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Characteristics of a RTS

n Large and complex
n Concurrent control of separate system components
n Facilities to interact with special purpose hardware
n Guaranteed response times
n Extreme reliability
n Efficient implementation
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Real-Time Facilities

n Goal
– To understand the role that time has in the design and

implementation of real-time systems

n Topics
– Notion of time
– Clocks, delays and timeouts
– Specifying timing requirements
– Temporal scopes
– Fault tolerance
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Real-Time Facilities: Requirements

n Interfacing with time
–  accessing clocks so that the passage of time can be measured
– delaying processes until some future time
–  programming timeouts so that the non-occurrence of some

event can be recognized and dealt with

n Representing timing requirements
– specifying rates of execution
– specifying deadlines

n Satisfying timing requirements —  covered later
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The Notion of Time

n Transitivity:

n Linearity:

n Irreflexivity:

n Density:

zxzyyxzyx <⇒<∧<∀ )(:,,

yxxyyxyx =⇒<∨<∀ :,

)(: xxnotx <∀

)(::, yzxzyxyx <<∃⇒<∀



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

Standard Time

Name Description Note

True Solar
Day

Time between two
successive
culminations
(highest point of the
sun)

Varies through the year  15
by 15 minutes (approx)

Temporal Hour One-twelfth part of
the time between
sunrise and sunset

Varies considerably
 through the year

Universal Time
(UT0)

Mean solar time at
Greenwich meridian

Defined in 1884

Second (1) 1/86,400 of a mean
solar day

Second(2) 1/31,566,925.9747
of the tropical year
for 1900

Ephemris Time defined
 in 1955



Maximum difference between
UT2 (which is based on
astrological measurement) and
IAT (which is based upon
atomic measurements) is kept
to below 0.5 seconds

UT 2

correction to UTO because of
polar motion

Name Description Note

UT1

Correction of UT1 because of variation
in the speed of rotation of the earth

Duration of 9_192_631_770 periods
of the radiation corresponding to the
transition between two hyperfine
levels of the ground state of the
Caesium - 133 atom

Seconds(3)

International
Atomic Time
(IAT)

Based upon Caesium
atomic clock

Coordinated
Universial
Time (UTC)

An IAT clock synchronized to
UT2 by the addition of
occasional leap ticks

Accuracy of current Caesium
atomic clocks deemed to be
one part of 10^13
(that is, one clock error per
300,000 years)
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Access to a Clock

n by having direct access to the environment's time frame

n by using an internal hardware clock that gives an
adequate approximation to the passage of time in the
environment
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package Ada.Calendar is
  type Time is private;

Calendar

  subtype Year_Number is Integer range 1901..2099;
  subtype Month_Number is Integer range 1..12;
  subtype Day_Number is Integer range 1..31;
  subtype Day_Duration is Duration range 0.0..86_400.0;

function Clock return Time; 
  function Year(Date:Time) return Year_Number;
  function Month(Date:Time) return Month_Number;
  function Day(Date:Time) return Day_Number;
  function Seconds(Date:Time) return Day_Duration;

procedure Split(Date:in Time; Year:out Year_Number;   
          Month:out Month_Number; Day:out Day_Number;
          Seconds:out Day_Duration);
function Time_Of(Year:Year_Number; Month:Month_Number;
Day:Day_Number; Seconds:Day_Duration := 0.0) return Time;
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  function "+"(Left:Time; Right:Duration) return Time;

  function "+"(Left:Duration; Right:Time) return Time;
  function "-"(Left:Time; Right:Duration) return Time;
  function "-"(Left:Time; Right:Time) return Duration;
  function "<"(Left,Right:Time) return Boolean;
  function "<="(Left,Right:Time) return Boolean;
  function ">"(Left,Right:Time) return Boolean;
  function ">="(Left,Right:Time) return Boolean;

Calendar II

Time_Error:exception;
  -- Time_Error may be raised by Time_Of, 
  -- Split, Year, "+" and "-"

private
  implementation-dependent
end Ada.Calendar;
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Calendar III

n A value of the private type Time is a combination of the
date and the time of day

n The time of day is given in seconds from midnight
n Seconds are described in terms of a subtype
Day_Duration

n Which is, in turn, defined by means of Duration
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Duration

n This fixed point type Duration is one of the predefined
scalar types and has a range which, although
implementation dependent, must be at least -86_400.0
.. +86_400.0

n The value 86_400 is the number of seconds in a day
n The accuracy of Duration is also implementation

dependent but the smallest representable value
Duration'Small must not be greater than 20
milliseconds

n It is recommended in the ARM that it is no greater than
100 microseconds
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Example Use

n The other language clock is provided by the optional package
Real_Time

n This has a similar form to Calendar but is intended to give a
finer granularity

n The value of Tick must be no greater than one millisecond;
the range of Time (from the epoch that represents the
program's start-up) must be at least fifty years

declare
  Old_Time, New_Time : Time;
  Interval : Duration;
begin
  Old_Time := Clock;
  -- other computations
  New_Time := Clock;
  Interval := New_Time - Old_Time;
end;
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Real-Time Clock
package Ada.Real_Time is
  type Time is private;
  Time_First: constant Time;
  Time_Last: constant Time;
  Time_Unit: constant := implementation_defined_real_number;
  type Time_Span is private;
  Time_Span_First: constant Time_Span;
  Time_Span_Last: constant Time_Span;
  Time_Span_Zero: constant Time_Span;
  Time_Span_Unit: constant Time_Span;
  Tick: constant Time_Span;

function Clock return Time;
function "+" (Left: Time; Right: Time_Span) return Time;

function "+" (Left: Time_Span; Right: Time) return Time;
  -- similarly for "-", "<",etc
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function To_Duration(TS: Time_Span) return Duration;

function To_Time_Span(D: Duration) return Time_Span;

Real-Time Clock II

function Nanoseconds (NS: Integer) return Time_Span;

function Microseconds(US: Integer) return Time_Span;

function Milliseconds(MS: Integer) return Time_Span;

type Seconds_Count is range implementation-defined;

procedure Split(T : in Time; SC: out Seconds_Count; 

               TS : out Time_Span);

function Time_Of(SC: Seconds_Count; 

           TS: Time_Span) return Time;

private

  -- not specified by the language

end Ada.Real_Time;
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Metrics

n Time_Unit is the smallest amount of real time
representable by the Time type

n The value of Tick must be no greater than 1
millisecond

n The range of Time (from the epoch that represents the
program's start-up) must be at least 50 years

n Other important features of this time abstraction are
described in the Real-Time Annex
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declare
  use Ada.Real_Time;
  Start, Finish : Time;
  Interval : Time_Span := To_Time_Span(1.7);
begin
  Start := Clock;
  -- sequence of statements
  Finish := Clock;
  if Finish - Start > Interval then
    raise Time_Error; -- a user-defined exception
  end if;

end;

Example: Timing a Sequence
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Clocks in Real-Time Java

n Similar to those in Ada
n java.lang.System.currentTimeMillis returns

the number of milliseconds since 1/1/1970 GMT and is
used by used by java.util.Date

n Real-time Java adds real-time clocks with high
resolution time types
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RT Java Time Types
public abstract class HighResolutionTime implements
       java.lang.Comparable
{
  public abstract AbsoluteTime absolute(Clock clock,
                          AbsoluteTime destination);

  ... 

  public boolean equals(HighResolutionTime time);
                      
  public final long getMilliseconds();
  public final int getNanoseconds();

  public void set(HighResolutionTime time);
  public void set(long millis);
  public void set(long millis, int nanos);
}



public class AbsoluteTime extends HighResolutionTime
{
  // various constructor methods including
  public AbsoluteTime(AbsoluteTime T);
  public AbsoluteTime(long millis, int nanos);

  public AbsoluteTime absolute(Clock clock, AbsoluteTime dest);

  public AbsoluteTime add(long millis, int nanos);
  public final AbsoluteTime add(RelativeTime time);

  ...

  public final RelativeTime subtract(AbsoluteTime time);
  public final AbsoluteTime subtract(RelativeTime time);

}



public class RelativeTime extends HighResolutionTime
{
  // various constructor methods including
  public RelativeTime(long millis, int nanos);
  public RelativeTime(RelativeTime time);

  public AbsoluteTime absolute(Clock clock, 
                               AbsoluteTime destination); 

  public RelativeTime add(long millis, int nanos);
  public final RelativeTime add(RelativeTime time);

  public void addInterarrivalTo(AbsoluteTime destination);

  public final RelativeTime subtract(RelativeTime time);

  ...
}

public class RationalTime extends RelativeTime
{ . . .}
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RT Java: Clock Class

public abstract class Clock
{
  public Clock();

  public static Clock getRealtimeClock();

  public abstract RelativeTime getResolution();

  public AbsoluteTime getTime();
  public abstract void getTime(AbsoluteTime time);

  public abstract void setResolution(RelativeTime resolution);

}
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RT Java: Measuring Time

{
  AbsoluteTime oldTime, newTime;
  RelativeTime interval;
  Clock clock = Clock.getRealtimeClock();

  oldTime = clock.getTime();
  // other computations
  newTime = clock.getTime();

  interval = newTime.subtract(oldTime);

}
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Clocks in C and POSIX

n ANSI C has a standard library for interfacing to
“calendar” time

n This defines a basic time type time_t and several
routines for manipulating objects of type time

n POSIX requires at least one clock of minimum resolution
50 Hz (20ms)
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POSIX Real-Time Clocks
#define CLOCK_REALTIME ...; // clockid_t type

struct timespec {
  time_t tv_sec;   /* number of seconds */
  long   tv_nsec;  /* number of nanoseconds */
};
typedef ... clockid_t;

int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *res);

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);
int clock_getcpuclockid(pthread_t_t thread_id, clockid_t *clock_id);

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
/* nanosleep return -1 if the sleep is interrupted by a */
/* signal. In this case, rmtp has the remaining sleep time */
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Delaying a Process
n In addition to clock access, processes must also be able to

delay their execution either for a relative period of time or
until some time in the future

n Relative delays
Start := Clock; -- from calendar
loop
  exit when (Clock - Start) > 10.0;
end loop;

n To eliminate the need for these busy-waits, most languages
and operating systems provide some form of delay primitive

n In Ada, this is a delay statement
delay 10.0;

n In POSIX: sleep and nanosleep

n Java: sleep; RT Java provides a high resolution sleep
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Delays

Time specified by
program

Granularity
difference
between
clock and
delay

Interrupts
disabled

Process runnable
here but not
executable

Process
executing

Time
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Absolute Delays

-- Ada
START := Clock;
FIRST_ACTION;
delay 10.0 - (Clock - START);
SECOND_ACTION;

n Unfortunately, this might not achieve the desired result
START := Clock;
FIRST_ACTION;
delay until START + 10.0;
SECOND_ACTION;

n As with delay, delay until is accurate only in its
lower bound

n RT Java - sleep can be relative or absolute
n POSIX requires use of  an absolute timer and signals
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Drift

n The time over-run associated with both relative and
absolute delays is called the local drift and it it cannot
be eliminated

n It is possible, however, to eliminate the cumulative drift
that could arise if local drifts were allowed to
superimpose
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Regular Activity

task T;

task body T is
begin
  loop
    Action;
    delay 5.0;
  end loop;
end T;

Cannot delay for less than
5 seconds

local and cumulative drift
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Periodic Activity

task body T is
  Interval : constant Duration := 5.0;
  Next_Time : Time;
begin
  Next_Time := Clock + Interval;
  loop
    Action;
    delay until Next_Time;
    Next_Time := Next_Time + Interval;
  end loop;
end T; Will run on average

every 5 seconds

local drift only
If Action takes 6 seconds, the delay
statement will have no effect
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Control Example

with Ada.Real_Time; use Ada.Real_Time;
with Data_Types; use Data_Types;
with IO; use IO;
with Control_Procedures;
use Control_Procedures;
procedure Controller is

task Temp_Controller;

task Pressure_Controller;
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Control Example II

task body Temp_Controller is
    TR : Temp_Reading; HS : Heater_Setting;
    Next : Time;
    Interval : Time_Span := Milliseconds(30);
  begin
    Next := Clock;  -- start time
    loop
      Read(TR);
      Temp_Convert(TR,HS);
      Write(HS);
      Write(TR);
      Next := Next + Interval;
      delay until Next;
    end loop;
  end Temp_Controller;
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Control Example III
  task body Pressure_Controller is
    PR : Pressure_Reading; PS : Pressure_Setting;
    Next : Time;
    Interval : Time_Span := Milliseconds(70);
  begin
    Next := Clock;  -- start time
    loop
      Read(PR);
      Pressure_Convert(PR,PS);
      Write(PS);
      Write(PR);
      Next := Next + Interval;
      delay until Next;
    end loop;
  end Pressure_Controller;
begin
  null;
end Controller;
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Ada Task States

executing

created

non-existing

finalising

activating completed

non-existing

terminated

waiting child
activation

waiting dependent
termination

delayed

delay

delay interval expires
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Timeouts: Shared Variable Communication

n Timeout can be applied to condition synchronization facilities:
– semaphores, e.g. POSIX
if(sem_timedwait(&call, &timeout) < 0) {
  if ( errno ==  ETIMEDOUT) {
    /* timeout occurred */
  }
  else { /* some other error */ }
} else {
  /* semaphore locked */
};
– conditional critical regions
– condition variables in monitors, mutexes or synchronized methods
– entries in protected object

n POSIX also allows a timeout whilst waiting for a mutex lock
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Message-Passing and Timeouts
task Controller is
  entry Call(T : Temperature);
end Controller;

task body Controller is
  -- declarations, including
  New_Temp : Temperature;
begin
  loop
    accept Call(T : Temperature) do 
       New_Temp := T; 
    end Call;
    -- other actions
  end loop;
end Controller;
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Message-Passing and Timeouts
task Controller is
  entry Call(T : Temperature);
private entry Timeout;
end Controller;
task body Controller is
  task Timer is
    entry Go(D : Duration);
  end timer;
  task body Timer is separate;
  -- other declarations
begin
  loop
    Timer.Go(10.0);
    select
      accept Call(T : Temperature) do 
         New_Temp := T; 
      end Call;
    or
      accept Timeout;
      -- action for timeout
    end select;
    -- other actions
  end loop;
end Controller;

  task body timer is
    DU : Duration;
  begin
    accept Go(D : Duration) do 
       Timeout_Value := d; 
    end Go;
    delay Timeout_Value;
    Controller.Timeout;
  end timer;
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Message-Passing and Timeouts

task Controller is
  entry Call(T : Temperature);
end Controller;

task body Controller is
  -- declarations
begin
  loop
    select
      accept Call(T : Temperature) do
        New_Temp := T;
      end Call;
    or
      delay 10.0;
      -- action for timeout
    end select;
    -- other actions
  end loop;
end Controller;
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Message Passing: Absolute Delays
task Ticket_Agent is
  entry Registration(...);
end Ticket_Agent;

task body Ticket_Agent is
  -- declarations
  Shop_Open : Boolean := True;
begin
  while Shop_Open loop
    select
      accept Registration(...) do
        -- log details
      end Registration;
    or
      delay until Closing_Time;
      Shop_Open := False;
    end select;
    -- process registrations
  end loop;
end Ticket_Agent;

n Within Ada, it make no sense to
mix an else part, a terminate
alternative and delay alternatives

n These three structures are
mutually exclusive; a select
statement can have, at most, only
one of them

n However, the select can have a
number of delays but they must
all be of the same kind (that is,
delays or delay untils).
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Timeout on Message Send
loop
  -- get new temperature T
  Controller.Call(T);
end loop;

loop
  -- get new temperature T
  select
    Controller.Call(T);
  or
    delay 0.5;
    null;
  end select;
end loop;

select
  T.E   -- entry E in task T
else
  -- other actions
end select;

The null is not strictly needed but
shows that again the delay can have
arbitrary statements following,
that are executed if the delay expires
before the entry call is accepted
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Timeouts and Entries

n The above examples have used timeouts on inter-task
communication; it is also possible, within Ada, to do
timed (and conditional) entry call on protected objects

select
  P.E ; -- E is an entry in protected object P
or
  delay 0.5;
end select;
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Timeouts on Actions

select
  delay 0.1;
then abort
  -- action
end select;

n If the  action takes too long, the triggering event will be
taken and the action will be aborted

n This is clearly an effective way of catching run-away
code
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Imprecise Computation: Ada

declare
  Precise_Result : Boolean;
begin
  Completion_Time := ...
  --  compulsory part
  Results.Write(...); -- call to procedure in
                      -- external protected object
  select
    delay until Completion_Time;
    Precise_Result := False;
  then abort
    while Can_Be_Improved loop
      -- improve result
      Results.Write(...);
    end loop;
    Precise_Result := True;
  end select;
end;
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Real-Time Java

n With Real-Time Java, timeouts on actions are provided by  a
subclass of AsynchronouslyInterruptedException
called Timed

public class Timed extends AsynchronouslyInterruptedException
                           implements java.io.Serializable
{
  public Timed(HighResolutionTime time) throws 
               IllegalArgumentException;

  public boolean doInterruptible(Interruptible logic);

  public void resetTime(HighResolutionTime time);
}
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Imprecise Computation: RT Java
public class PreciseResult
{
  public resultType value; // the result
  public boolean preciseResult; // indicates if it is imprecise
}

public class ImpreciseComputation {
  private HighResolutionTime CompletionTime;
  private PreciseResult result = new PreciseResult();

  public ImpreciseComputation(HighResolutionTime T)
  {
    CompletionTime = T; //can be absolute or relative
  }

  private resultType compulsoryPart() 
  { 
    // function which computes the compulsory part
  };



  public PreciseResult Service()  // public service
  {
    Interruptible I = new Interruptible() 
    {
      public void run(AsynchronouslyInterruptedException exception) 
                      throws AsynchronouslyInterruptedException
      {
        // this is the optional function which improves on the
        // compulsory part
        boolean canBeImproved = true;

        while(canBeImproved) 
        {
          // improve result
          synchronized(this) {
            // write result -- 
            // the synchronized statement ensures
            // atomicity of the write operation
          }
        }
        result.preciseResult = true;
      }

      public void interruptAction(
             AsynchronouslyInterruptedException exception) 
      {
        result.preciseResult = false;
      }
    };



    Timed t = new Timed(CompletionTime); 

    result.value = compulsoryPart(); // compute the compulsory part
    if(t.doInterruptible(I)) { 
      // execute the optional part with the timer
      return result;
   } else { ... };
  }
}
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POSIX

n POSIX does not support ATC and, therefore, it is difficult
to get the same effect as Ada and RT Java

n POSIX does support Timers (see later)
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Specifying Timing Requirements

n Work on a more rigorous approach to this aspect of real-
time systems has followed two largely distinct paths:

¶ The use of formally defined language semantics and
timing requirements, together with notations and logics
that enable temporal properties to be represented and
analysed

· A focus on the performance of real-time systems in
terms of the feasibility of scheduling the required work
load on the available resources (processors and so on)
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Timing Verification

n The verification of a real-time system can thus be
interpreted as requiring a two stage process:

Ê verifying requirements —  given an infinitely fast reliable
computer, are the temporal requirements coherent and
consistent, that is, have they the potential to be
satisfied?

Ë verifying the implementation —  with a finite set of
(possible unreliable) hardware resources, can the
temporal requirements be satisfied?
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Temporal Scopes

n deadline —  the time by which the execution of a TS must
be finished;

n minimum delay —  the minimum amount of time that
must elapse before the start of execution of a TS;

n maximum delay —  the maximum amount of time that
can elapse before the start of execution of a TS;

n maximum execution time —  of a TS;
n maximum elapse time —  of a TS.

Temporal scopes with combinations of these attributes are
also possible



Now

Time

Deadline

a

b

c

Minimum delay
Maximum delay

Maximum
elapse time

Units of executionMaximum execution time = a + b +c
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Temporal Scopes

n Can be
– Periodic
– Sporadic
– Aperiodic

n Deadlines can be:
l Hard
l Soft
l Interactive —  performance issue
l Firm
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Specifying Processes and TS

process periodic_P;
  ...
begin
  loop
    IDLE
    start of temporal scope
      ...
    end of temporal scope
  end;
end;
n The time constraints take the form of maximum and/or

minimum times for IDLE and the requirement that the
end of the temporal scope be by some deadline
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Deadline

The deadline can itself be expressed in terms of either

n absolute time
n execution time since the start of the temporal scope, or
n elapsed time since the start of the temporal scope.
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Aperiodic Processes

process aperiodic_P;
  ...
begin
  loop
    wait for interrupt
    start of temporal scope
      ...
    end of temporal scope
  end;
end;
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Language Support for TS

n Ada and C/POSIX
n Real-Time Euclid and Pearl
n Real-Time Java
n DPS
n Esteral
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task body Periodic_T is
  Release_Interval : Duration := ...; -- or
  Release_Interval : Time_Span := Milliseconds(...);
begin
  -- read clock and calculate the next
  -- release time (Next_Release)
  loop
    -- sample data (for example) or
    -- calculate and send a control signal
    delay until Next_Release;
    Next_Release := Next_Release + Release_Interval;
  end loop;
end Periodic_T;

Ada: Periodic Task
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POSIX: Periodic Thread
#include <signal.h>
#include <time.h>
#include <pthread.h>
void periodic_thread() /* destined to be the thread */
{
  int signum;                 /* signal caught */
  sigset_t set;               /* signals to be waited for */
  struct sigevent sig;        /* signal information */
  timer_t periodic_timer;     /* timer for a periodic thread */
  struct itimerspec required, old;  /* timer details */
  struct timespec first, period;    /* start and repetition */
  long Thread_Period = ....   /* actual period in nanoseconds */



  /* set up signal interface */
  sig.sigev_notify = SIGEV_SIGNALS;
  sig.sigev_signo = SIGRTMIN; /* for example */

  /* allow, e.g., 1 sec from now for system initialisation */
  CLOCK_GETTIME(CLOCK_REALTIME, &first);  /* get current time */
  first.tv_sec = first.tv_sec + 1;     
  period.tv_sec = 0;         /* set repetition value to period*/
  period.tv_nsec = Thread_Period;
  required.it_value = first;  /* initialise timer details */
  required.it_interval = period;

  TIMER_CREATE(CLOCK_REALTIME, &sig, &periodic_timer); 
  SIGEMPTYSET(&set);         /* initialise signal set to null */
  SIGADDSET(&set, SIGRTMIN);  /* only allow timer interrupts*/
  TIMER_SETTIME(periodic_timer, 0, &required, &old);



  /* enter periodic loop */
  while(1) {
    SIGWAIT(&set, &signum);
    /* code to be executed each period here */
  }      
}

int init() 
{
  pthread_attr_t attributes;      /* thread attributes */
  pthread_t PT;                   /* thread pointer */

  PTHREAD_ATTR_INIT(&attributes); /* default attributes */
  PTHREAD_CREATE(&PT, &attributes, 
                 (void *) periodic_thread, (void *)0);
}
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Ada: Sporadic Task

n A sporadic task that is triggered by an interrupt would
contain no explicit time information but would, typically,
use a protected object to handle the interrupt and
release the task for execution

protected Sporadic_Controller is
  procedure Interrupt; -- mapped onto interrupt
  entry Wait_For_Next_Interrupt;
private
  Call_Outstanding : boolean := false;
end Sporadic_Controller;



protected Sporadic_Controller is
  procedure Interrupt is
  begin
    Call_Outstanding := True;
  end Interrupt;
  entry Wait_For_Next_Interrupt
    when Call_Outstanding is
  begin
    Call_Outstanding := False;
  end Wait_For_Next_Interrupt;
end Sporadic_Controller;

task body Sporadic_T is
begin
  loop
    Sporadic_Controller.Wait_For_Next_Interrupt;
    -- action
  end loop;
end Sporadic_T;
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Real-Time Euclid

1. periodic frameInfo first activation timeOrEvent

2. atEvent conditionId frameInfo

n The clause frameInfo defines the periodicity of the
process (including the maximum rate for sporadic
processes).

n The simplest form this can take is an expression in real-
time units:

frame realTimeExpn

n The value of these units is set at the beginning of the
program



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

Periodic Process

n A periodic process can be activated for the first time by
–  having a start time defined
–  waiting for an interrupt to occur
– waiting for either of above

n The syntax for timeOrEvent must, therefore, be one of
the following

atTime realTimeExpn
atEvent conditionId
atTime realTimeExpn or atEvent conditionId

n conditionId is a condition variable associated with an
interrupt; it is also used with sporadic processes
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RT Euclid: Example

n A cyclic temperature controller with periodicity 60 units (every
minute if the time unit is set to 1 second) which become active
after 600 units or when a startMonitoring interrupt arrives
realTimeUnit := 1.0  % time unit = 1 seconds

var Reactor: module  % Euclid is module based
var startMonitoring : activation condition atLocation 16#A10D
% This defines a condition variable which is
% mapped onto an interrupt

  process TempController : periodic
     frame 60 first activation
     atTime 600 or atEvent startMonitoring
  % import list
  %
  % execution part
  %
  end TempController
end Reactor 

Note: no loop; scheduler
controls the activation
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Ada Equivalent

task body Temp_Controller is
  -- definitions, including
  Next_Release : Duration;
begin
  select
    accept Start_Monitoring; 
      -- or a timed entry call
      -- onto a protected object
  or
    delay 600.0;
  end select;
  Next_Release := Clock + 60.0;
     -- take note of next release time
  loop
    -- execution part
    delay until Next_Release;
    Next_Release := Next_Release + 60.0;
  end loop;
end Temp_Controller;
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Pearl
n Provides explicit timing information concerning the start, frequency

and termination of processes
EVERY 10 SEC ACTIVATE T

n To activate at a particular point in time (say 12.00 noon each day):
AT 12:00:00 ACTIVATE LUNCH

n A sporadic task, S, released by an interrupt, IRT, is defined by
WHEN IRT ACTIVATE S;

n or if an initial delay of one second is required:
WHEN IRT AFTER 1 SEC ACTIVATE S;

n A task in Pearl can be activated by a time schedule or an interrupt
but not both:
AFTER 10 MIN ALL 60 SEC ACTIVATE TempController;

WHEN startMonitoring ALL 60 SEC ACTIVATE TempController;

n The term ALL 60 SEC means repeat periodically, after the first
execution, every 60 seconds
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Real-Time Java

n Objects which are to be scheduled must implement the
Schedulable interface; objects must also specify their:
– memory requirements via the class MemoryParameters
– scheduling requirements via the class SchedulingParameters
– timing requirements via the class ReleaseParameters

public abstract class ReleaseParameters {
  protected ReleaseParameters(RelativeTime cost, 
        RelativeTime deadline, AsyncEventHandler overrunHandler,
        AsyncEventHandler missHandler);

  public RelativeTime getCost(); 
  public AsyncEventHandler getCostOverrunHandler();

  public RelativeTime getDeadline();
  public AsyncEventHandler getDeadlineMissHandler();

  // methods for setting the above
}
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Release Parameters

n A schedulable object can have a deadline and a cost
associated with each time it is released for execution

n The cost is the amount of execution time that a scheduler
should give to the object

n If the object is still executing when either its deadline or its
cost expire, the  associated event handlers are scheduled

n Noted:
–  RTJ  does not require an implementation to support execution

time monitoring
– RTJ does require an implementation to detect missed deadlines.
– The release events for sporadic and aperiodic threads are

currently not well-defined

n A program can indicate that it is not concerned with a
missed deadline by passing a null handler
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public class PeriodicParameters extends ReleaseParameters
{
  public PeriodicParameters(
         HighResolutionTime start,
         RelativeTime period, 
         RelativeTime cost,
         RelativeTime deadline, 
         AsyncEventHandler overrunHandler,
         AsyncEventHandler missHandler);

  public RelativeTime getPeriod();
  public HighResolutionTime getStart();
  public void setPeriod(RelativeTime period);
  public void setStart(HighResolutionTime start);
}

Periodic Parameters
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Aperiodic and Sporadic Release Parameters

public class AperiodicParameters extends ReleaseParameters
{
  public AperiodicParameters(RelativeTime cost,
         RelativeTime deadline, AsyncEventHandler overrunHandler,
         AsyncEventHandler missHandler);
}

public class SporadicParameters extends AperiodicParameters
{
  public SporadicParameters(RelativeTime minInterarrival, 
         RelativeTime cost, RelativeTime deadline,
         AsyncEventHandler overrunHandler, 
         AsyncEventHandler missHandler);

  public RelativeTime getMinimumInterarrival();
  public void setMinimumInterarrival(RelativeTime minimum);
}



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

Real-Time Threads

public class RealtimeThread extends java.lang.Thread
       implements Schedulable
{
  public RealtimeThread(SchedulingParameters s, ReleaseParameters r);
  . . .

  // methods for implementing the Schedulable interface
  public synchronized void addToFeasibility();
  . . .

  public static RealtimeThread currentRealtimeThread();

  public synchronized void schedulePeriodic();
  // add the thread to the list of schedulable objects
  public synchronized void deschedulePeriodic();
  // remove the thread from the list of schedulable object
  // when it next issues a waitForNextPeriod
  public boolean waitForNextPeriod() throws ...;

  public synchronized void interrupt();
  // overrides java.lang.Thread.interrupt()

  public static void sleep(Clock c, HighResolutionTime time) throws ...;
}
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RT Java: Periodic Thread

public class Periodic extends RealtimeThread
{
  public Periodic( PriorityParameters PP,
                   PeriodicParameters P)
  { ... };

  public void run()
  {
    while(true) {
      // code to be run each period
      ...
      waitForNextPeriod();
    }
  }
}

PriorityParameters are a subclass of
SchedulingParameters -- see later
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RT Java: Periodic Thread Cont.

{
  AbsoluteTime A = new AbsoluteTime(...);
  PeriodicParameters P = new PeriodicParameters(
          A, new RelativeTime(10,0),
          new RelativeTime(1,0), new RelativeTime(5,0),
          null,  null );

  PriorityParameters PP = new PriorityParameters(...);

  Periodic ourThread = new Periodic(PP, P); //create thread

  ourThread.start(); // release it

}
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DPS

n Whereas Pearl, RT Euclid and RT Java have associate
temporal scopes with processes, and, therefore,
necessitate the specification of timing constraints on the
process itself, other languages such as DPS provide
local timing facilities that apply at the block level

n In general, a DPS temporal block (scope) may need to
specify three distinct timing requirements (these are
similar to the more global requirements discussed
earlier):
– delay start by a known amount of time;
– complete execution by a known deadline;
– take no longer than a specified time to undertake a computation
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DPS: Coffee Making Example
get_cup
put_coffee_in_cup
boil_water
put_water_in_cup
drink_coffee
replace_cup

Instant coffee

n The act of making a cup of coffee should take no more
than 10 minutes; drinking it is more complicated

n A delay of 3 minutes should ensure that the mouth is
not burnt

n The cup itself should be emptied within 25 minutes (it
would then be cold) or before 17:00 (that is, 5 o'clock
and time to go home)
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DPS: Coffee Example Continued

n Two temporal scopes are required:

start elapse 10 do
  get_cup
  put_coffee_in_cup
  boil_water
  put_water_in_cup
end

start after 3 elapse 25 by 17:00 do
  drink_coffee
  replace_cup
end
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DPS: Coffee Example Continued

n For a temporal scope that is executed repetitively, a
time loop construct is useful:
from <start> to <end> every <period>

n For example, many software engineers require regular
coffee throughout the working day:

from 9:00 to 16:15 every 45 do
  make_and_drink_coffee



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

Esterel

Synchronous Hypothesis: Ideal systems produce their
outputs synchronously with their inputs

n Hence all computation and communication is assumed to take
zero time (all temporal scopes are executed instantaneously)
module periodic;
input tick;
output result(integer);
var V : integer in
  loop
    await 10 tick;
    -- undertake required computation to set V
    emit result(v);
  end
end

n A sporadic module has an identical form
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Esterel

n One consequence of the synchronous hypothesis is that
all actions are atomic

n This behaviour significantly reduces nondeterminism
n Unfortunately it also leads to potential causality

problems
signal S in
  present S else emit S end
end

n This program is incoherent: if S is absent then it is
emitted; on the other hand if it were present it would not
be emitted

n A formal definition of the behavioral semantics of Esterel
helps to eliminate these problems
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Fault Tolerance

A deadline could be missed in a `proven’ system if:

n worst-case calculations were inaccurate
n assumptions made in the schedulability checker were

not valid
n the schedulability checker itself had an error
n the scheduling algorithm could not cope with a load

even though it is theoretically schedulable
n the system is working outside its design parameters
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Fault Tolerance of Timing Failures

It is necessary to be able to detect:
– overrun of deadline
– overrun of worst-case execution time
– sporadic events occurring more often than predicted
– timeout on communications

n The last three failures in this list do not necessary
indicate that deadlines will be missed;:
– an overrun of WCET in one process might be compensated by a

sporadic event occurring less often than the maximum allowed

n Hence, the damage confinement and assessment
phase of providing fault tolerance must determine what
actions to take

n Both forward and backward error recovery is possible
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Deadline Overrun Detection and FER

n The Ada RTS is unaware of the timing requirements of
its application tasks and has to provide primitive
mechanisms to detect deadline overrun

n This is achieved using the asynchronous transfer of
control facility

n A similar approach can be used to detect a deadline
overrun in a sporadic task



task body Periodic_T is
  Next_Release : Time;
  Next_Deadline : Time;
  Release_Interval : constant Time_Span := Milliseconds(...);
  Deadline : constant Time_Span := Milliseconds(...);
begin
  -- read clock and calculate the Next_Releas and
  -- Next_Deadline
  loop
    select
      delay until Next_Deadline;
      -- deadline overrun detected here perform recovery
    then abort
      -- code of application
    end select;
    delay until Next_Release;
    Next_Release := Next_Release + Release_Interval;
    Next_Deadline := Next_Release + Deadline;
  end loop;
end Periodic_T;
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Problem with Ada Approach

n It assumes  that the recovery strategy requires the task
to stop what it is doing

n This is one option but there are other approaches; for
example, allowing the task to continue its execution at a
different priority

n For these, a more appropriate response to detecting a
deadline overrun is to raise an asynchronous event

n In Real-Time Java, the virtual machine will signal an
asynchronous event when a periodic thread is still
executing when its deadline has passed

n Sporadic event handlers, in Real-Time Java, have no
explicit deadline overrun detection; they are assumed to
be soft.
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Timers in POSIX
#define TIMER_ABSTIME ..
struct itimerspec {
  struct timespec it_value; /* first timer signal */
  struct timespec it_interval; /* subsequent intervals */
};
typedef ... timer_t_t;
int timer_create(clockid_t clock_id, struct sigevent *evp,
                 timer_t *timerid);
int timer_delete(timer_t timerid);

int timer_settime(timer_t timerid, int flags, 
                  const struct itimerspec *value,
                  struct itimerspec *ovalue);
int timer_gettime(timer_t timerid,
  struct itimerspec *value);
int timer_getoverrun(timer_t timerid);
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Watchdog Timer in POSIX
#include <signal.h>
#include <timer.h>
#include <pthread.h>

timer_t timer;/* timer shared between monitor and server*/

struct timespec deadline = ...;
struct timespec zero = ...;

struct itimerspec alarm_time, old_alarm;

struct sigevent s; 

void server(timer_t *watchdog) 
{
  /* perform required service */
  TIMER_DELETE(*watchdog);
}

A monitor thread checks the progress on a
server thread to ensure it meets its deadline



void watchdog_handler(int signum, siginfo_t *data, 
                      void *extra)
{ /* SIGALRM handler */

  /* server is late */
  /* undertake some recovery */
}

void monitor()
{
  pthread_attr_t attributes;
  pthread_t serve;

  sigset_t mask, omask;
  struct sigaction sa, osa;
  int local_mode;

  SIGEMPTYSET(&mask);
  SIGADDSET(&mask, SIGALRM);

  sa.sa_flags = SA_SIGINFO;
  sa.sa_mask = mask;
  sa.sa_sigaction = &watchdog_handler;

  SIGACTION(SIGALRM, &sa, &osa); /* assign handler */



  alarm_time.it_value = deadline;
  alarm_time.it_interval = zero; /* one shot timer */

  s.sigev_notify = SIGEV_SIGNAL;
  s.sigev_signo = SIGALRM;

  TIMER_CREATE(CLOCK_REALTIME, &s, &timer);

  TIMER_SETTIME(timer, TIMER_ABSTIME, &alarm_time, 
                &old_alarm);

  PTHREAD_ATTR_INIT(&attributes);
  PTHREAD_CREATE(&serve, &attributes, 
                (void *)server, &timer);
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RT Java: Timers

public abstract class Timer extends AsyncEvent
{
  protected Timer(HighResolutionTimer time, Clock clock,
                  AsyncEventHandler handler);
  public ReleaseParameters createReleaseParameters();

  public AbsoluteTime getFireTime();
  public void reschedule(HighResolutionTimer time);
  public Clock getClock();

  public void disable();
  public void enable();

  public void start(); // start the timer ticking
}
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RT Java Timers Continued

public class OneShotTimer extends Timer
{
  public OneShotTimer(HighResolutionTimer time,
                      AsyncEventHandler handler);
}
public class PeriodicTimer extends Timer
{
  public PeriodicTimer(HighResolutionTimer start,
         RelativeTime interval, AsyncEventHandler handler);
  public ReleaseParameters createReleaseParameters();

  public void setInterval(RelativeTime interval);
  public RelativeTime getInterval();

  public void fire();
  public AbsoluteTime getFireTime();
}
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Timing Errors and DPS
n With local time structures, it is also appropriate to

associate timing errors with exceptions:
start <timing constraints> do
  -- statements
exception
  -- handlers
end

n In a time dependent system, it may also be necessary to give
the deadline constraints of the handlers
start elapse 22 do
  -- statements
exception
  when elapse_error within 3 do
    -- handler
end
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Coffee Example Revisited
from 9:00 to 16:15 every 45 do
  start elapse 11 do
    get_cup; boil_water
    put_coffee_in_cup; put_water_in_cup
  exception
    when elapse_error within 1 do
      turn_off_kettle  -- for safety
      report_fault; get_new_cup
      put_orange_in_cup; put_water_in_cup
    end
  end
  start after 3 elapse 26 do
    drink
  exception
    when elapse_error within 1 do empty_cup end
  end
  replace_cup
exception
  when any_exception do
    null   -- go on to next iteration
  end
end
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Overrun of WCET

n The consequences of an error should be restricted to a
well-defined region of the program

n A process that consumes more of the CPU resource than
has been anticipated may miss its deadline

n If a high-priority process with a fair amount of slack time
overruns its WCET, it may be a lower priority process with
less slack available that misses its deadline

n It should be possible to catch the timing error in the process
that caused it; hence it is necessary to be able to detect
when a process overruns its worst-case execution time

n If a process is non pre-emptively scheduled (and does not
block waiting for resources), its CPU execution time is
equal to its elapse time and the same mechanisms that
were used to detect deadline overrun can be used



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

CPU Time Monitoring in POSIX

n Uses the clock and timer facilities
n Two clocks are defined: CLOCK_PROCESS_CPUTIME_ID and

CLOCK_THREAD_CPUTIME_ID

n These can be used in the same way as CLOCK_REALTIME
n Each process/thread has an associated execution-time

clock; calls to:
clock_settime(CLOCK_PROCESS_CPUTIME_ID,
&some_timespec_value);

clock_gettime(CLOCK_PROCESS_CPUTIME_ID,
&some_timespec_value);

clock_getres(CLOCK_PROCESS_CPUTIME_ID,
&some_timespec_value)

n will set/get the execution-time or get the resolution of the
execution time clock associated with  the calling process
(similarly for threads)
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CPU Time Monitoring Continued

n Two functions allow a process/thread to  obtain and access
the clock of another process/thread.

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);
int pthread_getcpuclockid(pthread_t thread_id,
                          clockid_t *clock_id);

n POSIX timers  can be used to create timers which will
generate signals when the execution time has expired

n As the signal generated by the expiry of the timer  is directed
at the process, it is application-dependent  which thread will
get the signal if a thread's execution-time timer expires

n As with all execution time monitoring, it is difficult to
guarantee the accuracy of the execution-time clock in the
presence of context switches and interrupts
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WCET and RT Java

n Real-Time Java allows a cost value to be associated
with the execution of a schedulable object

n If supported by the implementation, this  allows an
asynchronous event to be fired if the cost is exceeded
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Overrun of Sporadic Events

n A sporadic event firing more frequently than anticipated has
an enormous consequence for a system with hard deadlines

n It is necessary either to ensure that this is prohibited or to
detect it when it occurs and take some corrective action

n There are essentially two approaches to prohibiting sporadic
event overrun
– If the event if from a hardware interrupt, the interrupt can be inhibited

from occurring by manipulating the associated device control
registers.

– Another approach is to use sporadic server  technology (see later)

n Alternatively, it is necessary to detect when they are
occurring too frequently; most real-time languages and
operating systems are woefully lacking in support for this
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Timing Errors and BER

n see book
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Summary

n The introduction of the notion of time into real-time
programming languages has been described in terms of four
requirements
– access to a clock,
– delaying,
– timeouts,
– deadline specification and scheduling.

n It is useful to introduce the notion of a temporal scope
– deadline for completion of execution
– minimum delay before start of execution
– maximum delay before start of execution
– maximum execution time
– maximum elapse time

n Consideration was given as to how temporal scopes can be
specified in programming languages
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Summary

n The degree of importance of timing requirements is a
useful way of characterising real-time systems

n Constraints that must be met are termed hard; those
that can be missed occasionally, or by a small amount,
are called firm or soft

n To be fault tolerant of timing failures, it is necessary to
be able to detect:
– overrun of deadline
– overrun of worst-case execution time
– sporadic events occurring more often than predicted
– timeout on communications.

n Following detection, event-based reconfiguration may
need to be undertaken


