Characteristicsof a RTS

Large and complex

Concurrent control of separate system components
Facilities to interact with special purpose hardware
Guaranteed response times

Extreme reliability

Efficient implementation

© Alan Burnsand Andy Wellings, 2001

L ow-level Programming

Review hardware 1/0O mechanisms

Look at language requirements and various models of
device driving

Consider the Modula-1, Ada, Real-Time Java and C
models of device driving

Memory Management

Aim:
— to show how the various models of processes and their

communication and synchronisation mechanisms can be
extended to allow devices to be modelled and controlled

— to consider efficient real-time memory management

© Alan Burnsand Andy Wellings, 2001

Haradware | nput/Output Mechanisms

m Two general classes of computer architecture:

4
Memory
7'y
Address

Address

Separ ate Buses for Devices anid Mémaory

Memory Mapped Architecture

~ ETT

Address

evice | nterface

D

m The interface to a device is normally through a set of registers

m Separate buses: two sets of assembly instructions — one for
memory access the other for device register access

m The latter normally take the form of:

IN AC, PORT

QUT AC, PORT

m E.g., the Intel 486 and Pentium range

m Memory-mapped I/O: certain addresses access memory others
the device registers; e.g., M68000 and PowerPC ranges

m The interface Is used to control the device’s operations and to

© Alan Burnsand Andy Wellings, 2001

control the data transfer
m Two control mechanisms: status driven and interrupt driven

control

Status Driven

m A program performs explicit tests in order to determine
the status of a given device

m Three kinds of hardware instructions:

— test operations that enable the program to determine the status
of the given device

— control operations that direct the device to perform non-transfer
device dependent actions such as positioning read heads

— 1/O operations that perform the actual transfer of data between
the device and the CPU
m Nowadays most devices are interrupt driven. Interrupts
can of course be turned off and polling of device status
used instead.

m Interrupts are often no allowed in Safety Ciritical
Systems

© Alan Burnsand Andy Wellings, 2001

|nterrupt Driven

m Interrupt-driven program-controlled
m Interrupt-driven program-initiated (DMA)
m Interrupt-driven channel-program controlled

DMA and channel programs can cause cycle stealing from the
processor; this may make it difficult to estimate the worst-case
execution time of a process

© Alan Burnsand Andy Wellings, 2001

Elements Needed for Interrupt Driven Devices

1 Context switching mechanisms

— Preserving the state (PC, registers, program status info -
priority, memory protection etc.) of the processor immediately
prior to the occurrence of the interrupt.

— Placing the processor in the required state for processing the
interrupt.

— Restoring the suspended process state after the interrupt
processing has been completed.

— basic: just the PC is saved,;
— partial: PC and the PSW are saved,
— complete: full context is saved.

m |t may be necessary to supplement the actions of the
hardware by explicit software support

© Alan Burnsand Andy Wellings, 2001

Elements Needed

2 Interrupting device identification
— A vectored mechanism consists of a set of dedicated, contiguous
memory locations (an interrupt vector) and a hardware mapping of
device addresses onto the interrupt vector
— With a status mechanism, each interrupt has an associated status
word which specifies the device causing the interrupt and the reason

for the interrupt
— The polling device identification mechanism involves interrogating the

status of each device
m With some modern computer architectures, interrupt handling
IS directly associated with a high-level language primitive

m With these systems, an interrupt is often viewed as a
synchronisation message down an associated channel; the
device is identified by the channel which becomes active

Elements Needed

3 Interrupt identification
— Once the device has been identified, the appropriate interrupt
handling routine must determine why it generated the interrupt
— This can be supplied by either status information provided by
the device or by having different interrupts from the same device
occurring through different vectored locations or channels

© Alan Burnsand Andy Wellings, 2001

Elements Needed

4 Interrupt control
m Once a device is switched on its interrupts must be

enabled. Enabling/disabling of interrupts may be

performed by:
— Status mechanisms provide flags to enable/disable interrupts
— Mask interrupt control mechanisms associate device interrupts

with particular locations in an interrupt mask word
— Level-interrupt control mechanisms have devices associated
with certain levels;the current level of the processor determines

which devices may or may not interrupt

© Alan Burnsand Andy Wellings, 2001

Elements Needed

5 Priority control

m Some devices have higher urgency than others and, therefore,
a priority facility is often associated with interrupts

m T his mechanism may be static or dynamic and is usually

related to the device interrupt control facility and the priority
levels of the processor

© Alan Burnsand Andy Wellings, 2001

A Simple Example |/O System

m Loosely based on the Motorola 68000 series of
computers; the registers are memory mapped

m Control & status registers contain all the information on
a device’s status, and allow the device’s interrupts to be

enabled / disabled.

bits
15-12 . Errors
11 : Busy
10 - . Unit select

8
7 : Done/ready
6 . Interrupt enable
5-3 . reserved
2-1 : Device function
0) : Device enable

© Alan Burnsand Andy Wellings, 2001

A Simple Example I/O System

Data buffer registers act as buffer registers for temporarily
storing data to be transferred into or out of the machine via
the device

15-8 . Unused

7-0 : Data
A device may have more than one csr and dbr, the exact
number being dependent on the nature of the device.

On an interrupt, the processor stores the PC and the
current program status word (PSW) on the system stack

The new PC and PSW are loaded from an interrupt vector

The first word contains the address of the interrupt service
routine and the second contains the PSW including the
priority at which the interrupt is to be handled

© Alan Burnsand Andy Wellings, 2001

anguage Requ wements

m Modularity & encapsulation facilities

Device interfacing is machine dependent. It is important to
separate the non-portable sections of code from the portable

ones.
In Modula-1, devices are encapsulated in special modules.

In Ada, the package is used.
In Java, classes and packages
In C, it is a file

m An abstract model of device handling
— A device can be viewed as a processor performing a fixed task.

A computer system can be modelled as several parallel
processes which need to communicate and synchronise;
synchronisation is provided by the interrupt

© Alan Burnsand Andy Wellings, 2001

Abstract I\/I odels

m All models require facilities for addressing and
manipulating device registers
— A device register may be represented as a program variable, an
object, or even a communications channel
m A suitable representation of an interrupt:
— procedure call
— sporadic process invocation
— asynchronous notification
— shared-memory based condition synchronisation
— message-based synchronisation

m All except procedure view the handler as executing in
the scope of a process, and therefore require a full
context switch

© Alan Burnsand Andy Wellings, 2001

Abstract Models

C/C++ use a procedural model with variables as device
registers

The Ada model is a hybrid between the procedural model and
the shared memory model; protected procedure calls
represent interrupts and variables are used for device register

RTJ views an interrupt as an asynchronous event which is
scheduled

Modula-1 and RT Euclid used the shared memory model:
Modula-1 maps condition variable to interrupts; RT Euclid
uses semaphores

Occam2 uses a message-based model

© Alan Burnsand Andy Wellings, 2001

Modula-1

m A Pascal-like language with the addition of processes
and modules

m A special type of module, called an interface module,
has the properties of a monitor and is used to control
access to shared resources

m Process interact via signals (condition variable) using
the operators wait, send and awaited

m First language to attempt device driving in a high-level
language

m A device module is a special type of interface module
used to encapsulate the interaction with a device.

m Itis only from within a device module that the facilities
for handling interrupts etc. can be used

© Alan Burnsand Andy Wellings, 2001

ula-1: M dules

<
| S
Q

MODULE nmai n;
TYPE di nensi on = (xpl ane, yplane, zplane);
(dim: dinension);

PROCESS cont r ol
(* absolute position *)

VAR position : integer;

setting : 1nteger; (* relative novenent *)
BEQ N

position : = O; (* rest position *)

LOOP

new setting (dim setting);
position := position + setting;
nove _arm (dim position)
END

END control;
BEQ N

control (xplane);

control (yplane);

control (zpl ane)

END mai n.

Modula-1: Hoare’ s Monitors B

| NTERFACE MODULE resource_control;
DEFI NE al | ocate, deallocate; (* export list *)

VAR busy : BOCLEAN;

free : S| GNAL;
PROCEDURE al | ocat e;
BEG N
| F busy THEN WAI T(free) END;
busy := TRUE;
END;
PROCEDURE deal | ocat e;
BEG N
busy := FALSE;
SEND(free)
END;
BEG N (* initialisation of nodule *)
busy : = FALSE
© Alan Burns and Andy Wellings, 2001

END.

Address ng/I\/I ani pulatl ng Device Reglsters

m Associating a variable with a register is expressed by an octal
address following the name in a declaration.

m E.g. a data buffer reqister for the simple I/O architecture
VAR rdbr[177562B] CHAR

— 177562B is an octal address which is the location of the register in
memory

m Only scalar data types can be mapped onto a device register;
registers which have internal structures are considered to be
of the predefined type bits whose definition is:

type bits = array 0:no_of bits in word OF BOOLEAN,;

m Variables of this type are packed into a single word

© Alan Burnsand Andy Wellings, 2001

Addr Ing/Mani pulatl ng Device Reglsters

m A control and status register at octal address 177560 can

therefore be defined by:
VAR rcsr[177560B] : BITS;

m The following will enable the device and turn interrupts off
rcsr[0] : = TRUE;
rcsr[6] :=Fal se;
m In general these facilities are not powerful enough to
handle all types of register conveniently; consider setting

10-8 . Unit select
m tothevalue 5
rcsr[10] := true;
rcsr 9] = fal se; Clumsy

rcsr 8] true;

© Alan Burnsand Andy Wellings, 2001

Note

On many machines more than one device register can
be mapped to the same physical address; these
registers are often read or write only

Care must be taken when manipulating device registers;
If the CSR was a pair of registers mapped to the same
location, the code will not have the desired affect WHY?

It is advisable to have other variables in a program
which represent device registers; these can be
manipulated in the normal way

When the required register format has been constructed
It may then be assigned to the actual device register

Such variables are often called shadow device registers

© Alan Burnsand Andy Wellings, 2001

|nterrupt Handling in Modula-1

m Based around the concept of an ideal hardware device
with the following properties

— Each device operation is known to produce either no interrupt or
at least one

— After an interrupt has occurred the device status indicates
whether or not another interrupt will occur

— No interrupt arrives unexpectedly
— Each device has a unique interrupt location

m The facilities provided:
— Each device has an associated device module

— Each device module has a hardware priority specified in its
header following the module name

— All code within the module executes at the specified hardware
priority

© Alan Burnsand Andy Wellings, 2001

Modula-1 Facilities

— Each interrupt to be handled within a device module requires a

process called a device process
— When the device process is executing it has sole access to the

module (i.e. it holds the monitor lock)

— A device process is not allowed to call any non-local procedures
and cannot send signals to other device processes; this is to
ensure that device processes will not be inadvertently blocked

— When a device process sends a signal, the receiving process is

not resumed but the signalling process continues (this is to

ensure that the device process is not blocked)
— Wait statements within device processes may only be of rank 1

© Alan Burnsand Andy Wellings, 2001

I\/Iod la-1. I nterrupts

An interrupt is considered to be a form of signal, the device
process, however, instead of issuing a wait request issues a
DOIO request

The address of the vector through which the device interrupts is
specified in the header of the process

Only device processes can contain DOIO statements

DOIO and wait calls lower the processor priority and therefore
release the monitor lock

Only one instance of a device process may be activated

© Alan Burnsand Andy Wellings, 2001

Clock Handler N I\/Iodula—

DEVI CE MODULE rtc[6]; (* hardware priority 6 *)
DEFI NE ti ck;

VAR tick :

S| GNAL;

PROCESS cl ock[100B]; (* interrupt vector address *)
VAR csr[177546B] : BITS;, (*CSR *)

BEQ N
csr[6]
LOOP

= TRUE;, (* enable interrupts *)

DOGC (* wait for interrupts *)
VWH LE AWAI TED(ti ck) DO

SEND(ti ck);
END
END
END;
BEG N
clock; (* create one instance of the clock process *)

END rtc;

© Alan Burnsand Andy Wellings, 2001

Modula-1 and I nterrupt-Driven Devices

m Device control — I/O registers are represented by variables

m Context switching — the interrupt causes an immediate
context switch to the handling process, which waits using the
DOIO

m Interrupt device identification — the address of the interrupt
vector is given with the device process’ header

m Interrupt identification — in general the device status register
should be checked to identify the cause of the interrupt

m Interrupt control — the interrupt control is status driven and
provided by a flag in the device register

m Priority control — the priority of the device is given in the
device module header: all code in the module runs at this
priority

© Alan Burnsand Andy Wellings, 2001

~ An Example Terminal Driver

DEVI CE MODULE Keyboar d[4] ;

DEFI NE r eadch;

CONST si ze=64; (* buffer size *)
VAR KBS[177560B]: BITS; (* keyboard status *)
KBB[177562B] . CHAR; (* keyboard buffer *)

In, out, n : | NTECER;

nfull, nenmpty : SI GNAL;

buf : ARRAY 1:n OF CHAR

© Alan Burnsand Andy Wellings, 2001

PROCEDURE r eadch(VAR ch : CHAR);
BEQ N
|F n = 0 THEN WAI T(nenpty) END;
ch := buf[out];
out := (out MDD size) +1;
DEC(n) ;
SEND(nful |')
END r eadch;

The buffers must be included in the device
modul e because device processes cannot call
non-local procedures

PROCESS keyboar ddri ver[60B];

|F n1 = n THEN WAI T(nfull) END;

BEQ N

LOOP
KBS[6] : = TRUE;
DA G,
KBS[6] : = FALSE;
buf[1n] := KBB;
In := (in MDD size)+1;
I NC(n) ;
SEND(nenpt y)

END

END keyboarddri ver;
BEG N
In :=1; out :=1;
keyboarddri ver;
END t erm nal .

Example in book, has display
handler in same module

Timing Facilites

DEVI CE MODULE har dwar ecl ock[6] ;

DEFI NE ti ck;
VAR tick : SIGNAL;
PROCESS handl er [100B] ;
VAR count | NTEGER;, statusreg[177546B] BI TS;
BEG N
count := 0; statusreg[6] := TRUE;
LOOP
DO O count := (count+l) MOD 50;
| F count = 0 THEN
VWH LE AWAI TED(tick) DO SEND(tick) END
END
END
END handl er;
BEG N

driver
END har dwar ecl ock;

| NTERFACE MODULE Syst enCl ock;
DEFI NE Get Ti me, Set Ti ne;
USE tine, initialise, add, tick;
VAR Ti me(f Day, onesec : ting;

PROCEDURE Set Time(t: tine);
BEG N TimeODay :=t; END SetTi ne;

PROCEDURE Get Ti me(VAR t: tine);

BEGN 1t := TimeO Day END Get Ti ne; | The clock processis
PROCESS cl ock; logically redundant. The
BEEJOg3 device process could
VA T(ti ck): |r_10rement TlmeOfD_ay
addt i me(Ti meCf Day, onesec) directly the_reby saving a
END context switch. However,
BEENB cl ock; Modula-1 forbids a
nittime(Ti ieOiDay, 0. 0, 0): device processto call a
initti me(onesec, 0, 0, 1): non-local procedure.
cl ock;

END Syst en(Cl ock;

Problems with the Modula-1 Approach

m |t does not allow a device process to call a non-local
procedure; therefore you have to include extra functions into a
device module (e.g. bounded buffer in terminal driver), or
Introduce extra processes to wait for a signal sent by a device
process (e.g. clock)

m It only allows a single instance of a device process; this
makes the sharing of code between similar devices difficult;
the problem is compounded by not being able to call non-local
procedures

m Modula-1 was design for memory mapped machines and
consequently it is difficult to use its facilities machines with
special instructions

VAR x AT PORT 46B : | NTEGER

m Itis not possible to define variables that are read/write-only In
Modula-1

© Alan Burnsand Andy Wellings, 2001

|nterrupt Handling and Device Driving in Ada

m A device driver is a subsystem which has responsibility
for controlling access to some external device; it must
manipulate device registers and respond to interrupts

m The device can be modeled as a hardware task

m There are 3 ways in which tasks can communicate and
synchronise:
1. through the rendezvous
2. using protected units
3. via shared variables

© Alan Burnsand Andy Wellings, 2001

pt Handling | |

| nterru

m Ada assumes that shared memory device registers can
be specified using representation specifications

m |In Ada 83 an interrupt was treated as a hardware entry
call, Ada 95 prefers it to be viewed as a hardware

protected procedure call

© Alan Burnsand Andy Wellings, 2001

Ada: Addressing and Manipulati

ng Device Registers

Ada has a comprehensive set of facilities for specifying

the implementation of data types
m These are collectively known as Representation clauses

m A representation clause can be
attribute definition clause: size, alignment, storage space for

tasks, address
enumeration representation clause: internal values for literals

record representation clause: offsets and lengths of components

address (at) clause: Ada 83 - obsolete

© Alan Burnsand Andy Wellings, 2001

Example of Representation C auses

type Error T is (Read Error, Wite Error,
Power Fail, O her);

type Function_T is (Read, Wite, Seek);

type Unit_t is new Integer range 0 .. 7;

type Csr_T is record N

Errors . Error _T,
Busy . Bool ean;
Uni t c Unit _T, Device registers represented
Done . Bool ean; as a user-defined record
| enabl e - Bool ean; structure
Df un . Function_ T,
Denabl e : Bool ean;
end record;

S

© Alan Burnsand Andy Wellings, 2001

Enumeration Clause

m specifies the internal codes for the literals of the
enumeration type

01 - Read
10 - Write
11 - Seek

type Function_T is (Read, Wite, Seek);
for Function T use (Read=>1, Wite=>2, Seek=>3);

© Alan Burnsand Andy Wellings, 2001

Record Representatlon Cl ause

m Specifies the storage representation of records; that is,
the order, position and size of its components

m The bits in the record are numbered from O; the range In
the component clause specifies the number of bits to be
allocated

m There are also size, alignment and bit ordering
attributes

© Alan Burnsand Andy Wellings, 2001

Wrd : constant :=2; --no. of bytes in a word

Bits In Wrd : constant := 16;
for Csr_T use
record
Denable at O0*Wrd range 0..0;
Df un at 0*Wbrd range 1..2;
| enable at O0*Wrd range 6..6;
Done at 0*Wbrd range 7..7;
Uni t at 0*Wbrd range 8 10;
Busy at 0*Wbrd range 11 .. 11;
Errors at 0*Wbrd range 12 .. 15;

end record,
for Csr T Size use Bits I n Wrd,
for Csr _T Alignnent use Wrd;
for Csr T"Bit_Order use Low Order First;

Reglster Deﬂnltlon and Use B

Tcsr © Csr T,

for Tcsr’ Address use

System St orage El enents. To_Address(8#177566#) ;
Tnp : Csr _T;

-- The hardware regi ster can be mani pul at ed:
Tnp : = (Denabl e => True, Dfun => Read,
| enabl e => True, Done => Fal se,
Unit => 4, Errors => None);
Tcsr = Tnp; -- to ensure all bits are set at once

-- To test for errors

| f Tcsr.Error = Read Error then
rai se Di sk _Error;

end i1f;

© Alan Burnsand Andy Wellings, 2001

System

package Systemis
pragma Preel abor at e(System ;

-- storage-rel ated decl arati ons

type Address is inplenentation-defined;
Nul | _Address : constant Address;

Storage Unit : constant := inplenentation-defined,
Wrd Size . constant :=

| npl enent ation-defined * Storage_Unit;
Menory Size . constant := inplenentation-defined,

-- address conpari son

function "<" (Left, R ght : Address) return Bool ean;
-- simlarly for "<=", ">" "="

pragma Convention(lntrinsic, "<");
-- simlarly for all subprograns in this package

© Alan Burnsand Andy Wellings, 2001

System | |

-- ot her system dependent decl arations
type Bit _Oder is (Hgh Oder First, Low Oder First);
Default Bit Order : constant Bit O der;

-- priority-related decl arations

subtype Any Priority is Integer range inplenentation-defined,;
subtype Priority is Any Priority range

Any Priority'First .. inplenentation-defined;
subtype Interrupt Priority is Any Priority range

Priority' Last+1 .. Any Priority'Last;

Default_Priority : constant Priority :=
(Priority'First + Priority'Last)/2;

private
-- not specified by the | anguage
end System

© Alan Burnsand Andy Wellings, 2001

Storage Elements

package System Storage Elenents is

pragma Preel abor at e(System St orage_ El enent s) ;
| S range inpl enent ati on-defi ned,

type Storage O fset
subtype Storage Count is Storage Ofset range
0..Storage O fset' Last;

type Storage El enent is nod inplenentation-defined;
for Storage El enent' Size use Storage Unit;

type Storage Array is array
range <>) of aliased Storage El enent;

(Storage O fset
for Storage Array' Conponent Size use Storage Unit;

-- Address Arithnetic, including:
function "+"(Left : Address; R ght : Storage O fset)
return Address;
Ri ght : Address)

function "+"(Left : Storage O fset;
return Address:
© Alan Burnsand Andy Wellings, 2001

ments | |

g,

Storage El

function "nod"(Left Address; Right : Storage Ofset)
return Storage O fset;

-- Conversion to/fromintegers:

type I nteger Address is inplenentation-defined,
function To_Address(Value : Integer Address) return Address;
function To_Integer(Value : Address) return |Integer Address;

pragma Convention(Intrinsic, "+");
-- ...and so on for all |anguage-defined subprograns

-- declared in this package.
end System St orage El enents;

© Alan Burnsand Andy Wellings, 2001

terrupt Model -

| N

m An interrupt represents a class of events that are detected

by the hardware or systems software
m The occurrence of an interrupt consists of its generation

and its delivery
m The generation of an interrupt is the event in the

underlying hardware or system which makes the interrupt

available to the program
m Delivery is the action which invokes a part of the program

(the interrupt handler) in response to the interrupt
occurrence; in between its generation and its delivery, the

Interrupt is pending
m The latency is the time spent in the pending state

m The handler is invoked once per delivery

errupt Mode! || -

| Nt
When an interrupt is being handled, further interrupts

from the same source are blocked
It is device dependent if a blocked interrupt remains

pending or is lost
Certain interrupts are reserved (e.g. clock interrupt used

to implement the delay statement)
Each non-reserved interrupt has a default handler

O

assigned by the RTS

Each interrupt has an implementation-defined unique
identifier supported by the system (e.g. address of the

Interrupt vector)

| nterrupts and Protected Procedures

m ldentifying an interrupt handler is done by using one of
two pragmas

pragma | nterrupt Handl er (Handl er _Nane) ;

This can appear in the specification of a library level
protected unit and allows the dynamic association of the
named parameterless procedure as an interrupt handler for
one or more interrupts. Objects created from a type

must be library-level.

pragma Attach_Handl er (Handl er Name, Expression);

This can appear in the specification or body of a
library-level protected unit and allows the association

of the named handler with the interrupt identified by

the expression; the handler becomes attached when the
protected object is created. Can raise Program Error.

© Alan Burnsand Andy Wellings, 2001

upt Handlers

Attachment of Interru

package Ada. I nterrupts is
ld I's inplenentation_defined

type Interrupt
--di screte type
S

type Paraneterless Handl er
access protected procedure

function Is _Reserved(Ilnterrupt | nterrupt _1d)
return Bool ean;
function Is Attached (I nterrupt | nterrupt _1d)
return Bool ean;
-- Raises ProgramError if interrupt is reserved

function Current Handler (Interrupt | nterrupt _1d)
return Paraneterl ess Handl er

If interrupt Is reserved

Rai ses Program Error

Attachment of Interrupt Handlers||

procedure Attach_Handl er
(New Handl er : Paraneterl ess Handl er;
Interrupt : Interrupt _Id);

Raises Pr ogr am Er r or if the protected

object associated with New_Handl| er has

not been identified with a pragma

| nt errupt _Handl er, or interrupt is
reserved, or if current handler was statically
attached using the At t ach_Handl| er pragma

© Alan Burnsand Andy Wellings, 2001

~ Attachment of | nterrupt Handlers 111

procedure Exchange Handl er
out Paraneterl ess Handl er
Par anet erl ess_Handl er;

(A d_Handl er
New Handl er
Interrupt : Interrupt |d);

-- Rai ses Program Error as above
procedure Detach_Handl er (I nterrupt | nterrupt _1d);
Rai ses Program Error if interrupt is reserved

| nterrupt _1d)

function Reference(lnterrupt
return Address;

returns an address for use
In a task entry address cl ause

© Alan Burnsand Andy Wellings, 2001

end Ada.lInterrupts

N terrupt Names

package Ada.lnterrupts. Nanmes is
const ant

| npl enent ati on_defi ned;

i npl ement ati on_defined : Interrupt _Id :=

constant Interrupt Id :=

| npl enent ati on_defined :
| npl enent ati on_defi ned;

private
not specified by the | anguage

end Ada. | nterrupts. Nanmes;

© Alan Burnsand Andy Wellings, 2001

A Sl mple Device Drlver ?/4 An ADC

m a 16 bit result reqgister at 8#150000#
m a 16 bit control register at 8#150002#

Bit

0
6

~

8-13
15

Name

A/D Start
Interrupt/Enable/
Disable

Done

Channel
Error

Meaning
Set to 1 to start a conversion

Set to 1 to enable the device
Set to 1 when conversion complete

Required input channel out of 64
Set if device malfunctions

© Alan Burnsand Andy Wellings, 2001

Driver: Package Specification

package Adc Device Driver is
Max Measure :constant := (2**16)-1;

type Channel is range 0 .. 63;
subtype Measurenent is Integer range O .. Max_Measure;
procedure Read (Ch: Channel; M: out Measurenent);

potentially bl ocking
exception;

Conversi on_Error

private
for Channel’ Si ze use 6;

end Adc_Device Driver;

only six bits

© Alan Burnsand Andy Wellings, 2001

Driver: Package Body

W|th Ada. I nterrupts. Names System
wth System Storage El enents;

use Ada. | nterrupts. Nanmes, System
use System Storage El enents;

package body Adc Device Driver is

Bits In Wrd : constant := 16;

Wrd : constant 2; -- 2 bytes in a word
type Flag is (Down, Set);

for Flag use (Down => 0; Set => 1),

type Control Register is

record
Ad_ St art . Fl ag;
| e . Fl ag;
Done . Fl ag;
Ch : Chan;
Error . Fl ag;

end record;

© Alan Burnsand Andy Wellings, 2001

for Control Register use

record
Ad_Start . at 0 range 0 .. O;
| E . at 0 range 6 .. 6;
Done . at O range 7 .. 7,
Ch . at 0 range 8 .. 13;
Error . at 0 range 15 .. 15;

end record;

for Control Register'Size use Bits | n _Wrd,
for Control Register' Alignnent use Wrd;
for Control Register’Bit _Order use Low Order First;

type Data Register is range O .. Max_Measure;
for Data Register'Size use Bits | n Wrd;

Control Reg Addr : constant Address :=

St orage El enents. To_Addr ess(8#150002#) ;
Dat a Reg Addr : constant Address : =

St orage El enents. To_Addr ess(8#150000#) ;
Adc Priority : constant Interrupt Priority := 63;

Control Reg : aliased Control Regi ster;

for Control Reg' Address use Control Reg Addr;
Data Reg : aliased Data Regi ster;

for Data Reg' Address use Data_ Reg Addr;

protected type Interrupt _Interface(

Int Id: Interrupt _Id;

Cr : access Control Register;
Dr : access Data Register) is
entry Read(Chan : Channel; M : out Measurenent);
private
entry Done(Chan : Channel; M : out Measurenent);
procedure Handl er;
pragma Attach _Handl er(Handl er, Int _I1d);
pragma I nterrupt Priority(Adc Priority);
| nterrupt _Cccurred : Bool ean : = Fal se;

Next Request : Bool ean := True;
end Interrupt _Interface;

Adc Interface:Interrupt _Interface(Nanes. Adc_Interrupt,
Control Reg' Access, Data Reg' Access);

protected body Interrupt Interface is
entry Read(Chan : Channel; M : out Measurenent)
when Next Request is
Shadow : Control Regi ster;
begi n
Shadow := (Ad _Start => Set, |E => Set,
Done => Down, Ch => Chan, Error => Down);
Cr.all := Shadow
| nterrupt _Cccurred : = Fal se;
Next Request := Fal se;
requeue Done;
end Read;

procedure Handler is
begi n

| nterrupt Qccurred := True;
end Handl er;

entry Done(Chan : Channel; M : out Measurenent)
when Interrupt OGccurred is
begi n
Next Request := True;
| f Cr.Done = Set and Cr.Error = Down then
M:= Measurenent (Dr.all);
el se
rai se Conversion Error;
end if;
end Done;
end Interrupt _Interface;

procedure Read(Ch : Channel; M : out Measurenent)

begi n
for I tnl1l.. 3 1loop
begi n
Adc Interface. Read(Ch, M;
return;
exception
when Conversion _Error => null;
end;
end | oop;
rai se Conversion Error;
end Read;

end Adc_Device Driver;

| S

Dynamlc Attach ment of H andlers

m To change dynamically the interrupt handler, requires
that the definition be changed:

m Here the pragma now indicates the intention for Handler
to be used as an interrupt handler

protected type Interrupt _Interface (
Cr . access Control Register;

Dr : access Data Register) is

entry Read(Ch : Channel; M : out Measurenent),;
procedure Handl er;
pragma | nterrupt Handl er (Handl er) ;

private
entry Done(Ch : Channel; M: out Measurenent),;
pragma Interrupt Priority(lnterrupt Priority);
-- register declaration etc

end Interrupt _Interface;

s, 2001

Dynamlc Attachment of Handlers |

New Adc Interface : New Interrupt Interface(
Control Reg' Access, Data Reg' Access);

Od . Paraneterless Handler := null;

- - attach new handl er
I f Is_Attached(Nanes. Adc) then
Exchange Handl er (A d, New Adc Interface. Handl er' access,

Nanes. Adc) ;
el se
Attach_Handl er (New Adc I nterface. Handl er' access,
Nanes. Adc) ;
end if;

If Add = null then
Det ach(Nanes. Adc) ;

el se
Attach_Handl er (A d, Nanes. Adc);

e n d | f ; © Alan Burnsand Andy Wellings, 2001
’

Real Tlme Java

m RTJ allows access to memory mapped device registers

via the concept of raw memory
m An implementation is allowed to support a range of
memory types, e.g. DMA, shared memory, |IO_Page

© Alan Burnsand Andy Wellings, 2001

public class RawlVenor yAccess {
prot ect ed RawiVenoryAccess(l ong base, |ong size);
prot ect ed RawiVenor yAccess(Rawvenor yAccess nmenory,
| ong base, |ong size);

public static RawMenoryAccess create(
java. |l ang. Obj ect type, long size)
throws SecurityException, OfsetQut O BoundsExcepti on,

Si zeQut O BoundsExcepti on,
Unsuppor t edPhysi cal Menor yExcept i on;

public static RawMenoryAccess create(
j ava. |l ang. Obj ect type, |l ong base, |ong size)
throws SecurityException, OfsetQut O BoundsExcepti on,

Si zeQut O BoundsExcepti on,
Unsuppor t edPhysi cal Menor yExcepti on;

public byte getByte(long offset)
throws SizeQut O BoundsException, Ofset Qut O BoundsExcepti on;
/[l simlarly for integers, long integers, etc

public void setByte(long offset, byte val ue)
t hrowsSi zeQut Of BoundsExcepti on, O fset Qut O BoundsExcepti on;
/Il simlarly for integers, long integers etc

~ Control and Status Reglster

public class Control AndSt at usRegi st er
{

RawMenor yAccess rawwvenory;

public Control AndSt at usRegi ster (|l ong base, |ong size)
{

rawivenory = RawMenoryAccess. create(l O Page, base, size);

}

public void set Control Wrd(short val ue)

{
rawMenory. set Short (0, val ue);
}

}i

© Alan Burnsand Andy Wellings, 2001

byt e shadow, channel;
final byte start = 01,
final byte enable = 040;
final |ong csrAddress = 015002;
final long csrSize = 2;
Cont r ol AndSt at usRegi ster csr = new
Cont r ol AndSt at usRegi ster(csr Address, csrSize),;

channel = 6;
shadow = (channel << 8) | start | enabl e;
csr. set Cont r ol Wor d(shadow) ;

© Alan Burnsand Andy Wellings, 2001

errupt Handling -

| Nt

m RTJviews an interrupt as an asynchronous event
m The interrupt is equivalent to a call of the f i r e method
m The association between the interrupt and the event is

achieved via the bi ndTo method in the AsyncEvent class

m The parameter is of string type, and this is used in an
Implementation-dependent manner — one approach might be

to pass the address of the interrupt vector
m When the interrupt occurs, the appropriate handler's fire

method is called
m Now, it Is possible to associate the handler with a
schedulable object and give it an appropriate priority and

© Alan Burnsand Andy Wellings, 2001

release parameters

| upt Handllng
AsyncEvent Interrupt = new AsyncEvent();
AsyncEvent Handl er | nterruptHandl er = new
BoundAsyncEvent Handl er (
null, null, null);

pri Parans, releaseParans,

| nt errupt . addHandl er (I nt er rupt Handl er) ;
| nterrupt. bi ndTo(”0177760") ;

© Alan Burnsand Andy Wellings, 2001

Device Drivingin C

m Device registers are addressed by pointer variables which can

be assigned to the memory location of the register
m They are manipulated by low-level bitwise logical operators

m For example, the following procedure assigns n bits starting at

unsi gned i nt n,

position p in register pointed at by reg to x
unsi gned int setbits(unsigned int *regqg,
unsi gned i nt Xx)

unsi gned i nt p,
[* data to be masked in */

{
unsi gned i nt data, nask;

(X & (~(~0 << n))) << (p);
[* mask */
[* clear current bits */

data =

= ~(~0 << n);

mask
*reg & ~(mask << (p));
[* or Iin data */

© Alan Burnsand Andy Wellings, 2001

*reg | = data;

}

Interrupt Handling in C

m With the simple I/O architecture, interrupts handlers are
assigned by placing the address of a parameterless
procedure in the appropriate interrupt vector location

m Once the procedure is executed, any communication
and synchronization with the rest of the program must
be programmed directly

m Although POSIX provides alternative mechanisms
which, in theory, could be used to provide an alternative
model of interrupt handling (for example, associating an
iInterrupt with a condition variable), there is currently no
standard mechanism for attaching user-defined
handlers to interrupts

© Alan Burnsand Andy Wellings, 2001

M emory Management

Embedded RTS often have a limited amount of memory
This is due to: cost, or size, power or weight constraints)

It is necessary to control how this memory is allocated
so that it can be used effectively
Where there is more than one type of memory (with

. .
different access characteristics), it is necessary to
Instruct the compiler to place certain data types at

certain locations (e.g. Ada’s Representation Specs)
The more general issue Is of storage management of

© Alan Burnsand Andy Wellings, 2001

— heap
— stack

Heap M an agement

m For use with allocators (the new operator)

m Key problems:
— how much space is required (requires application knowledge)
— when can allocated space be released

m Returning allocated space
— require the programmer todo it (mal | oc, free, si zeof inC);
error prone

— require the run-time to monitor memory and determine when it
logically can no longer be accessed (the scope rules of Ada and

Real-Time Java allow this)
— require the run-time to monitor memory and release it when it it
IS no longer being used (garbage collection in Java)

© Alan Burnsand Andy Wellings, 2001

Real-Time Perspective

These approaches have an increasing impact on the
ability to analyse the timing properties of the program

In particular, garbage collection may be performed
either when the heap is empty or by an asynchronous
activity (incremental garbage collection)

In either case, running the garbage collector may have a
significant impact on the response time of a time-critical
task

Although there has been much work on real-time
garbage collection and progress continues to be made,
there is still a reluctance to rely on these techniques Iin
time-critical systems

© Alan Burnsand Andy Wellings, 2001

H eap | M anagement N Ada

The heap is represented by one or more storage pools
Each object (access type) has an associated storage pool

The allocator takes its memory from the target pool

The Ada. Unchecked Deal | ocat i on facility returns data
to the pool

An implementation may support
— a single global pool (reclaimed when the program terminates)
— pools defined at different accessibility levels (reclaimed when
associated scope is exited)
Note, all objects accessed directly (not via a pointer) are
placed on the stack, not the heap.

To give more user control over storage management, Ada
defines a package called Syst em St or age_ Pool s

© Alan Burnsand Andy Wellings, 2001

with Ada. Finalization; wth System Storage El enents;
package System Storage Pools is
pragma Preel aborat e(Syst em St or age_Pool s) ;

type Root Storage Pool is abstract new
Ada. Finalization.Limted Controlled wth private;

procedure Allocate(Pool : in out Root Storage Pool;
St orage_Address : out Address;
Size In_Storage Elenents : in System
St orage_ El enents. St orage_Count ;
Alignnment : in System Storage El enents. Storage Count)
| s abstract;
procedure Deal | ocate(Pool : in out Root Storage Pool;
St orage_Address : in Address;
Size In_Storage Elenents : in System
St orage El enents. St orage_Count ;
Alignnent : in System Storage El enents. Storage Count)

| S abstract;

function Storage Size(Pool : Root Storage Pool) return

System St orage El enents. Storage_Count is abstract;
private ...

end System St orage Pool s;

Storage Pools

Programmers can implement their own storage pools by
extending the Root _St or age_Pool type and providing

concrete implementations for the subprogram bodies

To associate an access type with a storage pool, the pool is
declared and then the Storage Pool attribute is used:
My Pool : Some_ Storage Pool Type;

type Ais access Sone_(nj ect;
for A Storage Pool use My Pool;

Calls to new using A will automatically call Al | ocat e; calls

to Ada. Unchecked Deal | ocati on will call Deal | ocat e;
both referring to My _Pool

m Deal | ocat e is called when A goes out of scope
m Note, Ada does not require an implementation to support

garbage COIIeCtiO n © Alan Burnsand Andy Wellings, 2001

H

eap Management in Real Tlme Java

public abstract class MenoryArea {

protected MenoryArea(l ong sizel nBytes);

public void enter(java.l ang. Runnabl e | ogi c);
/| associate this nenory area to the current thread
/[l for the duration of the |logic.run nethod

public static MenoryArea get MenoryArea(java.l ang. Cbj ect object);
/'l get the nmenory area associated wth the object

public | ong nmenoryConsuned();

/'l nunber of bytes consuned in this nenory area
public |l ong nmenoryRenai ni ng() ;

/1 nunber of bytes remaining

public synchroni zed java. |l ang. Qbj ect newl nstance(
java.lang. C ass type)throws ||| egal AccessExcepti on,
| nst anti ati onException, Qut O MenoryError;
/'l allocate an object

public long size(); // the size of the nenory area

© Alan Burnsand Andy Wellings, 2001

| mmortal Memory

m Immortal memory is shared among all threads in an

application

m Objects created in immortal memory are never subject to
garbage collection and are freed only when the program

terminates
class I mortal Menory extends MenoryArea

public final
{
public static Immortal Menory instance();

m Thereis also a class called | nmort al Physi cal Menory

}
which has the same characteristics as immortal memory
but allows objects to be allocated from within a range of

© Alan Burnsand Andy Wellings, 2001

physical addresses

Scoped Memory

A memory area where objects which have a well-defined
lifetime

May be entered explicitly (by the use of the ent er method)
or implicitly by attaching it to a Real t i neThr ead at thread
creation time

Associated with each scoped memory is a reference count
which incremented for every call to ent er and at every
associated thread creation

It Is decremented when the ent er method returns and at
every associated thread exit

When the reference count reaches 0, all objects resident in
the scoped memory have their finalization method executed
and the memory is reclaimed

Scoped memory can be nested by nested calls tg.ent er.,... ...

nsand A

Scoped M emory

publ i c abstract class ScopedMenory extends MenoryArea
{ public ScopedMenory(long size);

public void enter(java.l ang. Runnabl e | ogic);

public 1 nt getMaxi munti ze() ;

publ i c MenoryArea get Quter Scope();

public java.l ang. Object getPortal ();

public void setPortal (java.lang. Cbj ect object);

© Alan Burnsand Andy Wellings, 2001

Scoped Memory

m The ScopedMenory class which has several subclasses

— VTMenor y: allocations may take variable amounts of time

— LTMenory: allocations occur in linear time (related to the size of
the object)

— ScopedPhysi cal Menor y: allowing objects to be allocated at
physical memory locations

m To avoid the possibility of dangling pointers, a set of
access restrictions are placed on the use of the various
memory areas

— Heap objects -- can reference other heap objects and objects in
Immortal memory only (i.e. it cannot access scoped memory)

— Immortal objects -- can reference heap objects and immortal
memory objects only;

— Scoped objects -- can reference heaped objects, immortal objects
and objects in the same scope or an outer SCOPE ONIYe aia surnsand andy weiings 2001

Example

| nport javax.realtine.*,;
public class ThreadCode | nmpl enents Runnabl e

{

private void conputation()
{
final 1nt mn 1*1024;
final 1 nt nax 1*1024;
final LTMenory nyMem = new LTMenory(m n, max),;

nmyMem ent er (new Runnabl e()

{

public void run()

{

/]| code here which requires access
[/ to tenporary menory

o)

} © Alan Burnsand Andy Wellings, 2001

Example

public void run()

{

conmput ati on();

}
}
m The thread can now be created; note, no parameters other
than the memory area and the Runnabl e are given

new Thr eadCode() ;

new Real ti meThr ead(
| mmort al Menory. i nstance(),

Thr eadCode code

Real ti meThread nyThread
null, null, null,

nul | , code);
© Alan Burnsand Andy Wellings, 2001

Stack Management

Embedded programmers also have to be concerned with
stack size

Specifying the stack size of a task/thread requires trivial
support (for example, in Ada it is via the St or age_Si ze
attribute applied to a task; in POSIX it is via pthread
attributes)

Calculating the stack size is more difficult; as tasks enter
blocks and execute procedures their stacks grow

To estimate the maximum extent of this growth requires
knowledge of the execution behaviour of each task

This knowledge is similar to that required to undertake
WCET analysis

WCET and worst-case stack usage bounds can be
obtained from control flow analysis of the task's COAE ... w0

Summary

m To program device drivers in high-level languages requires:

— the ability to pass data and control information to and from the device
— the ablility to handle interrupts

Control and data information is passed via device registers

These are either accessed by special addresses, or via
special machine instructions

Interrupt handling requires context switching, device and
Interrupt identification, interrupt control, and device
prioritisation

The main requirement on a high-level language is that it
provides an abstract model of device handling

Encapsulation facilities are also required so that the non-
portable code of the program can be separated from the
portable par’[© Alan Burns and Andy Wellings, 2001

Summary

There are several ways to model interrupts

In a pure shared-variable model, the driver and the device
communicate using the shared device registers, and the
Interrupt provides condition synchronization

Modula-1, has such a model

— Driver processes are encapsulated in device modules which have
the functionality of monitors

— Device registers are accessed as scalar objects or arrays of bits,
and an interrupt is viewed as a signal on a condition variable

In Ada

— Device registers can be defined as scalars and user defined record
types, with a comprehensive set of facilities for mapping types onto
the underlying hardware.

— Interrupts are viewed as hardware generated procedure calls to a
protected object

© Alan Burnsand Andy Wellings, 2001

Summary

m Real-Time Java supports the access to memory-
mapped 1I/O reqisters through the Rawivenor yC ass;

however, it lacks expressive power for manipulating
device registers

m Interrupts are viewed as asynchronous events.

© Alan Burnsand Andy Wellings, 2001

Summary

m Low-level programming also involves the more general issue
of managing the memory resources of the processor

m Ada
— does not require a garbage collector
— memory can be explicitly deallocated
— the scope rules of the language allow automatic deallocation when
an access types goes out of scope

— user-defined storage pools to be defined which enable programmers
to define their own memory management policies

m Real-Time Java

— recognizes that the memory allocation policy of Java is not
sustainable for real-time systems

— allows memory to be allocated outside of the heap,

— supports the notion of scoped memory which allows automatic
reclamation of memory without garbage collection © At Burns and Aty Wellings, 2001

