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Resource Control

Goals

n To understand how reliable resource control can be
achieved between concurrent processes

n  To understand:
–   Bloom’s criteria
–   requeue in Ada and its need

n I assume that you have done deadlock and its detection
and recovery in an Operating Systems —  see book
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Resource Management

n Concerns of modularity and information hiding dictate that
resources must be encapsulated and be accessed only
through a high-level interface; e.g., in Ada, with a package:

package Resource_Control is
    type Resource is limited private;
    function Allocate return Resource;
    procedure Free(This_Resource : Resource);
private

    type Resource is  ...
end Resource_Control;

n If the resource manager is a server then the package body
will contain a task (or an access object to a task type)

n A protected resource will use a protected object within the
package body



© Alan Burns and Andy Wellings, 2001

Resource Managemenr

n With monitor-based synchronization, e.g. POSIX with
condition variables and mutexes, or Java protected
resources are naturally encapsulated within a monitor
public class ResourceManager
{
  public synchronized Resource allocate();
  public synchronized void free(Resource r);
}

n Other forms of synchronization, such as busy waiting
and semaphores, do not give the appropriate level of
encapsulation, and will therefore not be considered

n Conditional critical regions (CCRs) are also not explicitly
evaluated, as protected objects are, essentially, a
modern form of CCR
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Expressive Power and Ease of Use

n Toby Bloom suggested criteria for evaluating
synchronization primitives:

n Expressive power: the ability to express required
constraints on synchronization

n Ease of use of a synchronization primitive
encompasses:
– the ease with which it expresses each of these synchronization

constraints
– the ease with which it allows the constraints to be combined to

achieve more complex synchronization schemes
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Bloom’s Criteria

n The information needed to express synchronization
constraints can be categorised:

– the type of service request
– the order in which requests arrive
– the state of the server and any objects it manages
– the parameters of a request
– the history of the object (i.e., the sequence of all

previous service requests)
– the priority of the client
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Conditional Waits and Avoidance

n There are, in general, two linguistic approaches to
constraining access to a service.

– conditional wait: all requests are accepted, but any
process whose request cannot be met is suspended on
an internal queue; the conventional monitor typifies this
approach (e.g. wait BufferNotFull)

– avoidance: requests are not accepted unless they can
be met; the conditions under which a request can safely
be accepted are expressed as a guard on the action of
acceptance (e.g. when Buffer_Not_Full)
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Request Type

n Can be used to give preference to one request over another
(e.g, read requests over write requests to shared data)

n With monitors, the read and write operations could be
programmed as distinct procedures, but outstanding calls on
monitor procedures are handled in an arbitrary or FIFO way;
it is not possible to deal with read requests first; nor is it
feasible to know how many outstanding calls there are to
monitor procedures

n In Ada, different request types are represented by different
entries in the server task or protected object; before gaining
access to the entity (in order to queue on an entry), there is
again no way of giving preference over other call;
preference to particular requests can be given once they are
queued through guards which use the count attribute
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Example

protected Resource_Manager is
  entry Update(...);
  entry Modify(...);
  procedure Lock;
  procedure Unlock; 
private
  Manager_Locked : Boolean := False;
  ...
end resource_manager;

Update requests to be given preference over Modify request



protected body Resource_Manager is

  entry Update(...) when not Manager_Locked is
  begin ... end Update;

  entry Modify(...) when not Manager_Locked and 
Update'Count = 0 is

  begin ... end Modify;

  procedure Lock is
  begin  Manager_Locked := True;  end Lock;

  procedure Unlock is 
  begin Manager_Locked := False;  end Unlock;

end Resource_Manager;
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Request Order

n Needed to ensure fairness or to avoid starvation of a client
n Monitors usually deal with requests in FIFO order
n In Ada, outstanding requests of the same type (calls to the

same entry) can also be serviced in a FIFO manner
n Outstanding requests of different types (for example, calls

to different entries within a select statement) are serviced
in an arbitrary order with the FIFO policy

n There is no way of servicing requests of different types
according to order of arrival unless a FIFO policy is used
and all clients first call a common `register' entry:

Server.Register;
Server.Action(...);

n But this double call is not without difficulty
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Server State

n Some operations may be permissible only when the
server and the objects it administers are in a particular
state.

n For example, a resource can be allocated only if it is
free, and an item can be placed in a buffer only if there
is an empty slot

n With avoidance synchronization, constraints based on
state are expressed as guards and, with servers, on the
positioning of accept statements (or message receive
operators)

n Monitors are similarly quite adequate —  with condition
variables being used to implement constraints
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Request Parameters

n The order of operations of a server may be constrained
by information contained in the parameters of requests

n Such information typically relates to the identity or to the
size of the request

n Easy to do with monitor-type primitives
n E.g.,

– a request for a set of resources contains a parameter that
indicates the size of the set required

– if not enough resources are available then the caller is
suspended

– when any resources are released, all suspended clients are
woken up (in turn) to see if their request can now be met.
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Example in Java
public class ResourceManager
{
  private final int maxResources = ...;
  private int resourcesFree;

  public ResourceManager() { resourcesFree = maxResources; }

  public synchronized void allocate(int size) throws 
         IntegerConstraintError, InterruptedException
  {
    if(size > maxResources) throw new 
        IntegerConstraintError(1, maxResources, size);
    while(size > resourcesFree) wait();
    resourcesFree = resourcesFree - size;   
  }

  public synchronized void free(int size)
  {
    resourcesFree = resourcesFree + size;  
    notifyAll();  
  }
}
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Parameters and Avoidance Synchronisation

n With simple avoidance synchronization, the guards only
have access to variables local to the server (or protected
object)

n The data being carried with the call cannot be accessed
until the call has been accepted

n It is, therefore, necessary to construct a request as a
double interaction
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Resource Allocation Example in Ada

n Associate an entry family with each type of request.
n Each permissible parameter value is mapped onto a

unique index of the family so that requests with different
parameters are directed to different entries.

n Obviously, this is only appropriate if the parameter is of
discrete type.

n For small ranges, the technique described earlier for
request type can be used, with the select statements
enumerating the individual entries of the family

n However, for larger ranges a more complicated solution
is needed



package Resource_Manager is
  Max_Resources : constant Integer := 100;
  type Resource_Range is new Integer range

1..Max_Resources;
  subtype Instances_Of_Resource is 

Resource_Range range 1..50;

  procedure Allocate(Size : Instances_Of_Resource);
  procedure Free(Size : Instances_Of_Resource);
end Resource_Manager;



package body Resource_Manager is

  task Manager is
    entry Sign_In(Size : Instances_Of_Resource);
    entry Allocate(Instances_Of_Resource);
    entry Free(Size : Instances_Of_Resource);
  end Manager;

  procedure Allocate(Size : Instances_Of_Resource) is
  begin
    Manager.Sign_In(Size);  -- size is a parameter
    Manager.Allocate(Size); -- size is an index 
  end Allocate;

  procedure Free(Size : Instances_Of_Resource) is
  begin
    Manager.Free(Size);
  end Free;



  task body Manager is
    Pending : array(Instances_Of_Resource) of
       Natural := (others => 0);
    Resource_Free : Resource_Range := Max_Resources;
    Allocated : Boolean;
  begin
    loop
      select  -- wait for first request
        accept Sign_In(Size : Instances_Of_Resource) do
          Pending(Size) := Pending(Size) + 1;
        end Sign_In;
      or
        accept Free(Size : Instances_Of_Resource) do
          resource_free := resource_free + size;    
        end Free;
      end select;



      loop  -- main loop
        loop 
          -- accept any pending sign-in/frees, do not wait
          select
            accept Sign_In(Size : Instances_Of_Resource) do
              Pending(Size) := Pending(Size) + 1;
            end Sign_In;
          or
            accept Free(Size : Instances_Of_Resource) do
              Resource_Free := Resource_Free + Size;
            end Free;
          else
            exit;
          end select;
        end loop;
      



        -- now service largest request
        Allocated := False;
        for Request in reverse Instances_Of_Resource loop
          if Pending(Request) > 0 and 

         Resource_Free >= Request then
            accept Allocate(Request);
              Pending(Request) := Pending(Request) - 1;
              Resource_Free := Resource_Free - Request;
              Allocated := True;
              exit; --loop to accept new sign-ins
           end if;
        end loop;
        exit when not Allocated;
      end loop;
    end loop;
  end Manager;
end Resource_Manager;
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protected resource_control is  -- NOT VALID ADA
  entry allocate(size : instances_of_resource);
  procedure free(size : instances_of_resource);
private
  resource_free : resource_range := MAX_RESOURCES;
end resource_control;
protected body resource_control is
  entry allocate(size : instances_of_resource)
      when resources_free >= size is    -- NOT VALID ADA
  begin
    resource_free := resource_free - size;
  end allocate;
  procedure free(size : instances_of_resource) is
  begin
    resource_free := resource_free + size;
  end free;
end resource_control;

Access to “in” Parameters in Guards
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Double Interactions and Atomic Actions

n A double interaction results from the lack of expressive
power in simple avoidance synchronization.

n To program reliable resource control procedures, this
structure must be implemented as an atomic action.

n With Ada, between the two calls; i.e., after Sign_In but
before Allocate, an intermediate state of the client is
observable from outside the “atomic action”:

begin
   Manager.Sign_In(Size);
   Manager.Allocate(Size);
end;
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Double Interactions and Atomic Actions

n This state is observable in the sense that another task
can abort the client between the two calls and leave the
server in some difficulty
– If the server assumes the client will make the second

call, the abort will leave the server waiting for the call
(that is, deadlocked)

– If the server protects itself against the abort of a
client (by not waiting indefinitely for the second call),
it may assume the client has been aborted when in
fact it is merely slow in making the call; hence the
client is blocked erroneously
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Handling Aborts

n In the context of real-time software, three approaches
have been advocated for dealing with the abort problem

– Define the abort primitive to apply to an atomic action rather
than a process; forward or backward error recovery can then be
used when communicating with the server

– Assume that abort is only used in extreme situations where the
breaking of the atomic action is of no consequence

– Try and protect the server from the effect of client abort

n The third approach, in Ada, involves removing the need
for the double call by requeuing the first call (rather than
have the client make the second call)
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Requester Priority

n If processes are runnable, the dispatcher can order their
executions according to priority; the dispatcher cannot,
however, have any control over processes suspended
waiting for resources

n It is, therefore, necessary for the order of operations of
the resource manager to be also constrained by the
relative priorities of the client processes

n In Ada, Real-Time Java and POSIX it is possible to
define a queuing policy that is priority ordered; but in
general concurrent programming languages, processes
are released from primitives in either an arbitrary or
FIFO manner
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Requester Priority

n It is possible to program clients so that they access the
resource via different interfaces

n For a small priority range, this is now equivalent to the
Request Type constraint

n For large priority ranges, it becomes equal to using
Request Parameters
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Requester Priority and Monitors

n Although monitors are often described as having a FIFO
queue discipline, this is not really a fundamental
property; priority ordered monitors are clearly possible.

n POSIX and RTJ implementation of monitors not only
allows priority queues but also (conceptually) merges
the external queue (of processes waiting to enter the
monitor) and the internal one (of processes released by
the signalling of a condition variable) to give a single
priority ordered queue

n Hence, a higher priority process waiting to gain access
to the monitor will be given preference over a process
that is released internally
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The Requeue Facility

n Enhances the usability of avoidance synchronization
n Requeue, in Ada, moves the task (which has been through

one guard or barrier) to beyond another guard
n Analogy: consider a person (task) waiting to enter a room

(protected object) which has one or more doors (guarded
entries); once inside, the person can be ejected (requeued)
from the room and once again be placed behind a
(potentially closed) door

n Ada allows requeues between task and protected object
entries; a requeue can be to the same entry, to another
entry in the same unit, or to another unit altogether

n Requeues from task to protected object entries are allowed;
however, the main use is to send the calling task to a
different entry of the same unit
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type Request_Range is range 1 .. Max;
type Resource ...;
type Resources is array(Request_Range range <>) of Resource;
protected Resource_Controller is
  entry Request(R : out Resources; Amount: Request_Range);
  procedure Free(R : Resources; Amount: Request_Range);
private

end Resource_Controller;

  entry Assign(R : out Resources; Amount: Request_Range);
  Freed : Request_Range := Request_Range’Last;
  New_Resources_Released : Boolean := False;
  To_Try : Natural := 0;

Resource Control
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Resource Control II

protected body Resource_Controller is
  entry Request(R : out Resources; Amount: Request_Range) 
        when Freed > 0 is
  begin
    if Amount <= Freed then Freed := Freed - Amount;
    else requeue Assign; end if;
  end Request;

  procedure Free(R : Resources; Amount: Request_Range) is
  begin
    Freed := Freed + Amount;
    -- free resources
    if Assign'Count > 0 then
      To_Try := Assign'Count;
      New_Resources_Released := True;
    end if;
  end Free;
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Resource Control III
 entry Assign(;R : out Resources; Amount: Request_Range)
        when New_Resources_Released is
  begin
    To_Try := To_Try - 1;
    if To_Try = 0 then
      New_Resources_Released := False;
    end if;
    if Amount <= Free then
      Freed := Freed - Amount;
      -- allocate
    else
      -- assumes FIFO queuing
      requeue Assign;
    end if;
  end Assign;
end Resource_Controller;
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Illustration

Request

Free

Assign

Freed = 5

Amount = 6

Amount = 10

Amount = 30

Amount = 7

Amount = 30
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Illustration

Request

Free

Assign

Freed = 35

Amount = 6

Amount = 10

Amount = 30

Amount = 7

Freed > 10
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Illustration

Request

Free

Assign

Amount = 6

Amount = 30

Amount = 7

Freed = 25

Amount = 10

Freed > 7
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Illustration

Request

Free

Assign

Amount = 6

Amount = 30

Freed = 18

Amount = 7

Freed < 30
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Illustration

Request

Free

Assign

Amount = 30

Amount = 6

Freed = 18
Freed > 6

requeued
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Illustration

Request

Free

Assign

Amount = 30

Freed = 16

Amount = 6
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n Requeue is not a simple entry call
n If an entry call is requeued, the call is completed

n The full syntax for requeue is

n When a task has any entry call accepted or begins
executing a protected entry, any associated  time-out is
lost. Hence if the call is requeued indefinitely no time-
out will occur. Also once the call have been requeued,
by default, it is unabortable (Why?);

Semantics of Requeue

if Requeuing then
  requeue Entry_Name;
  -- Not Executed
end if;

requeue Entry_Name [with abort];
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With abort

n requeue with abort
– reinstates any timeout
– allows the queued task to be aborted

n requeue (with no abort)
– cancels any timeout
–  marks the queued task as non abortable

n The server task/protected object must decide on
whether it expects the queued task to remain on the
queue, or whether it can tolerate the task being
removed
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Requeuing to other Entries

n Any entry call can be requeued to another task or
another protected unit as long as the parameters are
type conformant

n Consider a network router which has a choice of three
lines on which to forward messages: Line A is the
preferred route, but if it becomes overloaded Line B can
be used, if this becomes overloaded Line C can be used

n Each line is controlled by a server task
n A protected unit acts as an interface to the router

Router

Line Controller

Line Controller

Line Controller
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Router Example
type Line_Id is (Line_A, Line_B, Line_C);
type Line_Status is array (Line_Id) of Boolean;
task type Line_Controller(Id : Line_Id) is
  entry Request(...);
end Line_Controller;

protected Router is
  entry Send(...);
  procedure Overloaded(Line : Line_Id);
  procedure Clear(Line : Line_Id);
private
  OK : Line_Status := (others => True);
end Router;
LA: Line_Controller(Line_A);
LB: Line_Controller(Line_B);
LC: Line_Controller(Line_C); 
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Router Example II
protected body Router is
  entry Send(...) when OK(Line_A) or OK(Line_B) or
                       OK(Line_C) is
  begin
    if OK(Line_A) then
      requeue LA.Request with abort;
    elsif OK(Line_B) then
      requeue LB.Request with abort;
    else
      requeue LC.Request with abort;
    end if;
  end Send;
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Router Example III

  procedure Overloaded(Line : Line_Id) is
  begin
    OK(Line) := False;
  end Overloaded;

  procedure Clear(Line : Line_Id) is
  begin
    OK(Line) := True;
  end Clear;
end Router;
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Router Example IV

task body Line_Controller is
  …
begin
  loop
    select
      accept Request ( ... ) do
        -- service request
      end Request;
    or
      terminate;
    end select;
    -- housekeeping including possibly
    Router.Overloaded(Id)
    -- or
    Router.Clear(Id);
  end loop;
end Line_Controller;
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Real-Time Resource Controller

protected Resource_Controller is

  entry Allocate(R: out Resource;
                 Amount : Request_Range);
  procedure Release(R: Resource;
                    Amount : Request_Range);
private

  Free : Request_Range := ...;

  Queued : Natural := 0;

end Resource_Controller;
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Real-Time Resource Controller II
protected body Resource_Controller is
  entry Allocate( ... ) when Free > 0 and
                    Queued /= Allocate’Count is
  begin
    if Amount < Free then
      Free := Free - Amount;
      Queued := 0;
    else
      Queued := Allocate’Count + 1;
      requeue Allocate;
    end if;
  end Allocate;

Queue is
priority
ordered
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Real-Time Resource Controller III

  procedure Release (...) is

  begin

    Free := Free + Amount;

    Queued := 0;

  end Release;

end Resource_Controller;
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An Extended Example

n Consider the problem of simulating the behaviour of
travellers on a circular railway (metro)

n There are N stations and one train (with a small finite
capacity)

n Travellers arrive at one station and are transported to
their requested destination

n Each station can be represented by a protected object,
the train and travellers are tasks

n A passenger calls an entry at one station to catch the
train, when the train arrives the passenger is requeued
to another station and eventually released when the
train arrives at that station
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The Requeue Metro
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type Station_Address is range 1 .. N;
type Passengers is range 0..Max;

Capacity : constant Passenger := ...;

protected type Station is
  entry Arrive(Destination : Station_Address);
  procedure Stopping(P : Passengers);
  entry Alight(Destination : Station_Address);
  procedure Boarding;
  procedure Closedoors(P : out Passengers);
private
  On_Train : Passengers;
  Trainboarding : Boolean := False;
  Trainstopped : Boolean := False;
end Station;

Stations : array(Station_Address) of Station;

Metro
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Metro II
protected body Station is
  entry Arrive(Destination : Station_Address) 
    when Trainboarding and then 
         On_Train < Capacity is
  begin
    On_Train := On_Train + 1;
    requeue Stations(Destination).Alight;
  end Arrive;
  procedure Stopping(P: Passengers) is
  begin
    On_Train := P;
    Trainstopped := True;
  end Stopping;
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Metro III
  entry Alight(Destination : Station_Address) is
     when Trainstopped is
  begin
    On_Train := On_Train - 1;
  end Alight;
  procedure Boarding is
  begin
    Trainstopped := False;
    Trainboarding := True;
  end Boarding;
  procedure Closedoors(P: out Passengers) is
  begin
    P := On_Train;
    Trainboarding := False;
  end Closedoors;
end Stations;
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Metro IV

task type Client;
task body Client is
  Home, Away : Station_Address;
begin
  -- choose Home
  loop
    -- choose Away 
    Stations(Home).Arrive(Away);
    Home := Away;
  end loop; 
end Client;
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Metro V

task Train;
task body Train is
  Volume : Passengers := 0;
  Travel_Times : array(Station_Addresses) := ...;
begin
  loop
    for S in Station_Address loop
      Stations(S).Stopping(Volume);
      Stations(S).Boarding;
      Stations(S).Closedoors(Volume);
      delay Travel_Times(S);
    end loop;
  end loop;
end Train;
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Summary

n Algorithms are required which manage the resource
allocation procedures and which guarantee that resources
are allocated according to a predefined behaviour

n They are also responsible for ensuring that processes
cannot deadlock

n The synchronization facilities provided by a real-time
language must have sufficient expressive power to allow a
wide range of synchronization constraints to be specified.
– the type of service request
– the order in which requests arrive
– the state of the server and any objects it manages
– the parameters of a request
– the priority of the client
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Summary

n Monitors (with condition synchronization) deal well with
request parameters

n Avoidance synchronization in message-based servers or
protected objects cope adequately with request types

n If insufficient expressive power, processes are often forced
into a double interaction with a resource manager

n This must be performed as an atomic action, otherwise the
client process may be aborted between the interactions

n Requeuing extends the expressive power of avoidance
synchronization

n Client tasks can be requeued within the same server/
protected object or across servers/protected objects


