the triggering event completes, the abortable part is
aborted (if not already completed) and any finalisation
code Is executed

When these activities have finished, the optional
sequence of statements following the triggering event is
executed

Note: If the triggering entry call is executed, then even if
the abortable part completes, the optional sequence of
statements following the triggering event is executed

If the triggering event occurs before the abortable can
start, the abortable part is not executed

© Alan Burnsand Andy Wellings, 2001

Rendezvous Available | mmediately

Example:
: task To Interrupt;
task S — ! .
as erver1s task body To Interrupt iIs
entry ATC Event; .
begi n
end Server;
task body Server is sel ect
begi n Server. ATC Event;
i Seq3;
accept ATC Event do
t hen abort
Seq2;
Seql;
end ATC Event;
end sel ect
end Server; Seq4;

end To I nterrupt;

O AT BUIMS dri

a ANay vvenings, UUL

No Rendezvousbefore Seql Flnlshes

task To Interrupt;

task Server is .
task body To Interrupt iIs

entry ATC Event;

begi n

end Server;
task body Server is sel ect
begi n y aborted nt ;

S Seq3;

accept ATC Event do

t hen abort
Seq?2;
Seql;
end ATC Event;

end sel ect

end Server; Seq4;

end To I nterrupt;

© Alan buUrns and Andy vvenings, ZUUL

Finishes before Seql

Rendezvou
t ask Server is task To Interrupt;
task body To Interrupt iIs
entry ATC Event; _
begi n
end Server;
task body Server is sel ect
begi n Ser ver . ATC Event;
— Seq3;
accept ATC Event do q
t hen abort
Seq2;
end ATC Event; aborted
end sel ect
end Server; Seq4:
end To_Interrupt

Rendezvous Finish after Seq

task Server is task To Interrupt; |
task body To Interrupt iIs
entry ATC Event; .
— begi n
end Server;
task body Server is sel ect
begi n Server. ATC Event;
i Seq3;
accept ATC Event do
t hen abort
Seq2;
Seql;
end ATC Event;
— end sel ect
end Server; Seq4;
end To I nterrupt;

Sequence of Events

If the rendezvous is available immediately then

Server.ATC Event is issued

Seq?2 is executed
Seq3 is executed

Seq4 is executed
else if no rendezvous starts before Seql finishes then

Server.ATC Event is issued

Seql is executed
Server.ATC Event is cancelled

Seq4 is executed

Seguence of Events Continued

else if the rendezvous finishes before Seql finishes then

Server.ATC _Event is issued
partial execution of Seql occurs concurrently with Seqg2
Seql is aborted and finalised

Seq3 IS executed
Seqg4 IS executed

else (the rendezvous finishes after Seql finishes)

end

Server. ATC _Event IS issued

Seql is executed concurrently with partial execution of Seqg2
Server. ATC_EVENT cancellation is attempted

execution of Seg2 completes

Seg3

Seg4

© Alan Burnsand Andy Wellings, 2001

d ATC

| su
l

Except

m With the asynchronous select statement, two activities

are potentially executing concurrently

m Both can raise exceptions
m The one from the abortable part is lost, if the abortable

part is aborted

© Alan Burnsand Andy Wellings, 2001

~ Exampleof ATC — Error Recovery

type Error IDis (Errl, Err2, Err3);
package Error Notification is new Broadcasts(Error ID);
Error _Occurred : Error_Notification. Broadcast;

task type Interested Party;

task Error_Monitor; a protected type

task body Error Monitor is
begi n

-- when error detected
Error_COccurred. Send(Error),;

end Error_Monitor

© Alan Burnsand Andy Wellings, 2001

task body Interested Party is
Reason : Error | D
begi n
| oop
sel ect

Error_Qccurred. Recei ve(Reason) ;
case Reason is
when Errl =>
when Err2 =>
when Err3 =>
end case;
t hen abort

| oop -- normal operation end | oop;

end sel ect:
end | oop;
end Interested Party;

- appropriate recovery action
- appropriate recovery action
- appropriate recovery action

© Alan Burnsand Andy Wellings, 2001

Deadllne Overrun Detectlon

w th Ada. Real Tinme; use Ada. Real _Ti ne;
task Critical;

task body Critical iIs
Deadline : Real Tine.Tinme := ...,
begi n
sel ect
delay until|l Deadli ne;
-- recovery action
t hen abort

-- enter tine critical section of code
end sel ect;

end Critical:

© Alan Burnsand Andy Wellings, 2001

Mode Chang -

w th Persistent Signals; use Persistent Signals;

w t h Cal endar; use Cal endar;
type Mode is (Non_Critical, Critical);
Change _Mode : Persistent Signal;
task Sensor Mbnitoring;

task body Sensor Monitor is
Non Critical;

Current Mode : Mode : =

Next Tinme : Tinme := d ock;

Critical _Period : constant Duration := 1.0;

Non Critical Period : constant Duration := 10.0;
Duration := Non Critical Period,

© Alan Burnsand Andy Wellings, 2001

Current Period :
begi n

ode Change |

| =

| oop
sel ect Change_ Mbde. Wi t ;
t hen

I f Current _Mdde = Criti cal
Current Mode := Non Critical;
Current Period := Non Critical Peri od;
else Current _Mdde := Critical;
Current Peri od Critical _Period; end if;

Next Tinme := Clock; -- say

t hen abort
| oop

read sensor etc.

del ay until|l Next Ti ne;
Next Time := Next _Time + Current Peri od;
end | oop;
end sel ect;
end | oop;

end Sensor Monit or;

Understanding ATC

Interaction with the Delay Statement
Interaction with Timed Entry Calls
Interaction with Multiple Entry Calls
Nested ATC

Interaction with Exceptions

© Alan Burnsand Andy Wellings, 2001

| nteraction with the Delay Statement

P — — — — — —
task body Ais task body B is
T : Tine; T : Tine;
D : Duration; D : Duration;
begi n begi n
sel ect sel ect
delay until T, del ay D;
t hen abort t hen abort
del ay D; delay until T,
end sel ect; end sel ect;
end A end B;

Are these equivalent?

© Alan Burnsand Andy Wellings, 2001

~ Interaction with Timed Entry Calls

— — — —
task body Ais task body B is task body Cis
T . Tine; T . Tine; T . Tine;
begi n begi n begi n
sel ect sel ect sel ect
delay until T, Server. Entryl; Server. Entryl;
S1; S1; S1;
t hen abort t hen abort or
Server. Entryl; delay until T, delay until T;
S2; S2 S2
end sel ect; end sel ect; end sel ect;
end A end B; end C,

Very smilar structures, all dightly different behaviours

© Alan Burnsand Andy Wellings, 2001

Rendezvous Starts and Finishes Before

task body Ais task body B is task body Cis
T . Tine; T . Tine; T . Tine;
begi n begi n begi n
sel ect sel ect sel ect
delay until T, Server. Entryl; Server. Entryl;
S1; S1, 31,
t hen abort t hen abort or
Server . Entry1; aport Until T del ay until T;
abort S S2
end sel ect; end sel ect; end sel ect;
end A, end B; end C,

© Alan Burnsand Andy Wellings, 2001

Rendezvous Starts Before Timeout but Finishes After Timeout

task body B is task body Cis

task body Ais
T . Tine; T . Tine; T . Tine;
begi n begi n begi n
sel ect sel ect sel ect
delay until T, Server. Entryl; Server. Entryl;
31, 31, 31,
t hen abort t hen abort or
Server.Entryl; delay until T, delay until T;
S2; abort S2
end sel ect; end sel ect; end sel ect;
end A, end B; end C,

© Alan Burnsand Andy Wellings, 2001

Timeout Occurs Before the Rendezvous Starts

task body B is

task body Cis

task body Ais
T . Tine; T . Tine; T . Tine;
begi n begi n begi n
sel ect sel ect sel ect
delay until T, Server. Entryl; Server. Entryl;
31, S1, S1;
t hen abort t hen abort or
Server. Entryl; delay until T, delay until T;
S2; abort S2
end sel ect; end sel ect; end sel ect;
end A, end B; end C,

© Alan Burnsand Andy Wellings, 2001

Timed Entry CaIIs

B Rendezvous with Ser ver starts and finishes before

timeout
— A executes the rendezvous and then attempts S2, if S2 does not
complete before the timeout it is abandoned and S1 is executed

— B executes the rendezvous and then S1

— C executes the rendezvous and S1
m The rendezvous starts before the timeout but finishes

after the timeout
— A executes the rendezvous and S1

— B executes the rendezvous, S1 and part of S2
— Cexecutes the rendezvous and S1

© Alan Burnsand Andy Wellings, 2001

Timed Entry Calls ||

m The timeout occurs before the rendezvous started
— A executes S1
— B executes part or all of S2 and possibly the rendezvous and S1
— Cexecutes 52

© Alan Burnsand Andy Wellings, 2001

A Tlmed Entry Call?

task body Cis
T : Tine;
begi n
Cccurred : = Fal se;
sel ect
delay until T;
t hen abort
Serverl. Entryl(Qccurred);
-- Cccurred set to True Iin Serverl
end sel ect;
| f Occurred then
S1;
el se
S2;
end i1f;
end C,

© Alan Burnsand Andy Wellings, 2001

| nteraction with Multiple Entry Calls

— — — —
task body Ais task body B is
T : Tine; T : Tine;
begi n begi n
sel ect sel ect
TaskC. Entryl; TaskD. Entry1l;
t hen abort t hen abort
TaskD. Entry1; TaskC. Entryl;
end sel ect: end sel ect:

end A; end B;

© Alan Burnsand Andy Wellings, 2001

Consider:

1. TaskC.Entryl becomes available first:

— TaskA will rendezvous with TaskC and possibly TaskD (if the
rendezvous becomes available before the rendezvous with
TaskC completes)

— TaskB will rendezvous with TaskC and possibly TaskD

2. TaskD.Entryl becomes ready first:
— Similar to above

3. TaskC.Entryl and TaskD.Entryl are both ready:

— TaskA will rendezvous with TaskC only
— TaskB will rendezvous with TaskD only

© Alan Burnsand Andy Wellings, 2001

~ Nested Asynchronous Select Statements

task body Ais

begi n

sel ect
B. Entryl; : :

t hen abort Here task A will wait for an entry
sel ect call to become complete from
thC- EnLrytl; tasks B or C. If none arrive

e before Seq has finished its
eq; . .
i el | execution, C will be cancelled
end sel ect; and then B will potentially also be
end sel ect;
cancelled.

end A

© Alan Burnsand Andy Wellings, 2001

Interactl n with Exceptlons

task body Server is sel ect
begi n Server. ATC Event :
C Seq3;
accept ATC Event do t hen abort
Seqz, Seql

end ATC Event:
- end sel ect

end Server:

m If Seql raises an exception and the triggering event
does not occur, the exception is propagated from the
select statement

m If the triggering event occurs, then any exception raised

by S1 is lost (to avoid the possibility of parallel
exceptions being raised from the select statement)

© Alan Burnsand Andy Wellings, 2001

x

Ada and Atoml C Actl oNs

{ |
1
Action Procedure 1
/ Controller Protected Objec“
Task 2 Action Procedure 2 Controller Entry/ JJ
Subprograms

L /
m Each atomic action isimplemented by a package
m Roles are identified, each role is represented by a procedure in the package
specification
m A task must associate itself with arole
m Each role can only have one active task

Task 3 :
——» Action Procedure 3
|

© Alan Burnsand Andy Wellings, 2001

Backward Error Reco

very. Conversations

package Conversation is
procedure T1(Parans : Param; --

procedure T2(Parans : Param,; --
procedure T3(Parans : Param; --
Atom c_Action Failure : exception;

end Conversati on;

called by task 1
called by task 2
called by task 3

m Each procedure will contain arecovery block
m Wewill use ATC to inform each task if one of the other tasks

1N the conversation has failed

© Alan Burnsand Andy Wellings, 2001

w th Recovery Cache;
package body Conversation is

Primary Failure, Secondary Fail ure,
Tertiary Failure : exception;
type Module is (Prinmary, Secondary, Tertiary);

protected Controller is
entry Wait_Abort;
entry Done;
entry C eanup;
procedure Signal Abort;

private
Killed : Bool ean : = Fal se;
Rel easi ng _Done : Bool ean : = Fal se;
Rel easi ng_Cl eanup : Bool ean : = Fal se;
| nformed . I nteger := O;

end Controll er;

The Protected Controller

The Wit _Abort entry is the asynchronous event on which
the tasks will wait whilst performing their part of the action

Each task calls Done if it has finished without error; only when
all three tasks have called Done will they be allowed to leave

If a task recognises an error condition (because of a raised

exception or the failure of the acceptance test), it will call
Si gnal Abort; this will set the flag Ki | | ed to true

Note, that as backward error recovery will be performed, the
tasks are not concerned with the actual cause of the error

When Ki | | ed becomes true, all tasks in the action receive
the asynchronous event and undertake recovery

Once the event has been handled, all tasks must wait on
Cl eanup so that they all can leave the conversation together

© Alan Burnsand Andy Wellings, 2001

-- local PO for communi cati on between actions
protected body Controller is

entry Wait _Abort when Killed is
begi n
| nfornmed : = Infornmed + 1;
| f Inforned = 3 then
Killed := Fal se;
| nformed : = O;
end I f;
end Wait_ Abort;

procedure Signal Abort iIs
begi n

Killed := True;
end Signal Abort;

entry Done when Done' Count = 3 or
Rel easi ng _Done i s

begi n
| f Done' Count > 0 then Rel easing Done := True;
el se Rel easing Done := False; end if;

end Done;

entry C eanup when C eanup' Count = 3 or
Rel easi ng Cl eanup i s
begi n
| f Cl eanup' Count > 0 then
Rel easi ng_Cl eanup : = True;
el se Releasing Cleanup := False; end if;
end C eanup;

end Controll er;

procedure T1 (Parans : Param 1is

procedure T1 Primary is

begi n
sel ect
Controller.Wait Abort;
Controller.C eanup; -- wait for all to finish

raise Primary Fail ure;
t hen abort
begi n
-- code to i nplement atom c action,
| f Acceptance _Test = Failed then
Controller.Signal Abort;
el se
Control | er. Done;
end if;
exception
when ot hers =>
Controller.Signal Abort;

end,; simlarly for Tl Secondary
end sel ect; and T1 Tertiary

end T1 Primary;

begi n
My Recovery Cache. Save(. . .);
for Try in Moddule | oop
begin case Try is
when Primary => T1 Primary; return;
when Secondary => T1 Secondary; return;
when Tertiary => T1 Tertiary; end case;
exception
when Primary Failure => My Recovery Cache. Restore(.);
when Secondary Fail ure => Recovery Cache. Restore(.);
when Tertiary Failure => Recovery Cache. Restore(.);
rai se Atom c_Action_Fail ure;
when ot hers => Recovery Cache. Restore(..);
rai se Atom c_Action_Fail ure;
end,;
end | oop;

end T1_Part; simlarly for T2
and T3

end Conversati on;

[Save state]

I

Executing and also waiting for an abort

State Transition Diagram

fai acceptM lwme test

Signal abort action ——» Abort triggered 1«

I

Waiting on cleanup

I

Raising exception for module failure

I

Restore state and try alternative module]

Waiting on Done

|

[Exit version normally]

© Alan Burnsand Andy Wellings, 2001

Forward Error Recovery

package Action is

procedure T1(Parans: Param; -- called by task 1
procedure T2(Parans: Param; -- called by task 2
procedure T3(Parans: Param; -- called by task 3

Atom c_Action_Failure : exception;
end Acti on;

© Alan Burnsand Andy Wellings, 2001

w t h Ada. Exceptions; use Ada. Excepti ons;

package body Action is
type Vote T is (Commt, Aborted),;
protected Controller is
entry Wait _Abort (E: out Exception_Id);
entry Done;
procedure Cl eanup (Vote: Vote T);
procedure Signal Abort(E Exception_|d);
entry Wait _Cl eanup(Result : out Vote t);
private
Killed : Bool ean : = Fal se;
Rel easi ng_Cl eanup : Bool ean : = Fal se;
Rel easi ng _Done : Bool ean : = Fal se;
Reason : Exception_ Id := Null _Id,
Final Result : Vote t Comm t ;
| nfornmed : I nteger := O;
end Controller;

protected body Controller is
entry Wait _Abort(E: out Exception_id) when Killed is

begi n
E : = Reason; Informed := Inforned + 1;
1 f Informed = 3 then
Killed := False;: Inforned := 0O;
end 1 f;

end Wait_ Abort;

entry Done when Done’ Count = 3 or Releasing Done is
begi n

| f Done’ Count > 0 then Rel easing Done := True;

el se Releasing Done := False; end if;
end Done;

procedure C eanup(Vote: Vote T) is

begi n
| f Vote = Aborted then
Fi nal Result := Aborted,
end I f;

end C eanup;

procedure Signal Abort(E: Exception_id) iIs

begi n
Killed := True;:
Reason : = E;

end Signal Abort;

entry Wait _Cl eanup (Result : out Vote T) when
Wait C eanup' Count = 3 or Releasing Cleanup is

begi n

Result := Final Result;

1 f Wait_Cl eanup' Count > 0 then
Rel easi ng_Cl eanup : = True;

el se
Rel easi ng_Cl eanup : = Fal se;
Final Result := Commt,;

end if;

end Wait_ Cl eanup;

end Controll er;

procedure T1(Parans: Param 1S
X : Exception_Id; Decision : Vote T,
begi n
sel ect
Control ler. Wait_Abort(X); Raise Exception(X);
t hen abort
begi n
-- code to inplenent atom c action
Control | er. Done;
exception when E: others =>
Control |l er.Si gnal _Abort (Exception_ldentity(E));
end;
end sel ect;

exception

when E: others => if Handl ed Ck then
Controller.d eanup(Commt);
el se Controller.C eanup(Aborted); end if;
Controller.Wait_C eanup(Deci sion);
| f Decision = Aborted then
raise Atom c_Action Failure; end if;
end Tl Part;

-- simlarly for T2 and T3
end Acti on;

F.E.C.: State

[Enter Action]

I

Executing and also waiting for an abort

Transition Diagram

excepti orlwwiompl ete

Signal abort action

——»

Abort triggered and

raising exception

<

|

Exception handled

I

Waiting Cleanup

I

\’

| Exit action failed |

Waiting on Done

[Exit action normally]

© Alan Burnsand Andy Wellings, 2001

Asynchronous Transfer of Control in Java

m Early versions of Java allowed one thread to
asynchronously effect another thread through

voi d suspend() throws SecurityException;
void resune() throws SecurityException;

void stop() throws SecurityException;

voi d stop(Throwabl e except)
t hrows SecurityException;

public final
public final

public final
public final

m The st op method, causes the thread to stop its current

activity and throw a Thr eadDeat h exception
m All of the above methods are now obsolete and therefore

© Alan Burnsand Andy Wellings, 2001

should not be used

ATC In Jav

m Standard Java now only supports (in the Thr ead class):
public void interrupt() throws SecurityException;

publ ic bool ean islnterrupted();

public void destroy();

m When a thread i nt er r upt s another thread:

— If the interrupted thread is blocked inwai t , sl eep orj oi n, itis
made runnable and the | nt er r upt edExcept i on is thrown

— If the interrupted thread is executing, a flag is set indicating that an
Interrupt is outstanding; there is no immediate effect on the
Interrupted thread

— Instead, the called thread must periodically test to see if it has been
Interrupted using the i sl nt er r upt ed method

m The destr oy method is similar to the Ada abort facility and

destroys the thread without any cleanup

© Alan Burnsand Andy Wellings, 2001

ATCIn RT

m Similarities between Ada and RTJ models

— itis necessary to indicate which regions of code can receive the
ATC request

— ATC are deferred during task/thread interaction and finalization

m Differences

— The RTJ model is integrated with the Java exception handling facility
whereas the Ada model is integrated into the select statement and
entry-handling mechanisms

— The RTJ model requires each method to indicate that it is prepared
to allow the ATC to occur; ATC are deferred until the thread is
executing within such a method.

— Ada's default is to allow the ATC if a subprogram has been called
from within the select-then-abort statement; a deferred response
must be explicitly handled

© Alan Burnsand Andy Wellings, 2001

ATCIn RTJ

Allows one thread to interrupt another thread
Integrated into the Java exception handling and interrupt facility

RTJ requires each method to indicate if it is prepared to allow an
ATC

Use of ATC requires
— declaring an Asynchr onousl yl nt err upt edExcept i on (AIE)

— 1dentifying methods which can be interrupted using a throw clause

— signaling an Asynchr onousl| yl nt er r upt edExcept i on to a thread
(t)

Calling | nt er r upt () throws a generic AlE

ATC are deferred during synchronized methods and finally clauses

© Alan Burnsand Andy Wellings, 2001

Exampl € ol of ATC

| nport nonl nterrupti bl eServices. *;

public class InterruptibleService
{ /1 AIE is short for Asynchr onousl yl nt err upt edExcepti on
public Al E stopNow = Al E. get Generic();

publ i c bool ean Service() throws AlE

{

//code interspersed with calls to nonlnterrupti bl eServices

}
}

public InterruptibleService IS = new Interruptibl eService();

/'l code of thread, t
1 f(1S. Service()) { ... }
else { ... };

// now anot her thread interrupts t:

t.interrupt;

© Alan Burnsand Andy Wellings, 2001

Semantics. when AlE Issignalled

If t Is executing within an ATC-deferred section, the AIE is marked
as pending

If t is executing in a method which has no AIE declared in its
throws list, the AIE is marked as pending

A pending AIE is thrown as soon as t returns to (or enters) a
method with an AIE declared in its throws list

If t is executing within a try block within a method which has
declared an AIE in its throws list, the try block is terminated and

control is transferred to catch clauses; if no appropriate catch
clause is found, the AIE is propagated to the calling method

If an appropriate handler is executed, processing of the AIE is
completed (unless the AIE is propagated from within the handler)

If t is executing outside a try block within a method which has

declared an AIE in its throws list, the method is terminated and the
AIE is thrown immediately in the calling method s sursaany wetings 01

Semantlcs when AlE |SS|gnaIIed

m If t Is blocked inside a wait, sl eep or | oi n method

called from within a method which has an AIE declared
In its throws list, t Is rescheduled and the AIE Is thrown

m If t Is blocked inside a wait, sl eep or | ol n method

called from within a method which has no AIE declared
In its throws list, t I1s rescheduled and the AIE Is

marked as pending

© Alan Burnsand Andy Wellings, 2001

Catchlng an AlE

Once an ATC has been thrown and control is passed to
an appropriate exception handler, it is necessary to
ascertain whether the caught ATC is the one expected
by the interrupted thread.

If it IS, the exception can be handled.

If it IS not, the exception should be propagated to the
calling method.

The happened method defined in the class
Asynchr onousl yl nt errupt edExcept i onis used

for this purpose

© Alan Burnsand Andy Wellings, 2001

Example Continued

| mport Nonl nterrupti bl eServi ces. *;
public class Interruptibl eService

{

public Al E stopNow = Al E. get Generic();

publ i c bool ean Service() throws Al E

{
try {

// code interdi spersed with calls to Nonlnterruptibl eServices

}
catch AIE Al {

| f (st opNow. happened(true)) { //handle the ATC }
/'l no else clause, the true paranmeter indicates that

[/ 1f the current exception is not stopNow,
[/ 1t Is to be imedi ately propagated
/[l to the calling nethod

© Alan Burnsand Andy Wellings, 2001

catch AIE Al {
| f (st opNow. happened(fal se)) {
[/ handl e the ATC
} else {
/| cl eanup

Al . propagat e() ;

©A

lan Burns

and Andy Wellings, 2001

public class Asynchronousl yl nterruptedExcepti on extends
java. |l ang. | nterrupt edException

public synchroni zed voi d di sabl e();
public bool ean dolnterruptible (Interruptible |ogic);

public synchroni zed bool ean enabl e();
public synchroni zed bool ean fire();

publ i ¢ bool ean happened (bool ean propagate);

public static AsynchronouslylnterruptedException get Generic();
/'l returns the Asynchronouslyl nterruptedExcepti on which
/[l 1s generated when RealtineThread.interrupt() is invoked

public void propagate();

© Alan Burnsand Andy Wellings, 2001

| nter tlbl

public interface Interruptible

{

public void interruptAction (
Asynchronousl yl nt errupt edExcepti on exception);

public void run (
Asynchronousl yl nt errupt edExcepti on excepti on)
t hrows Asynchronousl yl nterrupt edExcepti on;

}

m An object which wishes to provide an interruptible method
does so by implementing the Interruptible interface.

m The r un method is the method that is interruptible; the
| nt errupt edAct i on method is called by the system if
the r un method is interrupted

© Alan Burnsand Andy Wellings, 2001

| nterruptible

m Once this interface is implemented, the implementation can
be passed as a parameter to the dol nt errupti bl e

method in the AIE class

m The method can then be interrupted by calling thefire
method in the AIE class

m Further control over the AIE Is given by
— di sabl e

— enabl e
— 1 sEnabl ed

m A disabled AIE is deferred until it is enabled

Only one task can be executing a dolnterruptible at once

© Alan Burnsand Andy Wellings, 2001

..u....u....u....u................u..........u................
[T L L Loy Ly L L L L L L L L
Pl el Tl ol Tl Tl Tl ol ol T ol Tl ol Tl Tl T ol Tl
A n e R e T
T T T T T
A A T e e e e e L L i L]
T el Tl ol Tl Tl Tl Pl Tl Tl Tl Tt
L e e e L L L L e v
T el Tl ol Tl Tl Tl Pl Tl Tl Tl Tt
L e e e L L L L e v
T el Tl ol Tl Tl Tl Pl Tl Tl Tl Tt
L e e e L L L L e v
P e e e T LY

Pending AIE: AIE3

Non InterruptibleMethod

AIE3 fire()

AIEL fire()

AIE2 fire()

Discarded

Non Interruptible
Method Call

AlE3.dolnterruptible(A)

AlE2.dolnterruptible(B) | ———ptAlE1.dol nterruptible(C) |—p

Interruptible B Interruptible C

Interruptible A

© Alan Burnsand Andy Wellings, 2001

Timeouts (seelater)

m With Real-Time Java, there is a subclass of
Asynchr onousl yl nt errupt edExcept i on called Ti ned

m Both absolute and Realtive times can be used

public class Tined extends Asynchronousl yl nterruptedException
| npl ements java.io. Serializable

{

public Timed(H ghResolutionTine tine) throws
| 1 | egal Argunent Excepti on;

public bool ean dolnterruptible (Interruptible |ogic);

public void resetTi ne(H ghResol utionTine tine);

© Alan Burnsand Andy Wellings, 2001

RTJ and Atomlc Actlons

m Consider forward error recovery, use same approach as
Ada

| nterface

/Thread 1

/Thread 2

/Thread 3

f
/1
/7

Object

rolel

rolel

role 2

role 2

role 3 1

role 3

N

/ Controller Object \

o/

synchronized
methods

/

© Alan Burns

and Anay Wellings, 2001

Use of dol nterruptible

| AIE2.fire(roles
dolnterruptible | AlE1 fire() @
dolnterpuptible AIE3firg() dolnterruptible

ACti on Action
EH

EH

signal Abort J

I

Controller

© Alan Burnsand Andy Wellings, 2001

RTJ a dAtomlc Actlons

| mport javax.realtinme. AlE

public class Atom cActi onException extends Al E

{

TN

publ | c static Exception cause; shared between
public static bool ean waslnterrupted; > objectsof the
} class

_

publ i c cl ass Atoni cActionFail ure extends Exception

{};

© Alan Burnsand Andy Wellings, 2001

public interface ThreeWayRecover abl eAt om cAction {
public void rolel() throws Atom cActionFail ure;
public void role2() throws Atom cActionFail ure;
public void role3() throws Atom cActionFail ure;

}

public class Recoverabl eActi on
| npl enents Thr eeWayRecover abl eAt om cActi on
{
prot ect ed Recoverabl eController Control;
private final boolean abort = fal se;
private final boolean commt = true;

private Atom cActi onExcepti on aael, aae2, aae3;

publ i c Recoverabl eAction() { [/ constructor
Control = new Recoverabl eController();
[/l for recovery

aael = new Atom cActi onException();
aae2 = new Atom cActi onException();
aae3 = new Atom cActionException(); }

cl ass Recoverabl eControl |l er {
prot ected bool ean firstHere, secondHere, thirdHere;
protected i nt all Done;
protected int toExit, needed,
protected int nunberO Participants;
private boolean commtted = commt,;

Recover abl eController() { // constructor
[/ for synchronization
firstHere = fal se;
secondHere = fal se;
thirdHere = fal se;
al | Done = O;
nunber O Partici pants = 3;
toExit = nunber O Parti ci pants;
needed = nunmber O Parti ci pants;

synchroni zed void first() throws InterruptedException
{ while(firstHere) wait();
firstHere = true; }

synchroni zed void second() throws | nterruptedException
{ while(secondHere) wait();
secondHere = true; }

synchroni zed void third() throws |InterruptedException
{ while(thirdHere) wait();
thirdHere = true;}

synchroni zed voi d signal Abort (Exception e) {

al | Done = 0;

At om cActi onException. cause = e;

At om cActi onException.waslnterrupted = true;

/'l raise an Asynchronousl yl nterruptedException
[/ itn all participants

aael.fire();

aae2.fire();

aae3d.fire();

private void reset() {
firstHere = fal se; secondHere = fal se;
thirdHere = false; allDone = 0
toExit = nunber O Parti ci pants;
needed = nunber O Parti ci pants;

noti fyAl | ();
}
synchroni zed void done() throws InterruptedException
{
al | Done++;
| f (al | Done == needed) {
noti fyAl | ();
} else while(all Done ! = needed) {
wai t () ;
}
toEXit--;
I f(toExit == 0) {
reset();
}

}

synchroni zed voi d cl eanup(bool ean abort)
{ if(abort) { commtted = false; }; }

synchroni zed bool ean wai t C eanup()
throws I nterruptedException
{
al | Done++;
| f (al | Done == needed) {
noti fyAl | ();
} else while(all Done ! = needed) {
wai t () ;
}
toEXit--;
I f(toExit == 0) {
reset();

}

return commtted:

public void rolel() throws Atom cActionFail ure,

{

Al E

bool ean CK; ‘\\\

[/ no ALE until inside the atom c action
bool ean done = fal se;
whi | e(! done) {
try {
Control .first();
done = true;
} catch (InterruptedException e) {
/] 1gnore

}
}

-

Entry protocol

Ck = aael.dolnterruptible
(new Interruptible() {
public void run(AlE e) throws AIE {
try {
/] perform action
/[l 1f necessary call e.disable() and e. enabl
/] defer AE
Control . done();
}
cat ch(Exception x) {
| f(x.getd ass().getNane() == "AlE")
((AITE) x).propagate();
el se
Control . si gnal Abort (Xx);

}
}

public void interruptAction(AlE e)
{ /'/ no action required }

}
)

1 (! k) throw new At om cActionFailure();
| f (aael. wasl nterrupted) {
try {
/] try to recover
Control.cl eanup(commt);
| f(Control.waitCl eanup() !'= commt) {
t hrow new At om cActionFail ure();
}s

}
cat ch(Exception x) {

t hrow new At om cActionFail ure();

}
}

public void role2() throws Atom cActionFailure, AlE
{// simlar to rolel };

public void role3() throws Atom cActionFailure, AlE
{// simlar to rolel };

Summary

When processes interact, it Is necessary to constrain their
IPC so that recovery procedures can be programmed

Atomic actions are a mechanism by which programs,
consisting of many tasks, can be structured to facilitate
damage confinement and error recovery

Actions are atomic If they can be considered, so far as other
processes are concerned, to be indivisible and
Instantaneous, such that the effects on the system are as if
they are interleaved as opposed to concurrent

An atomic action has well-defined boundaries and can be
nested

© Alan Burnsand Andy Wellings, 2001

Summary

A conversation Is an atomic action with backward error
recovery facilities

On entry, the state of the process is saved; whilst inside,
a process is only allowed to communicate with other
processes active in the conversation and general
resource managers

In order to leave, all processes active in the conversation
must have passed their acceptance test

If any process falls its acceptance test, all processes
have their state restored and they execute their
alternative modules.

Conversations can be nested and If all alternatives in an
Inner conversation fail then recovery must be performed
at an outer level

© Alan Burnsand Andy Wellings, 2001

Summary

Forward error recovery via exception handlers can also be
added to atomic actions

If an exception is raised by one process then all active in the
action must handle it

Two Issues with this approach are the resolution of
concurrently raised exceptions and exceptions in internal
actions

An asynchronous notification mechanism can be used to
help program recovery

POSIX provides signal and a thread cancelling mechanism

A signal can be handled, blocked or ignored; unfortunately,
It IS not easy to program recoverable actions using a
resumption model of asynchronous events

© Alan Burnsand Andy Wellings, 2001

Summary

Ada and Real-Time provide an asynchronous transfer of
control mechanism based on the termination model

Ada’s is built on top of the select statement

RTJ is integrated into the exception and thread interrupt
mechanisms

This termination approach, in combination with

exceptions, allows for an elegant implementation of a
recoverable action

© Alan Burnsand Andy Wellings, 2001

