Large and complex

Concurrent control of separate system components
Facilities to interact with special purpose hardware
Guaranteed response times

Extreme reliability

Efficient implementation

Char acter |st| CS of a RTS

© Alan Burns and Andy Wellings, 2001

Real-Time Facilities

m Goal
— To understand the role that time has in the design and
implementation of real-time systems
m Topics
— Notion of time
— Clocks, delays and timeouts
— Specifying timing requirements
— Temporal scopes
— Fault tolerance

© Alan Burns and Andy Wellings, 2001

~ Real-Time Facilities: Requirements

m Interfacing with time
— accessing clocks so that the passage of time can be measured
— delaying processes until some future time

— programming timeouts so that the non-occurrence of some
event can be recognized and dealt with

m Representing timing requirements
— specifying rates of execution
— specifying deadlines
m Satisfying timing requirements — covered later

© Alan Burns and Andy Wellings, 2001

The Notion of Time

m Transitivity: " X, Y, 2: (X<yUy<2z)p x<z
m Linearity: "X, Y:Xx<yUy<xb x=y

m Irreflexivity: " X1 NOL(X < X)

m Density: "X, Y X<yP $z:(x<z<Yy)

Name

True Solar
Day

Temporal Hour

Universal Time
(UTO)

Second (1)

Second(2)

Standard T| me

Description

Time between two
successive
culminations
(highest point of the
sun)

One-twelfth part of
the time between
sunrise and sunset

Mean solar time at
Greenwich meridian

1/86,400 of a mean
solar day

1/31,566,925.9747
of the tropical year
for 1900

Note

Varies through the year
by 15 minutes (approx)

Varies considerably
through the year

Defined in 1884

Ephemris Time defined
In 1955

© Alan Burns and Andy Wellings, 2001

Name

UT1

UT 2

Seconds(3)

|nternational
Atomic Time
(IAT)

Coordinated
Universia
Time (UTC)

Description Note

correction to UTO because of
polar motion

Correction of UT1 because of variation
in the speed of rotation of the earth

Duration of 9 192 631 770 periods Accuracy of current Caesium
of the radiation corresponding to the atomic clocks deemed to be

transition between two hyperfine one part of 10713
levels of the ground state of the (that is, one clock error per
Caesium - 133 atom 300,000 years)

Based upon Caesium

atomic clock
Maximum difference between
UT2 (which is based on
An IAT clock synchronized to astrological measurement) and
UT2 by the addition of IAT (which is based upon
occasional leap ticks atomic measurements) is kept

to below 0.5 seconds

Access to a CI ock

m by having direct access to the environment's time frame

m by using an internal hardware clock that gives an
adequate approximation to the passage of time in the
environment

© Alan Burns and Andy Wellings, 2001

Calendar

package Ada. Cal endar 1s
type Tinme is private;
subtype Year Nunmber is |Integer range 1901..2099;
subtype Mont h Nunmber is Integer range 1..12;
subtype Day Nunber is |Integer range 1.. 31;
subtype Day Duration is Duration range 0.0..86 _400.0O;

function C ock return Tine;

function Year(Date: Tine) return Year Nunber;
function Month(Date: Tine) return NMonth_ Nunber;
function Day(Date: Tine) return Day_ Nunber;

function Seconds(Date: Tine) return Day Duration;
procedure Split(Date:in Tinme;, Year:out Year Nunber;

Mont h: out Mont h_Nunber; Day:out Day_ Nunber;
Seconds: out Day Duration);

function Tinme O (Year: Year Nunber; Month: Mont h_Nunber;
Day: Day_Nunber; Seconds: Day Duration:=0.0) return Tine;

© Alan Burns and Andy Wellings, 2001

functi
functi
functi
functi
functi
functi
functi
functi

on

on
on
on
on
on
on
on

Calendar ||

"+"(Left: Time; Right:Duration) return Tine;

"+"(Left:Duration; Right:Time) return Tine;
"-"(Left:Tinme; Right:Duration) return Tine;
"-"(Left:Time; Right:Tinme) return Duration;
"<"(Left,Right: Tinme) return Bool ean;
"<="(Left,Ri ght: Tine) return Bool ean;
">"(Left,Right: Tinme) return Bool ean;
">="(Left,Ri ght: Tine) return Bool ean;

Time _Error:exception;

-- Time_Error may be raised by Tine O,
-- Split, Year, "+" and "-"

private

| npl enent at i on- dependent
end Ada. Cal endar;

© Alan Burns and Andy Wellings, 2001

Calendar 111

m A value of the private type Ti ne is a combination of the
date and the time of day

m The time of day is given in seconds from midnight

m Seconds are described in terms of a subtype
Day Durati on

m Which s, in turn, defined by means of Dur at i on

© Alan Burns and Andy Wellings, 2001

Duration

This fixed point type Dur at i on is one of the predefined
scalar types and has a range which, although

Implementation dependent, must be at least -86_400.0
.. +86_400.0

The value 86 400 is the number of seconds in a day

The accuracy of Dur at 1 on is also implementation

dependent but the smallest representable value
Durati on' Smal | must not be greater than 20

milliseconds

It is recommended in the ARM that it is no greater than
100 microseconds

© Alan Burns and Andy Wellings, 2001

Example Use

decl are
Ad Tinme, New Tinme : Tineg,
| nterval : Duration;

begi n

Ad Tinme := d ock;
- ot her conputations
New Tine := C ock;

| nt er val New Tine - A d_Tineg;
end,;
m The other language clock is provided by the optional package
Real Tine

m This has a similar form to Cal endar but is intended to give a
finer granularity

m The value of Ti ck must be no greater than one millisecond,;
the range of Ti me (from the epoch that represents the
program's start-up) must be at least fifty years

© Alan Burns and Andy Wellings, 2001

Real-Time Clock

package Ada.Real Tine is
type Tinme is private;
Time _First: constant Tine;
Time_Last: constant Ti ne;
Time _Unit: constant := inplenentation_defined real nunber;

type Tinme_Span is private;

Time_Span_First: constant Tine_Span;

Ti me_Span_Last: constant Ti ne_Span;

Ti me_Span_Zero:. constant Ti ne_Span;
Time_Span_Unit: constant Tine_Span;

Ti ck: constant Time_ Span;

function Cl ock return Tine;

function "+" (Left: Time;, R ght: Tinme_Span) return Tine;

function "+" (Left: Time_Span; Right: Tine) return Tineg;
-- simlarly for "-", "<" etc

© Alan Burns and Andy Wellings, 2001

Real-Time Clock | |

function To Duration(TS: Tinme_Span) return Duration;

function To _Tinme _Span(D: Duration) return Tinme_Span,

function Nanoseconds (NS:. Integer) return Tine_Span,
function Mcroseconds(US: Integer) return Tinme_Span,
function MIIliseconds(Ms: Integer) return Tine_Span;
type Seconds Count is range inplenentation-defined;
procedure Split(T : in Tinme, SC out Seconds_ Count;

TS : out Tinme_Span);
function Tinme O (SC. Seconds_ Count;

TS: Time_Span) return Tine;
private

-- not specified by the | anguage

end Ada. Real _Ti ne;

© Alan Burns and Andy Wellings, 2001

Metrics

Ti me_Uni t Is the smallest amount of real time
representable by the Ti ne type

The value of Ti ck must be no greater than 1
millisecond

The range of Ti me (from the epoch that represents the
program's start-up) must be at least 50 years

Other important features of this time abstraction are
described in the Real-Time Annex

© Alan Burns and Andy Wellings, 2001

Example - Timing a Sequence

decl are

use Ada. Real Ti ne;

Start, Finish : Tine;

Interval : Time_Span := To _Time Span(1l.7);
begi n

Start := d ock;

-- sequence of statenents

Finish : = C ock;

If Finish - Start > Interval then

raise Tinme _Error; -- a user-defined exception

end if;

end,;

© Alan Burns and Andy Wellings, 2001

Cl ocksm Real Tlme Java

m Similar to those in Ada

m java.l ang.Systemcurrent TineM | |1 s returns

the number of milliseconds since 1/1/1970 GMT and Is
used by used by j ava. uti |l . Date

m Real-time Java adds real-time clocks with high
resolution time types

© Alan Burns and Andy Wellings, 2001

RT Jav ypes

public abstract class H ghResol utionTine i npl enents
j ava. | ang. Conpar abl e

I 3

{

publ i c abstract Absol uteTi ne absol ute(d ock cl ock,
Absol ut eTi ne destination);

publ i c bool ean equal s(H ghResol utionTine tine);

public final long getMI1liseconds();
public final int getNanoseconds();

public void set(H ghResol utionTine tine);
public void set(long mllis);
public void set(long mllis, int nanos);

© Alan Burns and Andy Wellings, 2001

public class Absol uteTi ne extends H ghResol utionTi nme

{

/'l various constructor nethods including
publ i c Absol ut eTi ne(Absol uteTine T);
public AbsoluteTinme(long mllis, int nanos);

publ i c Absol uteTi ne absol ute(C ock cl ock, Absol uteTinme dest);

public AbsoluteTine add(long mllis, int nanos);
public final AbsoluteTine add(Rel ativeTine tine),;

public final RelativeTine subtract(AbsoluteTine tinme);
public final AbsoluteTine subtract(RelativeTine tinme);

public class Rel ativeTi ne extends H ghResol uti onTi ne

{

/'l various constructor nethods including
public RelativeTine(long mllis, int nanos);
public RelativeTinme(RelativeTinme tine);

publ i c Absol uteTi ne absol ute(d ock cl ock,
Absol ut eTi ne desti nation);

public RelativeTine add(long mllis, int nanos);
public final RelativeTine add(Rel ativeTine tine),;

public void addlnterarrival To(Absol uteTi ne desti nation);

public final RelativeTine subtract(RelativeTine tinme);

}

public class Rational Ti ne extends Rel ativeTi ne

[, .1

RT Java: Clock Class

public abstract class C ock
{
public d ock();
public static O ock getReal ti ned ock();

public abstract Rel ativeTi ne get Resol ution();

public Absol uteTinme getTinme();
public abstract void getTi ne(Absol uteTine tine);

public abstract void setResol ution(Rel ativeTine resol ution);

© Alan Burns and Andy Wellings, 2001

Absol ut eTi ne ol dTi ne, newTi ne;
Rel ativeTi ne i nterval;
Cl ock clock = C ock.getReal ti med ock();

ol dTi me = cl ock. getTi ne();
/'l other conputations
newli ne = cl ock. get Ti ne();

I nterval = new i ne. subtract (ol dTi ne) ;

~ RT Java: Measuring Time

© Alan Burns and Andy Wellings, 2001

Clocks N C and POSIX

m ANSI C has a standard library for interfacing to
“calendar” time

m This defines a basic time type ti ne_t and several
routines for manipulating objects of type time

m POSIX requires at least one clock of minimum resolution
50 Hz (20ms)

© Alan Burns and Andy Wellings, 2001

POSI X Real-Time Clocks

#define CLOCK REALTIME ...; [// clockid t type

struct tinespec {

time t tv_sec; /* nunber of seconds */

| ong tv_nsec; [/* nunber of nanoseconds */
}s
typedef ... clockid t;

i nt clock gettine(clockid t clock id, struct tinmespec *tp);
i nt clock settinme(clockid t clock id, const struct tinmespec *tp);
i nt clock getres(clockid t clock id, struct tinmespec *res),;

I nt clock getcpuclockid(pidt pid, clockid t *clock id);
I nt clock getcpucl ockid(pthread t t thread id, clockid t *clock id)

I nt nanosl eep(const struct tinespec *rqtp, struct tinespec *rntp);
/* nanosleep return -1 if the sleep is interrupted by a */
/* signal. In this case, rntp has the remaining sleep tine */

© Alan Burns and Andy Wellings, 2001

Delaying a Process

In addition to clock access, processes must also be able to
delay their execution either for a relative period of time or
until some time in the future

Relative delays

Start := Clock; -- from cal endar
| oop

exit when (Clock - Start) > 10.0;
end | oop;

To eliminate the need for these busy-waits, most languages
and operating systems provide some form of delay primitive

In Ada, this is a delay statement
del ay 10. 0O;

In POSIX: sl eep and nanosl| eep
Java: sleep; RT Java provides a high resolution sleep

© Alan Burns and Andy Wellings, 2001

‘ 5
Q
>

Granularity
difference
Time specified by between
program clock and < >
P delay Process
Process runnable executing
—> here but not
< > executable < >
I nterrupts
disabled

Time >

© Alan Burns and Andy Wellings, 2001

Absol ute Del ays

-- Ada

START : = d ock;

FI RST_ACTI ON;

delay 10.0 - (d ock - START);
SECOND_ACTI ON;

m Unfortunately, this might not achieve the desired result
START : = d ock;
FI RST_ACTI ON,;
delay until START + 10. 0O;
SECOND_ACTI ON;
m As with del ay, del ay unti | is accurate only in its

lower bound
m RT Java - sleep can be relative or absolute
m POSIX requires use of an absolute timer and signals

© Alan Burns and Andy Wellings, 2001

Drift

m The time over-run associated with both relative and
absolute delays is called the local drift and it it cannot
be eliminated

m It is possible, however, to eliminate the cumulative drift
that could arise if local drifts were allowed to
superimpose

© Alan Burns and Andy Wellings, 2001

task T;

task body T is
begi n
| oop
Act i on;
delay 5.0; <«

Regular Activity

Cannot delay for less than

end | oop;
end T;

5 seconds

local and cumulative drift

© Alan Burns and Andy Wellings, 2001

Perlodlc Act|V| ty

task body T is

| nterval : constant Duration := 5.0;
Next Tinme : Tine;
begi n
Next Time := Clock + Interval;
| oop
Act i on;
del ay until Next Ti ne;
Next Time := Next _Time + Interval;
end | oop;
end T, Will run on average

every 5 seconds

If Act i on takes 6 seconds, the delay
statement will have no effect

local drift only

© Alan Burns and Andy Wellings, 2001

Control Example

w th Ada. Real Tinme; use Ada. Real _Ti ne;
wth Data_ Types; use Data_ Types;

wth IO use IO

w th Control Procedures;

use Control Procedures;

procedure Controller is

task Tenp_Controller;

task Pressure Controller,

© Alan Burns and Andy Wellings, 2001

Control Example |

task body Tenp Controller is
TR : Tenp_Reading; HS : Heater Setting;
Next : Tine;
Interval : Tine _Span := MII|iseconds(30);
begi n
Next := Clock; -- start tine
| oop
Read(TR) ;
Temp_Convert (TR, HS) ;
Wite(HS);
Wite(TR);
Next := Next + Interval;
del ay until Next;
end | oop;
end Tenp _Controller;

© Alan Burns and Andy Wellings, 2001

Control Example |11

task body Pressure Controller is

PR : Pressure Reading; PS : Pressure Setting;

Next : Tine;
Interval : Time_Span := MI|Iliseconds(70);
begi n
Next := Clock; -- start tine
| oop
Read(PR) ;
Pressure_ Convert (PR, PS);
Wite(PS);
Wite(PR);
Next := Next + Interval;
del ay until|l Next;
end | oop;
end Pressure _Controller;
begi n
nul | ;
end Controller;

© Alan Burns and Andy Wellings, 2001

Ada Task States

I s — E— S E— — — — — —
[non-emsting} {no exstmg}
i]
[created }/{ termiFated}
[finalising }
[
activating completed }
e { executing { vt depencent |

delay
del aye d delay interval expires

Timeouts. Shared Variable Communication

m Timeout can be applied to condition synchronization facilities:
— semaphores, e.g. POSIX
| f(semtinmedwait(&call, & ineout) < 0) {
I f (errno == ETI MEDOUT) {
[* timeout occurred */

}

else { /* sone other error */ }
} else {
/* semaphore | ocked */

}s

— conditional critical regions

— condition variables in monitors, mutexes or synchronized methods
— entries in protected object

m POSIX also allows a timeout whilst waiting for a mutex lock

© Alan Burns and Andy Wellings, 2001

I\/I essagePasg ng and Tl meouts

task Controller i1Is
entry Call (T : Tenperature),;
end Controller:

task body Controller is
-- decl arations, 1Including
New Tenp : Tenperat ure;
begi n
| oop
accept Call (T : Tenperature) do
New Tenp := T,

end Call ;
-- other actions
end | oop;

end Controller:

© Alan Burns and Andy Wellings, 2001

v

essage-Pass

task Controller is

entry Call (T : Tenperature);
private entry Ti nmeout;
end Controller;

task body Controller is
task Tinmer is
entry Go(D :

end timer;
task body Tiner is separate;

Dur ation);

-- ot her declarations
begi n
| oop
Ti mer. Go(10. 0);
sel ect
accept Call (T :
New Tenp := T;
end Call;
or

accept Ti nmeout;

-- action for tineout
end sel ect;
-- other actions
end | oop;

end Controller;

ng a

nd

Timeouts

task body tiner is
DU : Duration;

begi n
accept Go(D : Duration) do
Ti meout Val ue : = d;
end Co;

del ay Ti neout Val ue;
Control |l er. Ti neout;
end timer;

Tenperature) do

© Alan Burns and Andy Wellings, 2001

Message-Passing and Timeouts

task Controller is
entry CGall (T : Tenperature);
end Controller;

task body Controller is
-- decl arations
begi n
| oop
sel ect
accept Call (T : Tenperature) do
New Temp : = T,
end Call;
or
del ay 10. 0O;
-- action for timeout
end sel ect;
-- ot her actions
end | oop;
end Controll er;

© Alan Burns and Andy Wellings, 2001

task Ticket Agent is
entry Registration(...);
end Ti cket Agent;

task body Ticket Agent is
-- decl arations
Shop Open : Bool ean : = True;
begi n
whi | e Shop_Open | oop
sel ect
accept Registration(...) do
-- log details
end Regi strati on;
or
delay until C osing_Tine;
Shop_Open : = Fal se;
end sel ect;
-- process registrations
end | oop;
end Ti cket Agent;

- Message Pass Ssing: Absolute Delays

Within Ada, it make no sense to
mix an else part, a terminate
alternative and delay alternatives

These three structures are
mutually exclusive; a select
statement can have, at most, only
one of them

However, the select can have a
number of delays but they must
all be of the same kind (that is,
del aysordel ay untils).

© Alan Burns and Andy Wellings, 2001

__Timeout on Message Send

| oop
-- get new tenperature T
Controller.Call (T);

end | oop;
| oop
-- get new tenperature T
sel ect
Controller.Call(T); The nul | is not strictly needed but
or shows that again the delay can have
del ay 0.5; — arbitrary statements following,
null; < that are executed if the delay expires
end sel ect; before the entry call is accepted
end | oop;
sel ect
T.E -- entry Eintask T
el se

-- other actions
end sel ect;

© Alan Burns and Andy Wellings, 2001

TI eouts and Entrles

m The above examples have used timeouts on inter-task
communication; it is also possible, within Ada, to do
timed (and conditional) entry call on protected objects

sel ect

P.E; -- Eis an entry in protected object P
or

del ay 0. 5;
end sel ect;

© Alan Burns and Andy Wellings, 2001

TI meouts on Actlons

sel ect
del ay 0. 1;
t hen abort
-- action
end sel ect;

m If the action takes too long, the triggering event will be
taken and the action will be aborted

m This is clearly an effective way of catching run-away
code

© Alan Burns and Andy Wellings, 2001

~ Imprec

se Co mputatlon Ad

decl are
Preci se_Result : Bool ean;
begi n
Conpletion Tinme := ...
-- conpul sory part
Results. Wite(...); -- call to procedure in
-- external protected object

sel ect
delay until Conpletion_Tine;
Preci se_Result := Fal se;

t hen abort
whil e Can_Be | nproved | oop
-- inprove result
Results. Wite(...);
end | oop;
Preci se_Result := True;
end sel ect;
end;

© Alan Burns and Andy Wellings, 2001

Real-Time Java

m With Real-Time Java, timeouts on actions are provided by a
subclass of Asynchr onousl yl nt err upt edExcepti on

called Ti ned

public class Tinmed extends Asynchronousl yl nterruptedException
| npl ements java.io. Serializable

{

public Timed(H ghResolutionTine tine) throws
| 1 | egal Argunent Excepti on;

publ i c bool ean dolnterruptible(lnterruptible |ogic);

public void resetTi ne(H ghResol utionTine tine);

}

© Alan Burns and Andy Wellings, 2001

ImpreC| se Com putatlon RTJ a

public class Preci seResult

{

}

public resultType value; // the result

publ i c bool ean preciseResult; // indicates if it is inprecise

public class I npreciseConputation {

private H ghResol utionTi me Conpl etionTi ne;
private PreciseResult result = new PreciseResult();

public | npreci seConputati on(H ghResol utionTinme T)
{

ConpletionTinme = T; //can be absolute or relative

}

private resultType conpul soryPart ()

{
[/ function which conputes the conpul sory part

¥

© Alan Burns and Andy Wellings, 2001

public PreciseResult Service() [// public service

{

Interruptible | = new Interruptible()

{

public void run(Asynchronousl yl nterrupt edException exceptic
t hrows Asynchronousl yl nterrupt edExcepti on

{
/1 this is the optional function which inproves on the
[l conpul sory part
bool ean canBel nproved = true;
whi | e(canBel npr oved)
/'l 1 nprove result
synchroni zed(this) {
[l wite result --
[/ the synchroni zed statenent ensures
/[l atomcity of the wite operation
}
result.preciseResult = true;
}

public void interruptAction(
Asynchr onousl yl nt err upt edExcepti on excepti on)

result.preciseResult = fal se;

}
'

Timed t = new Ti ned(Conpl eti onTi ne) ;

result.value = conpul soryPart(); // conpute the conpul sory part
| f(t.dolnterruptible(l)) {

/| execute the optional part with the tiner

return result;

} else { ... };
}
}

POSI X

m POSIX does not support ATC and, therefore, it is difficult
to get the same effect as Ada and RT Java

m POSIX does support Timers (see later)

© Alan Burns and Andy Wellings, 2001

Specifying Timing Reguirements

m Work on a more rigorous approach to this aspect of real-
time systems has followed two largely distinct paths:

o The use of formally defined language semantics and
timing requirements, together with notations and logics
that enable temporal properties to be represented and
analysed

® A focus on the performance of real-time systems in
terms of the feasibility of scheduling the required work
load on the available resources (processors and so on)

© Alan Burns and Andy Wellings, 2001

Timing Verification

m The verification of a real-time system can thus be
Interpreted as requiring a two stage process:

o verifying requirements — given an infinitely fast reliable
computer, are the temporal requirements coherent and
consistent, that is, have they the potential to be
satisfied?

e verifying the implementation — with a finite set of
(possible unreliable) hardware resources, can the
temporal requirements be satisfied?

© Alan Burns and Andy Wellings, 2001

Temporal Scopes

m deadline — the time by which the execution of a TS must

be finished:

m minimum delay — the minimum amount of time that

must elapse before the start of execution of a TS;

m maximum delay — the maximum amount of time that

can elapse before the start of execution of a TS;

B maximum execution time —of a TS;
m maximum elapse time —of a TS.

Temporal scopes with combinations of these attributes are
also possible

© Alan Burns and Andy Wellings, 2001

Now —— o
‘ Minimum delay _
N Maximum delay
a I
Time
S
Maximum
b elapse time
v
v
C I
v
v Units of execution

_ Maximum executiontime=a+ b +c
Deadline

Temporal Scopes

m Can be
— Periodic
— Sporadic
— Aperiodic

m Deadlines can be:
® Hard
® Soft
@® Interactive — performance issue
® Firm

© Alan Burns and Andy Wellings, 2001

process periodic P

begi n
| oop
| DLE
start of tenporal scope

end of tenporal scope
end,;
end,

m The time constraints take the form of maximum and/or
minimum times for | DLE and the requirement that the

end of the temporal scope be by some deadline

© Alan Burns and Andy Wellings, 2001

Deadline

The deadline can itself be expressed in terms of either

m absolute time
m execution time since the start of the temporal scope, or
m elapsed time since the start of the temporal scope.

© Alan Burns and Andy Wellings, 2001

Aperiodic Processes

process aperiodi c_P;

begi n
| oop
walit for 1 nterrupt
start of tenporal scope

end of tenporal scope
end,
end,

© Alan Burns and Andy Wellings, 2001

L anguage Support for TS

Ada and C/POSIX
Real-Time Euclid and Peatrl
Real-Time Java

DPS

Esteral

Ada: Periodic Task

task body Periodic T is
Rel ease Interval : Duration :=...; -- or
Rel ease Interval : Tine _Span := MIIliseconds(...);

begi n
-- read clock and cal cul ate the next
-- release tine (Next Rel ease)
| oop
-- sanple data (for exanple) or
-- calculate and send a control signal
del ay until Next Rel ease;
Next Rel ease : = Next Rel ease + Rel ease Interval;
end | oop;
end Periodic T,

© Alan Burns and Andy Wellings, 2001

POSI X: Perlodlc Thread

#i ncl ude <signal . h>

#i ncl ude <tine. h>

#i ncl ude <pthread. h>

voi d periodic thread() /* destined to be the thread */

{

I nt si gnum /* signal caught */

Sigset t set; /* signals to be waited for */
struct sigevent sig; /* signal information */

tinmer t periodic _tiner; [* tinmer for a periodic thread */
struct itimerspec required, old; /* timer details */

struct tinespec first, period, /* start and repetition */

| ong Thread Period = /* actual period in nanoseconds *

© Alan Burns and Andy Wellings, 2681,

/* set up signal interface */
sig.sigev_notify = SIGEV_SI GNALS;
sig.sigev_signo = SIGRTMN, /* for exanple */

/* allow, e.g., 1 sec fromnow for systeminitialisation */
CLOCK GETTI ME(CLOCK_REALTI ME, &first); [/* get current tinme */
first.tv.sec = first.tv_sec + 1;

period.tv_sec = 0O; /* set repetition value to period*/
period.tv_nsec = Thread Peri od;

required.it_value = first; /[/* initialise tinmer details */
required.it _interval = period,;

TI MER_CREATE(CLOCK _REALTI ME, &sig, &periodic _tinmer);

SI GEMPTYSET(&set) ; [* initialise signal set to null */
SI GADDSET(&set, SIGRTMN); [/* only allow tiner interrupts*/
TI MER_SETTI ME(periodic_tiner, 0, & equired, &old);

/* enter periodic |oop */
while(1l) {
SI GMI T(&set, &signun;
/[* code to be executed each period here */

}

}

int init()

{
pthread attr _t attri butes; [* thread attributes */
pt hread t PT, /* thread pointer */

PTHREAD ATTR I NI T(&attributes); /* default attributes */
PTHREAD CREATE(&PT, &attri butes,
(void *) periodic thread, (void *)O0);

Ada: Sporadic Task

m A sporadic task that is triggered by an interrupt would
contain no explicit time information but would, typically,
use a protected object to handle the interrupt and
release the task for execution

protected Sporadic Controller is

procedure Interrupt; -- napped onto iInterrupt
entry Wait_ For Next I nterrupt;

private
Cal | _Qutstanding : boolean := fal se;

end Sporadic _Controller;

© Alan Burns and Andy Wellings, 2001

protected Sporadic Controller is
procedure Interrupt iIs
begi n
Call _Qutstanding := True;
end I nterrupt;
entry Wait_ For Next | nterrupt
when Call Qutstanding is
begi n
Call _Qutstanding := Fal se;
end Wait For Next | nterrupt;
end Sporadic_Controller;

task body Sporadic T is
begi n
| oop
Sporadic_Controller.Wait_For Next Interrupt;
-- action
end | oop;
end Sporadic T,

1
2

Real-Time Euclid

. periodic framelnfo first activation timeOrEvent

. ateEvent conditionld framelnfo

The clause framelnfo defines the periodicity of the
process (including the maximum rate for sporadic
processes).

The simplest form this can take is an expression in real-
time units:

frame real Ti meExpn

The value of these units is set at the beginning of the
program

© Alan Burns and Andy Wellings, 2001

Periodic Process

m A periodic process can be activated for the first time by
— having a start time defined
— waiting for an interrupt to occur
— waiting for either of above

m The syntax for timeOrEvent must, therefore, be one of
the following

atTime realTimeExpn
atEvent conditionld
atTime realTimeExpn or atEvent conditionld

m conditionld is a condition variable associated with an
Interrupt; it is also used with sporadic processes

© Alan Burns and Andy Wellings, 2001

m A cyclic temperature controller with periodicity 60 units (every
minute If the time unit is set to 1 second) which become active

after 600 units or when a startMonitoring interrupt arrives
real TineUnit := 1.0 %tine unit = 1 seconds

var Reactor: nodule % Euclid is nodul e based

var starthMonitoring : activation condition atlLocation 16#A10D
% This defines a condition variable which is

% mapped onto an interrupt

process TenpController : periodic

frame 60 first activation

at Time 600 or at Event startMonitoring
% i nmport 1|ist
%
% execution part Note: no loop; scheduler
70 controls the activation
end TenpControll er

end React or

© Alan Burns and Andy Wellings, 2001

task body Tenp Controller is
-- definitions, including
Next Rel ease : Durati on;
begi n
sel ect
accept Start_ Monitoring;
-- or atinmed entry call
-- onto a protected object
or
del ay 600. O;
end sel ect;
Next Rel ease := O ock + 60.0;
-- take note of next release tine
| oop
-- execution part
del ay until Next Rel ease;

© Alan Burns and Andy Wellings, 2001

Next Rel ease : = Next Rel ease + 60.0;

end | oop;
end Tenp_Controller;

Pearl

Provides explicit timing information concerning the start, frequency
and termination of processes
EVERY 10 SEC ACTI VATE T

To activate at a particular point in time (say 12.00 noon each day):
AT 12: 00: 00 ACTI VATE LUNCH

A sporadic task, S, released by an interrupt, | RT, is defined by
VWHEN | RT ACTI VATE S;

or if an initial delay of one second is required:
VWHEN | RT AFTER 1 SEC ACTI VATE S;

A task in Pearl can be activated by a time schedule or an interrupt
but not both:
AFTER 10 M N ALL 60 SEC ACTI VATE TenpControl |l er;

VWHEN start Monitoring ALL 60 SEC ACTI VATE TenpControl | er;

The term ALL 60 SEC means repeat periodically, after the first
execution, every 60 seconds

© Alan Burns and Andy Wellings, 2001

Real-Time Java

m Objects which are to be scheduled must implement the
Schedul abl e interface; objects must also specify their:
— memory requirements via the class Menor yPar anet er s
— scheduling requirements via the class Schedul | ngPar anet er s
— timing requirements via the class Rel easePar anet er s

public abstract class Rel easeParaneters {
prot ect ed Rel easeParaneters(Rel ativeTi ne cost,
Rel ati veTi ne deadli ne, AsyncEvent Handl er overrunHandl er,
AsyncEvent Handl er m ssHandl er);

public RelativeTi ne get Cost();
publ i c AsyncEvent Handl er get Cost OverrunHandl er();

public Rel ativeTi ne getDeadline();
publ i ¢ AsyncEvent Handl er get Deadl i neM ssHandl er();

/'l methods for setting the above

© Alan Burns and Andy Wellings, 2001

Release Parameters

A schedulable object can have a deadline and a cost
assoclated with each time it is released for execution

The cost Is the amount of execution time that a scheduler
should give to the object

If the object is still executing when either its deadline or its
cost expire, the associated event handlers are scheduled

Noted:

— RTJ does not require an implementation to support execution
time monitoring

— RTJ does require an implementation to detect missed deadlines.
— The release events for sporadic and aperiodic threads are
currently not well-defined
A program can indicate that it is not concerned with a
missed deadline by passing a null handler

© Alan Burns and Andy Wellings, 2001

Periodic Parameters

public class Periodi cParanmeters extends Rel easeParaneters
{
publ i c Peri odi cParanet ers(
Hi ghResol uti onTine start,
Rel ati veTi ne peri od,
Rel ati veTi ne cost,
Rel ati veTi ne deadl i ne,
AsyncEvent Handl er overrunHandl er,
AsyncEvent Handl er m ssHandl er);

public RelativeTine getPeriod();

public H ghResol utionTine getStart();

public void setPeriod(RelativeTi ne period),;
public void setStart(H ghResol utionTine start);

© Alan Burns and Andy Wellings, 2001

-~ 0

}

P
{

Aperiodic and Sporadic Release Parameter

ublic class Aperiodi cParaneters extends Rel easeParaneters

publ i ¢ Aperi odi cParaneters(Rel ati veTi ne cost,
Rel ati veTi ne deadli ne, AsyncEvent Handl er overrunHandl er,
AsyncEvent Handl er m ssHandl er) ;

ublic class Sporadi cParanmeters extends Aperiodi cParanmeters

publ i c Sporadi cParaneters(RelativeTine mnlnterarrival,
Rel ati veTi ne cost, RelativeTine deadli ne,
AsyncEvent Handl er overrunHandl er,
AsyncEvent Handl er m ssHandl er) ;

public RelativeTinme getM ni mun nterarrival ();
public void setMninmum nterarrival (Rel ativeTi ne m ni nunm ;

© Alan Burns and Andy Wellings, 2001

Real-Time Threads

public class RealtineThread extends java.l ang. Thread

{

| npl enent s Schedul abl e

public Real ti meThread(Schedul i ngParaneters s, Rel easeParaneters r);

/1 methods for inplenmenting the Schedul able interface
public synchroni zed void addToFeasi bility();

public static RealtinmeThread currentReal ti neThread();

publ i c synchroni zed voi d schedul ePeri odic();

// add the thread to the |ist of schedul abl e objects
publ i c synchroni zed voi d deschedul ePeri odi c();

/'l renmove the thread fromthe |ist of schedul abl e object
/[l when it next issues a waitForNextPeriod

publ i ¢ bool ean wait For Next Period() throws ...;

public synchroni zed void interrupt();
/'l overrides java.lang. Thread.interrupt()

public static void sleep(d ock c, H ghResolutionTine tine)

throws .. .:

© Alan Burns and Andy Wellings, 2001

RT Java: Periodic Thread

public class Periodic extends RealtineThread

{

public Periodic(PriorityParaneters PP,
Peri odi cParaneters P)

b

public void run()

{

whil e(true) {

// code to be run each period

wai t For Next Peri od() ;

PriorityParaneters are a subclass of
Schedul i ngPar anet ers -- see later

© Alan Burns and Andy Wellings, 2001

RT Java: Perlodlc Thr d Cont

Absol uteTine A = new AbsoluteTinme(...);

Peri odi cParaneters P =

new Peri odi cPar anet er s(

A, new Rel ativeTi ne(10, 0),

new Rel ativeT

null, null);

PriorityParaneters PP =

Peri odi ¢ our Thread =

our Thread. start(); //

i me(1,0), new RelativeTine(5,0),

new PriorityParaneters(...);

new Periodic(PP, P); //create thread

rel ease it

© Alan Burns and Andy Wellings, 2001

DP

m Whereas Pearl, RT Euclid and RT Java have associate
temporal scopes with processes, and, therefore,
necessitate the specification of timing constraints on the
process itself, other languages such as DPS provide
local timing facilities that apply at the block level

m In general, a DPS temporal block (scope) may need to
specify three distinct timing requirements (these are
similar to the more global requirements discussed
earlier):

— delay start by a known amount of time;
— complete execution by a known deadline;
— take no longer than a specified time to undertake a computation

© Alan Burns and Andy Wellings, 2001

DPS Coffee Maki ng Example

get _cup

put _coffee I n _cup

boil_mater_ |nstant coffee
put _water in_cup
dri nk _coffee
repl ace_cup

m The act of making a cup of coffee should take no more
than 10 minutes; drinking it is more complicated

m A delay of 3 minutes should ensure that the mouth is
not burnt

m The cup itself should be emptied within 25 minutes (it
would then be cold) or before 17:00 (that is, 5 o'clock
and time to go home)

© Alan Burns and Andy Wellings, 2001

DPS Cotfee Ex ample Contl

m Two temporal scopes are required:

start el apse 10 do
get _cup
put _coffee in_cup
boi | wat er
put _water _In_cup
end

start after 3 elapse 25 by 17:00 do
drink _cof fee
repl ace cup

end

ued

© Alan Burns and Andy Wellings, 2001

DPS Coffee Example Contl nued

m For a temporal scope that is executed repetitively, a

time loop construct is useful:
from<start> to <end> every <peri od>

m For example, many software engineers require regular
coffee throughout the working day:

from9:00 to 16:15 every 45 do
make and drink coffee

© Alan Burns and Andy Wellings, 2001

Esterel

Synchronous Hypot hesi s: Ideal systems produce their
outputs synchronously with their inputs

m Hence all computation and communication is assumed to take

zero time (all temporal scopes are executed instantaneously)
nodul e peri odi c;

| nput tick;
out put result(integer);
var V . integer in

| oop

await 10 ti ck;
-- undertake required conputation to set V
emt result(v);
end
end

m A sporadic module has an identical form

© Alan Burns and Andy Wellings, 2001

Esterel

One consequence of the synchronous hypothesis is that
all actions are atomic

This behaviour significantly reduces nondeterminism

Unfortunately it also leads to potential causality
problems
signal Sin
present S else emt S end
end

This program is incoherent: if S is absent then it is
emitted; on the other hand if it were present it would not
be emitted

A formal definition of the behavioral semantics of Esterel
helps to eliminate these problems

© Alan Burns and Andy Wellings, 2001

Fault Tolerance

A deadline could be missed in a proven’ system if:

m worst-case calculations were inaccurate

m assumptions made in the schedulability checker were
not valid

m the schedulablility checker itself had an error

m the scheduling algorithm could not cope with a load
even though it is theoretically schedulable

m the system is working outside its design parameters

© Alan Burns and Andy Wellings, 2001

Fault Tolerance of Timing Failures

It Is necessary to be able to detect:
— overrun of deadline
— overrun of worst-case execution time
— sporadic events occurring more often than predicted
— timeout on communications

m The last three failures in this list do not necessary
Indicate that deadlines will be missed;:
— an overrun of WCET in one process might be compensated by a
sporadic event occurring less often than the maximum allowed
m Hence, the damage confinement and assessment
phase of providing fault tolerance must determine what
actions to take

m Both forward and backward error recovery is possible

© Alan Burns and Andy Wellings, 2001

Deadllne Overrun Detectlon and FER

m The Ada RTS is unaware of the timing requirements of
its application tasks and has to provide primitive
mechanisms to detect deadline overrun

m This is achieved using the asynchronous transfer of
control facility

m A similar approach can be used to detect a deadline
overrun in a sporadic task

© Alan Burns and Andy Wellings, 2001

task body Periodic T is
Next Rel ease : Ting;
Next Deadline : Tineg;

Rel ease Interval : constant Tine_Span := MIliseconds(...
Deadline : constant Tine_Span := MIIliseconds(...);
begi n

-- read clock and cal cul ate the Next Rel eas and
-- Next Deadli ne

| oop
sel ect
del ay until Next Deadli ne;

-- deadline overrun detected here performrecovery
t hen abort

-- code of application
end sel ect;

delay until Next Rel ease;

Next Rel ease : = Next Rel ease + Rel ease Interval,;
Next Deadl i ne := Next Rel ease + Deadl i ne;
end | oop;

end Periodic T,;

Problem with Ada Approach

It assumes that the recovery strategy requires the task
to stop what it is doing

This is one option but there are other approaches; for
example, allowing the task to continue its execution at a
different priority

For these, a more appropriate response to detecting a
deadline overrun is to raise an asynchronous event

In Real-Time Java, the virtual machine will signal an
asynchronous event when a periodic thread is still
executing when its deadline has passed

Sporadic event handlers, in Real-Time Java, have no
explicit deadline overrun detection; they are assumed to
be soft.

© Alan Burns and Andy Wellings, 2001

Timer POSI X

#defi ne TI MER ABSTI ME ..
struct i1tinerspec {

struct tinespec it _value; /* first tinmer signal */
ubsequent i1 ntervals */

struct tinmespec it _interval; /* s
}s
typedef ... timer_t t;

int tinmer create(clockid t clock id,

timer _t *tinerid),;
Int tiner delete(timer_t timerid);

int tinmer settinme(tinmer_t tinmerid,

struct sigevent

I nt flags,

const struct itinmerspec *val ue,
struct i1tinmerspec *oval ue);

Int timer _gettine(timer_t timerid,
struct i1tinerspec *val ue);

Int timer_getoverrun(timer _t timeri

d);

*evp,

© Alan Burns and Andy Wellings, 2001

Watchdog Timer in POSI X

#i ncl ude <signal . h>
#i ncl ude <tinmer. h>
#i ncl ude <pthread. h>

timer t timer;/* timer shared between nonitor and server*/

struct tinespec deadline = ...;
struct tinespec zero = ...;

struct i1tinmerspec alarmtine, old alarm

struct sigevent s;

voi d server(timer_t *watchdog)

{

/* performrequired service */
TI MER_DELETE(*wat chdog) ;

© Alan Burns and Andy Wellings, 2001

}
A monitor thread checks the progress on a

server thread to ensure it meets its deadline

voi d wat chdog _handl er(int signum siginfo t *data,
void *extra)
{ /* SI GALRM handl er */

/* server is |late */
/* undertake sone recovery */

}

voi d nmonitor()

{
pthread attr t attri butes;

pthread t serve;

sigset _t mask, omask;
struct sigaction sa, o0sa;
I nt | ocal node;

SI GEMPTYSET(&mask) ;
S| GADDSET(&mask, S| GALRM ;

sa.sa _flags = SA SI G NFQ
sa. sa_nmask = nmask;
sa. sa_sigaction = &wat chdog handl er;

SI GACTI ON(SI GALRM &sa, &osa); /* assign handler */

alarmtine.it_value = deadli ne;
alarmtine.it _interval = zero; /* one shot tiner */

s.sigev_notify = SI GEV_SI GNAL;
S.sigev_signo = Sl GALRM

TI MER_CREATE(CLOCK_REALTI ME, &s, &tiner);

TI MER SETTI ME(tinmer, TIMER ABSTIME, &alarmtine,
&ol d _alarm;

PTHREAD_ATTR_I NI T(&attri butes);
PTHREAD CREATE(&serve, &attri butes,
(void *)server, &tiner);

RT Java: Timers

public abstract class Tiner extends AsyncEvent

{

protected Timer(H ghResol utionTinmer tinme, C ock clock,
AsyncEvent Handl er handl er);
publ i c Rel easeParaneters createRel easeParaneters();

public AbsoluteTine getFireTinme();
public void reschedul e(H ghResol utionTinmer tine),;

public O ock getd ock();

public void disable();
public void enabl e();

public void start(); // start the tinmer ticking

© Alan Burns and Andy Wellings, 2001

RT Java Timers Contl nued

public class OneShot Ti ner extends Ti ner

~—

public OneShot Ti mer (H ghResol uti onTi mer tine,
AsyncEvent Handl er handl er);

—

public class PeriodicTinmer extends Tiner
{
public PeriodicTi nmer(H ghResol utionTi ner start,
Rel ati veTine interval, AsyncEvent Handl er handl er);
publ i c Rel easeParaneters createRel easeParaneters();

public void setlinterval (Rel ativeTinme interval);
public RelativeTine getlnterval();

public void fire();
public Absol uteTinme getFireTime();

© Alan Burns and Andy Wellings, 2001

Timing Errorsand DPS

m With local time structures, it is also appropriate to
associate timing errors with exceptions:
start <timng constraints> do
-- Statenents
exception
-- handl ers
end

m |n atime dependent system, it may also be necessary to give
the deadline constraints of the handlers
start el apse 22 do
-- statenents
exception
when el apse _error within 3 do
-- handl er
end

© Alan Burns and Andy Wellings, 2001

Coff EX ample Revisited

from9:00 to 16:15 every 45 do
start elapse 11 do
get _cup; boil _ water
put _coffee_in_cup; put_water_in_cup

exception
when el apse _error within 1 do
turn off _kettle -- for safety

report fault; get new cup
put _orange_ in _cup; put_water _in_cup
end
end

start after 3 el apse 26 do
dri nk
exception
when el apse error within 1 do enpty cup end
end
repl ace _cup

exception
when any_exception do
nul | -- go on to next iteration
end

end

© Alan Burns and Andy Wellings, 2001

Overrun of WCET

The consequences of an error should be restricted to a
well-defined region of the program

A process that consumes more of the CPU resource than
has been anticipated may miss its deadline

If a high-priority process with a fair amount of slack time
overruns its WCET, it may be a lower priority process with
less slack available that misses its deadline

It should be possible to catch the timing error in the process
that caused it; hence it Is necessary to be able to detect
when a process overruns its worst-case execution time

If a process is non pre-emptively scheduled (and does not
block waliting for resources), its CPU execution time is
equal to its elapse time and the same mechanisms that
were used to detect deadline overrun can be used

© Alan Burns and Andy Wellings, 2001

CPU Time Monitoring in POSI X

Uses the clock and timer facilities

Two clocks are defined: CLOCK_PROCESS_CPUTI ME_I D and
CLOCK_THREAD CPUTI ME_| D

These can be used in the same way as CLOCK_REALTI ME

Each process/thread has an associated execution-time
clock; calls to:

clock settime(CLOCK PROCESS CPUTI ME | D,
&some_tinespec_val ue);

cl ock getti nme(CLOCK PROCESS CPUTI ME | D,
&some_tinespec_val ue);

cl ock_getres(CLOCK_PROCESS_CPUTI ME_I D,
&some_tinespec_val ue)
will set/get the execution-time or get the resolution of the
execution time clock associated with the calling process
(similarly for threads)

© Alan Burns and Andy Wellings, 2001

CPU Time Monitoring Continued

m Two functions allow a process/thread to obtain and access
the clock of another process/thread.
I nt clock _getcpuclockid(pid t pid, clockid t *clock id);
I nt pthread getcpucl ockid(pthread t thread id,
clockid t *clock id);
m POSIX timers can be used to create timers which will
generate signals when the execution time has expired

m As the signal generated by the expiry of the timer Is directed
at the process, it is application-dependent which thread will
get the signal if a thread's execution-time timer expires

m As with all execution time monitoring, it is difficult to
guarantee the accuracy of the execution-time clock in the
presence of context switches and interrupts

© Alan Burns and Andy Wellings, 2001

WCET and RT Java

m Real-Time Java allows a cost value to be associated
with the execution of a schedulable object

m If supported by the implementation, this allows an
asynchronous event to be fired if the cost is exceeded

© Alan Burns and Andy Wellings, 2001

Overrun of Sporadic Events

m A sporadic event firing more frequently than anticipated has
an enormous consequence for a system with hard deadlines

m It is necessary either to ensure that this is prohibited or to
detect it when it occurs and take some corrective action

m There are essentially two approaches to prohibiting sporadic
event overrun

— If the event if from a hardware interrupt, the interrupt can be inhibited
from occurring by manipulating the associated device control
registers.

— Another approach is to use sporadic server technology (see later)

m Alternatively, it is necessary to detect when they are
occurring too frequently; most real-time languages and
operating systems are woefully lacking in support for this

© Alan Burns and Andy Wellings, 2001

Timing Errorsand BER

m See book

Summary

m The introduction of the notion of time into real-time
programming languages has been described in terms of four
reguirements
— access to a clock,

— delaying,
— timeouts,
— deadline specification and scheduling.

m |t is useful to introduce the notion of a temporal scope
— deadline for completion of execution
— minimum delay before start of execution
— maximum delay before start of execution
— maximum execution time
— maximum elapse time

m Consideration was given as to how temporal scopes can be
specified in programming languages

© Alan Burns and Andy Wellings, 2001

Summary

The degree of importance of timing requirements is a
useful way of characterising real-time systems

Constraints that must be met are termed hard:; those
that can be missed occasionally, or by a small amount,
are called firm or soft

To be fault tolerant of timing failures, it is necessary to
be able to detect:

— overrun of deadline

— overrun of worst-case execution time

— sporadic events occurring more often than predicted

— timeout on communications.

Following detection, event-based reconfiguration may
need to be undertaken

© Alan Burns and Andy Wellings, 2001

