
© Alan Burns and Andy Wellings, 2001

Characteristics of a RTS

n Large and complex
n Concurrent control of separate system components
n Facilities to interact with special purpose hardware
n Guaranteed response times
n Extreme reliability
n Efficient implementation

© Alan Burns and Andy Wellings, 2001

Low-level Programming

n Review hardware I/O mechanisms
n Look at language requirements and various models of

device driving
n Consider the Modula-1, Ada, Real-Time Java and C

models of device driving
n Memory Management

n Aim:
– to show how the various models of processes and their

communication and synchronisation mechanisms can be
extended to allow devices to be modelled and controlled

– to consider efficient real-time memory management

© Alan Burns and Andy Wellings, 2001

Hardware Input/Output Mechanisms

n Two general classes of computer architecture:

CPUMemoryMemory DevicesDevices

Data

Address

Data

Address

Separate Buses for Devices and Memory

© Alan Burns and Andy Wellings, 2001

Memory Mapped Architecture

MemoryMemoryCPU DevicesDevices

Data

Address

© Alan Burns and Andy Wellings, 2001

Device Interface

n The interface to a device is normally through a set of registers
n Separate buses: two sets of assembly instructions — one for

memory access the other for device register access
n The latter normally take the form of:
 IN AC, PORT
 OUT AC, PORT
n E.g., the Intel 486 and Pentium range
n Memory-mapped I/O: certain addresses access memory others

the device registers; e.g., M68000 and PowerPC ranges
n The interface is used to control the device’s operations and to

control the data transfer
n Two control mechanisms: status driven and interrupt driven

control

© Alan Burns and Andy Wellings, 2001

Status Driven

n A program performs explicit tests in order to determine
the status of a given device

n Three kinds of hardware instructions:
– test operations that enable the program to determine the status

of the given device
– control operations that direct the device to perform non-transfer

device dependent actions such as positioning read heads
– I/O operations that perform the actual transfer of data between

the device and the CPU

n Nowadays most devices are interrupt driven. Interrupts
can of course be turned off and polling of device status
used instead.

n Interrupts are often no allowed in Safety Critical
Systems

© Alan Burns and Andy Wellings, 2001

Interrupt Driven

n Interrupt-driven program-controlled
n Interrupt-driven program-initiated (DMA)
n Interrupt-driven channel-program controlled

DMA and channel programs can cause cycle stealing from the
processor; this may make it difficult to estimate the worst-case
execution time of a process

© Alan Burns and Andy Wellings, 2001

Elements Needed for Interrupt Driven Devices

1 Context switching mechanisms
– Preserving the state (PC, registers, program status info -

priority, memory protection etc.) of the processor immediately
prior to the occurrence of the interrupt.

– Placing the processor in the required state for processing the
interrupt.

– Restoring the suspended process state after the interrupt
processing has been completed.

– basic: just the PC is saved;
– partial: PC and the PSW are saved;
– complete: full context is saved.

n It may be necessary to supplement the actions of the
hardware by explicit software support

© Alan Burns and Andy Wellings, 2001

Elements Needed

2 Interrupting device identification
– A vectored mechanism consists of a set of dedicated, contiguous

memory locations (an interrupt vector) and a hardware mapping of
device addresses onto the interrupt vector

– With a status mechanism, each interrupt has an associated status
word which specifies the device causing the interrupt and the reason
for the interrupt

– The polling device identification mechanism involves interrogating the
status of each device

n With some modern computer architectures, interrupt handling
is directly associated with a high-level language primitive

n With these systems, an interrupt is often viewed as a
synchronisation message down an associated channel; the
device is identified by the channel which becomes active

© Alan Burns and Andy Wellings, 2001

Elements Needed

3 Interrupt identification
– Once the device has been identified, the appropriate interrupt

handling routine must determine why it generated the interrupt
– This can be supplied by either status information provided by

the device or by having different interrupts from the same device
occurring through different vectored locations or channels

© Alan Burns and Andy Wellings, 2001

Elements Needed

4 Interrupt control
n Once a device is switched on its interrupts must be

enabled. Enabling/disabling of interrupts may be
performed by:
– Status mechanisms provide flags to enable/disable interrupts.
– Mask interrupt control mechanisms associate device interrupts

with particular locations in an interrupt mask word
– Level-interrupt control mechanisms have devices associated

with certain levels;the current level of the processor determines
which devices may or may not interrupt

© Alan Burns and Andy Wellings, 2001

Elements Needed

5 Priority control

n Some devices have higher urgency than others and, therefore,
a priority facility is often associated with interrupts

n This mechanism may be static or dynamic and is usually
related to the device interrupt control facility and the priority
levels of the processor

© Alan Burns and Andy Wellings, 2001

A Simple Example I/O System

n Loosely based on the Motorola 68000 series of
computers; the registers are memory mapped

n Control & status registers contain all the information on
a device’s status, and allow the device’s interrupts to be
enabled / disabled.

bits
15 - 12 : Errors
 11 : Busy
10 - 8 : Unit select
 7 : Done/ready
 6 : Interrupt enable
 5 - 3 : reserved
 2 - 1 : Device function
 0 : Device enable

© Alan Burns and Andy Wellings, 2001

A Simple Example I/O System

n Data buffer registers act as buffer registers for temporarily
storing data to be transferred into or out of the machine via
the device
 15 - 8 : Unused
 7 - 0 : Data

n A device may have more than one csr and dbr, the exact
number being dependent on the nature of the device.

n On an interrupt, the processor stores the PC and the
current program status word (PSW) on the system stack

n The new PC and PSW are loaded from an interrupt vector
n The first word contains the address of the interrupt service

routine and the second contains the PSW including the
priority at which the interrupt is to be handled

© Alan Burns and Andy Wellings, 2001

Language Requirements

n Modularity & encapsulation facilities
– Device interfacing is machine dependent. It is important to

separate the non-portable sections of code from the portable
ones.

– In Modula-1, devices are encapsulated in special modules.
– In Ada, the package is used.
– In Java, classes and packages
– In C, it is a file

n An abstract model of device handling
– A device can be viewed as a processor performing a fixed task.

A computer system can be modelled as several parallel
processes which need to communicate and synchronise;
synchronisation is provided by the interrupt

© Alan Burns and Andy Wellings, 2001

Abstract Models

n All models require facilities for addressing and
manipulating device registers
– A device register may be represented as a program variable, an

object, or even a communications channel

n A suitable representation of an interrupt:
– procedure call
– sporadic process invocation
– asynchronous notification
– shared-memory based condition synchronisation
– message-based synchronisation

n All except procedure view the handler as executing in
the scope of a process, and therefore require a full
context switch

© Alan Burns and Andy Wellings, 2001

Abstract Models

n C/C++ use a procedural model with variables as device
registers

n The Ada model is a hybrid between the procedural model and
the shared memory model; protected procedure calls
represent interrupts and variables are used for device register

n RTJ views an interrupt as an asynchronous event which is
scheduled

n Modula-1 and RT Euclid used the shared memory model:
Modula-1 maps condition variable to interrupts; RT Euclid
uses semaphores

n Occam2 uses a message-based model

© Alan Burns and Andy Wellings, 2001

Modula-1

n A Pascal-like language with the addition of processes
and modules

n A special type of module, called an interface module,
has the properties of a monitor and is used to control
access to shared resources

n Process interact via signals (condition variable) using
the operators wait, send and awaited

n First language to attempt device driving in a high-level
language

n A device module is a special type of interface module
used to encapsulate the interaction with a device.

n It is only from within a device module that the facilities
for handling interrupts etc. can be used

© Alan Burns and Andy Wellings, 2001

Modula-1: Modules
MODULE main;
 TYPE dimension = (xplane, yplane, zplane);
 PROCESS control (dim : dimension);
 VAR position : integer; (* absolute position *)
 setting : integer; (* relative movement *)
 BEGIN
 position := 0; (* rest position *)
 LOOP
 new_setting (dim, setting);
 position := position + setting;
 move_arm (dim, position)
 END
 END control;
BEGIN
 control (xplane);
 control (yplane);
 control (zplane)
END main.

© Alan Burns and Andy Wellings, 2001

Modula-1: Hoare’s Monitors

INTERFACE MODULE resource_control;
 DEFINE allocate, deallocate; (* export list *)
 VAR busy : BOOLEAN;

free : SIGNAL;

 PROCEDURE allocate;
 BEGIN
 IF busy THEN WAIT(free) END;
 busy := TRUE;
 END;

 PROCEDURE deallocate;
 BEGIN
 busy := FALSE;
 SEND(free)
 END;
BEGIN (* initialisation of module *)
 busy := FALSE
END.

© Alan Burns and Andy Wellings, 2001

Addressing/Manipulating Device Registers

n Associating a variable with a register is expressed by an octal
address following the name in a declaration.

n E.g. a data buffer register for the simple I/O architecture
VAR rdbr[177562B] CHAR;

– 177562B is an octal address which is the location of the register in
memory

n Only scalar data types can be mapped onto a device register;
registers which have internal structures are considered to be
of the predefined type bits whose definition is:
type bits = array 0:no_of_bits_in_word OF BOOLEAN;

n Variables of this type are packed into a single word

© Alan Burns and Andy Wellings, 2001

Addressing/Manipulating Device Registers

n A control and status register at octal address 177560 can
therefore be defined by:

VAR rcsr[177560B] : BITS;

n The following will enable the device and turn interrupts off
rcsr[0] := TRUE;
rcsr[6] :=False;

n In general these facilities are not powerful enough to
handle all types of register conveniently; consider setting

10 - 8 : Unit select
n to the value 5

rcsr[10] := true;
rcsr[9] := false;
rcsr[8] := true;

Clumsy

© Alan Burns and Andy Wellings, 2001

Note

n On many machines more than one device register can
be mapped to the same physical address; these
registers are often read or write only

n Care must be taken when manipulating device registers;
If the CSR was a pair of registers mapped to the same
location, the code will not have the desired affect WHY?

n It is advisable to have other variables in a program
which represent device registers; these can be
manipulated in the normal way

n When the required register format has been constructed
it may then be assigned to the actual device register

n Such variables are often called shadow device registers

© Alan Burns and Andy Wellings, 2001

Interrupt Handling in Modula-1

n Based around the concept of an ideal hardware device
with the following properties
– Each device operation is known to produce either no interrupt or

at least one
– After an interrupt has occurred the device status indicates

whether or not another interrupt will occur
– No interrupt arrives unexpectedly
– Each device has a unique interrupt location

n The facilities provided:
– Each device has an associated device module
– Each device module has a hardware priority specified in its

header following the module name
– All code within the module executes at the specified hardware

priority

© Alan Burns and Andy Wellings, 2001

Modula-1 Facilities
– Each interrupt to be handled within a device module requires a

process called a device process
– When the device process is executing it has sole access to the

module (i.e. it holds the monitor lock)
– A device process is not allowed to call any non-local procedures

and cannot send signals to other device processes; this is to
ensure that device processes will not be inadvertently blocked

– When a device process sends a signal, the receiving process is
not resumed but the signalling process continues (this is to
ensure that the device process is not blocked)

– Wait statements within device processes may only be of rank 1

© Alan Burns and Andy Wellings, 2001

Modula-1: Interrupts

– An interrupt is considered to be a form of signal, the device
process, however, instead of issuing a wait request issues a
DOIO request

– The address of the vector through which the device interrupts is
specified in the header of the process

– Only device processes can contain DOIO statements
– DOIO and wait calls lower the processor priority and therefore

release the monitor lock
– Only one instance of a device process may be activated

© Alan Burns and Andy Wellings, 2001

Clock Handler in Modula-1

DEVICE MODULE rtc[6]; (* hardware priority 6 *)

 DEFINE tick;
 VAR tick : SIGNAL;

 PROCESS clock[100B]; (* interrupt vector address *)
 VAR csr[177546B] : BITS; (*CSR *)
 BEGIN
 csr[6] := TRUE; (* enable interrupts *)
 LOOP
 DOIO; (* wait for interrupts *)
 WHILE AWAITED(tick) DO
 SEND(tick);
 END
 END
 END;
BEGIN
 clock; (* create one instance of the clock process *)
END rtc;

© Alan Burns and Andy Wellings, 2001

Modula-1 and Interrupt-Driven Devices

n Device control — I/O registers are represented by variables
n Context switching — the interrupt causes an immediate

context switch to the handling process, which waits using the
DOIO

n Interrupt device identification — the address of the interrupt
vector is given with the device process’ header

n Interrupt identification — in general the device status register
should be checked to identify the cause of the interrupt

n Interrupt control — the interrupt control is status driven and
provided by a flag in the device register

n Priority control — the priority of the device is given in the
device module header; all code in the module runs at this
priority

© Alan Burns and Andy Wellings, 2001

DEVICE MODULE Keyboard[4];

 DEFINE readch;
 CONST size=64; (* buffer size *)
 VAR KBS[177560B]: BITS; (* keyboard status *)
 KBB[177562B]: CHAR; (* keyboard buffer *)
 in, out, n : INTEGER;
 nfull, nempty : SIGNAL;
 buf : ARRAY 1:n OF CHAR;

An Example Terminal Driver

 PROCEDURE readch(VAR ch : CHAR);
 BEGIN
 IF n = 0 THEN WAIT(nempty) END;
 ch := buf[out];
 out := (out MOD size)+1;
 DEC(n);
 SEND(nfull)
 END readch;

The buffers must be included in the device
module because device processes cannot call
non-local procedures

 PROCESS keyboarddriver[60B];
 BEGIN
 LOOP

IF n1 = n THEN WAIT(nfull) END;
KBS[6] := TRUE;
DOIO;
KBS[6] := FALSE;
buf[in] := KBB;
in := (in MOD size)+1;
INC(n);
SEND(nempty)

 END
 END keyboarddriver;
BEGIN

in :=1; out :=1; n :=0;
keyboarddriver;

END terminal.

Example in book, has display
handler in same module

© Alan Burns and Andy Wellings, 2001

Timing Facilites
DEVICE MODULE hardwareclock[6];
 DEFINE tick;
 VAR tick : SIGNAL;

 PROCESS handler[100B];
 VAR count : INTEGER; statusreg[177546B] : BITS;
 BEGIN
 count := 0; statusreg[6] := TRUE;
 LOOP
 DOIO; count := (count+1) MOD 50;
 IF count = 0 THEN
 WHILE AWAITED(tick) DO SEND(tick) END
 END
 END
 END handler;
BEGIN
 driver
END hardwareclock;

INTERFACE MODULE SystemClock;
 DEFINE GetTime, SetTime;
 USE time, initialise, add, tick;
 VAR TimeOfDay, onesec : time;
 PROCEDURE SetTime(t: time);
 BEGIN TimeOfDay := t; END SetTime;
 PROCEDURE GetTime(VAR t: time);
 BEGIN t := TimeOfDay END GetTime;
 PROCESS clock;
 BEGIN
 LOOP
 WAIT(tick);
 addtime(TimeOfDay, onesec)
 END
 END clock;
BEGIN
 inittime(TimeOfDay, 0, 0, 0);
 inittime(onesec, 0, 0, 1);
 clock;
END SystemClock;

The clock process is
logically redundant. The
device process could
increment TimeOfDay
directly thereby saving a
context switch. However,
Modula-1 forbids a
device process to call a
non-local procedure.

© Alan Burns and Andy Wellings, 2001

Problems with the Modula-1 Approach

n It does not allow a device process to call a non-local
procedure; therefore you have to include extra functions into a
device module (e.g. bounded buffer in terminal driver), or
introduce extra processes to wait for a signal sent by a device
process (e.g. clock)

n It only allows a single instance of a device process; this
makes the sharing of code between similar devices difficult;
the problem is compounded by not being able to call non-local
procedures

n Modula-1 was design for memory mapped machines and
consequently it is difficult to use its facilities machines with
special instructions
 VAR x AT PORT 46B : INTEGER;

n It is not possible to define variables that are read/write-only in
Modula-1

© Alan Burns and Andy Wellings, 2001

Interrupt Handling and Device Driving in Ada

n A device driver is a subsystem which has responsibility
for controlling access to some external device; it must
manipulate device registers and respond to interrupts

n The device can be modeled as a hardware task

n There are 3 ways in which tasks can communicate and
synchronise:
1. through the rendezvous
2. using protected units
3. via shared variables

© Alan Burns and Andy Wellings, 2001

Interrupt Handling II

n Ada assumes that shared memory device registers can
be specified using representation specifications

n In Ada 83 an interrupt was treated as a hardware entry
call, Ada 95 prefers it to be viewed as a hardware
protected procedure call

© Alan Burns and Andy Wellings, 2001

Ada: Addressing and Manipulating Device Registers

n Ada has a comprehensive set of facilities for specifying
the implementation of data types

n These are collectively known as Representation clauses
n A representation clause can be

– attribute definition clause: size, alignment, storage space for
tasks, address

– enumeration representation clause: internal values for literals
– record representation clause: offsets and lengths of components
– address (at) clause: Ada 83 - obsolete

© Alan Burns and Andy Wellings, 2001

Example of Representation Clauses

type Error_T is (Read_Error, Write_Error,
 Power_Fail, Other);
type Function_T is (Read, Write, Seek);
type Unit_t is new Integer range 0 .. 7;

type Csr_T is record
 Errors : Error_T;
 Busy : Boolean;
 Unit : Unit_T;
 Done : Boolean;
 Ienable : Boolean;
 Dfun : Function_T;
 Denable : Boolean;
end record;

Device registers represented
as a user-defined record
structure

© Alan Burns and Andy Wellings, 2001

Enumeration Clause

n specifies the internal codes for the literals of the
enumeration type
01 - Read
10 - Write
11 - Seek

type Function_T is (Read, Write, Seek);
for Function_T use (Read=>1,Write=>2,Seek=>3);

© Alan Burns and Andy Wellings, 2001

Record Representation Clause

n Specifies the storage representation of records; that is,
the order, position and size of its components

n The bits in the record are numbered from 0; the range in
the component clause specifies the number of bits to be
allocated

n There are also size, alignment and bit ordering
attributes

Word : constant :=2; --no. of bytes in a word
Bits_In_Word : constant := 16;
for Csr_T use
 record
 Denable at 0*Word range 0..0;
 Dfun at 0*Word range 1..2;
 Ienable at 0*Word range 6..6;
 Done at 0*Word range 7..7;
 Unit at 0*Word range 8 .. 10;
 Busy at 0*Word range 11 .. 11;
 Errors at 0*Word range 12 .. 15;
 end record;
for Csr_T’Size use Bits_In_Word;
for Csr_T’Alignment use Word;
for Csr_T’Bit_Order use Low_Order_First;

© Alan Burns and Andy Wellings, 2001

Register Definition and Use
Tcsr : Csr_T;
for Tcsr’Address use
System.Storage_Elements.To_Address(8#177566#);
Tmp :Csr_T;

-- The hardware register can be manipulated:
Tmp := (Denable => True, Dfun => Read,

 Ienable => True, Done => False,
 Unit => 4, Errors => None);

Tcsr := Tmp; -- to ensure all bits are set at once

-- To test for errors
if Tcsr.Error = Read_Error then
 raise Disk_Error;
end if;

© Alan Burns and Andy Wellings, 2001

package System is
 pragma Preelaborate(System);

System

 -- address comparison
 function "<" (Left, Right : Address) return Boolean;
 -- similarly for "<=”, ">”, "="

 pragma Convention(Intrinsic, "<");
 -- similarly for all subprograms in this package

 -- storage-related declarations
 type Address is implementation-defined;
 Null_Address : constant Address;
 Storage_Unit : constant := implementation-defined;
 Word_Size : constant :=
 implementation-defined * Storage_Unit;
 Memory_Size : constant := implementation-defined;

© Alan Burns and Andy Wellings, 2001

 -- other system-dependent declarations
 type Bit_Order is (High_Order_First, Low_Order_First);
 Default_Bit_Order : constant Bit_Order;

System II

private
 -- not specified by the language
end System;

 -- priority-related declarations
 subtype Any_Priority is Integer range implementation-defined;
 subtype Priority is Any_Priority range
 Any_Priority'First .. implementation-defined;
 subtype Interrupt_Priority is Any_Priority range
 Priority'Last+1 .. Any_Priority'Last;

 Default_Priority : constant Priority :=
 (Priority'First + Priority'Last)/2;

© Alan Burns and Andy Wellings, 2001

package System.Storage_Elements is
 pragma Preelaborate(System.Storage_Elements);

 type Storage_Offset is range implementation-defined;

 subtype Storage_Count is Storage_Offset range
 0..Storage_Offset'Last;

Storage Elements

 -- Address Arithmetic, including:
 function "+"(Left : Address; Right : Storage_Offset)
 return Address;
 function "+"(Left : Storage_Offset; Right : Address)
 return Address;

 type Storage_Element is mod implementation-defined;
 for Storage_Element'Size use Storage_Unit;

 type Storage_Array is array
 (Storage_Offset range <>) of aliased Storage_Element;
 for Storage_Array'Component_Size use Storage_Unit;

© Alan Burns and Andy Wellings, 2001

 -- Conversion to/from integers:
 type Integer_Address is implementation-defined;
 function To_Address(Value : Integer_Address) return Address;
 function To_Integer(Value : Address) return Integer_Address;

Storage Elements II

 function "mod"(Left : Address; Right : Storage_Offset)
 return Storage_Offset;

 pragma Convention(Intrinsic, "+");
 -- ...and so on for all language-defined subprograms
 -- declared in this package.
end System.Storage_Elements;

© Alan Burns and Andy Wellings, 2001

Interrupt Model

n An interrupt represents a class of events that are detected
by the hardware or systems software

n The occurrence of an interrupt consists of its generation
and its delivery

n The generation of an interrupt is the event in the
underlying hardware or system which makes the interrupt
available to the program

n Delivery is the action which invokes a part of the program
(the interrupt handler) in response to the interrupt
occurrence; in between its generation and its delivery, the
interrupt is pending

n The latency is the time spent in the pending state
n The handler is invoked once per delivery

© Alan Burns and Andy Wellings, 2001

Interrupt Model II

n When an interrupt is being handled, further interrupts
from the same source are blocked

n It is device dependent if a blocked interrupt remains
pending or is lost

n Certain interrupts are reserved (e.g. clock interrupt used
to implement the delay statement)

n Each non-reserved interrupt has a default handler
assigned by the RTS

n Each interrupt has an implementation-defined unique
identifier supported by the system (e.g. address of the
interrupt vector)

© Alan Burns and Andy Wellings, 2001

Interrupts and Protected Procedures

n Identifying an interrupt handler is done by using one of
two pragmas

pragma Interrupt_Handler(Handler_Name);
 This can appear in the specification of a library level
 protected unit and allows the dynamic association of the
 named parameterless procedure as an interrupt handler for
 one or more interrupts. Objects created from a type
 must be library-level.

pragma Attach_Handler(Handler_Name, Expression);
 This can appear in the specification or body of a
 library-level protected unit and allows the association
 of the named handler with the interrupt identified by
 the expression; the handler becomes attached when the
 protected object is created. Can raise Program_Error.

© Alan Burns and Andy Wellings, 2001

Attachment of Interrupt Handlers
package Ada.Interrupts is
 type Interrupt_Id is implementation_defined;
 --discrete type
 type Parameterless_Handler is
 access protected procedure;

 function Is_Reserved(Interrupt : Interrupt_Id)
 return Boolean;

 function Is_Attached (Interrupt : Interrupt_Id)
 return Boolean;
 -- Raises Program_Error if interrupt is reserved

 function Current_Handler (Interrupt : Interrupt_Id)
 return Parameterless_Handler;
 -- Raises Program_Error if interrupt is reserved

© Alan Burns and Andy Wellings, 2001

 procedure Attach_Handler
 (New_Handler : Parameterless_Handler;
 Interrupt : Interrupt_Id);

Attachment of Interrupt Handlers II

Raises Program_Error if the protected

object associated with New_Handler has
not been identified with a pragma
Interrupt_Handler, or interrupt is
reserved, or if current handler was statically
attached using the Attach_Handler pragma

© Alan Burns and Andy Wellings, 2001

Attachment of Interrupt Handlers III

 procedure Exchange_Handler
 (Old_Handler : out Parameterless_Handler;
 New_Handler : Parameterless_Handler;
 Interrupt : Interrupt_Id);
 -- Raises Program_Error as above

 procedure Detach_Handler(Interrupt : Interrupt_Id);
 -- Raises Program_Error if interrupt is reserved

 function Reference(Interrupt : Interrupt_Id)
 return Address;
 -- returns an address for use
 -- in a task entry address clause
end Ada.Interrupts;

© Alan Burns and Andy Wellings, 2001

Interrupt Names

package Ada.Interrupts.Names is

 implementation_defined : constant Interrupt_Id :=

 implementation_defined;

 ...

 implementation_defined : constant Interrupt_Id :=

 implementation_defined;

private

 -- not specified by the language

end Ada.Interrupts.Names;

© Alan Burns and Andy Wellings, 2001

A Simple Device Driver An ADC

n a 16 bit result register at 8#150000#
n a 16 bit control register at 8#150002#

Bit Name Meaning

0 A/D Start Set to 1 to start a conversion
6 Interrupt/Enable/
 Disable Set to 1 to enable the device
7 Done Set to 1 when conversion complete

8-13 Channel Required input channel out of 64
15 Error Set if device malfunctions

© Alan Burns and Andy Wellings, 2001

Driver: Package Specification
package Adc_Device_Driver is
 Max_Measure :constant := (2**16)-1;
 type Channel is range 0 .. 63;
 subtype Measurement is Integer range 0 .. Max_Measure;
 procedure Read (Ch: Channel; M : out Measurement);
 -- potentially blocking
 Conversion_Error : exception;
private
 for Channel’Size use 6; -- only six bits
end Adc_Device_Driver;

© Alan Burns and Andy Wellings, 2001

with Ada.Interrupts.Names, System;
with System.Storage_Elements;
use Ada.Interrupts.Names, System;
use System.Storage_Elements;
package body Adc_Device_Driver is

 Bits_In_Word : constant := 16;
 Word : constant 2; -- 2 bytes in a word
 type Flag is (Down, Set);
 for Flag use (Down => 0; Set => 1);
 type Control_Register is
 record
 Ad_Start : Flag;
 ie : Flag;
 Done : Flag;
 Ch : Chan;
 Error : Flag;
 end record;

Driver: Package Body

 for Control_Register use
 record
 Ad_Start : at 0 range 0 .. 0;
 IE : at 0 range 6 .. 6;
 Done : at 0 range 7 .. 7;
 Ch : at 0 range 8 .. 13;
 Error : at 0 range 15 .. 15;
 end record;

 for Control_Register'Size use Bits_In_Word;
 for Control_Register'Alignment use Word;
 for Control_Register’Bit_Order use Low_Order_First;

 type Data_Register is range 0 .. Max_Measure;
 for Data_Register'Size use Bits_In_Word;

 Control_Reg_Addr : constant Address :=
 Storage_Elements.To_Address(8#150002#);
 Data_Reg_Addr : constant Address :=
 Storage_Elements.To_Address(8#150000#);
 Adc_Priority : constant Interrupt_Priority := 63;

 Control_Reg : aliased Control_Register;
 for Control_Reg'Address use Control_Reg_Addr;
 Data_Reg : aliased Data_Register;
 for Data_Reg'Address use Data_Reg_Addr;

 protected type Interrupt_Interface(
 Int_Id : Interrupt_Id;
 Cr : access Control_Register;
 Dr : access Data_Register) is
 entry Read(Chan : Channel; M : out Measurement);
 private
 entry Done(Chan : Channel; M : out Measurement);
 procedure Handler;
 pragma Attach_Handler(Handler, Int_Id);
 pragma Interrupt_Priority(Adc_Priority);
 Interrupt_Occurred : Boolean := False;
 Next_Request : Boolean := True;
 end Interrupt_Interface;

Adc_Interface:Interrupt_Interface(Names.Adc_Interrupt,
 Control_Reg'Access, Data_Reg'Access);

 protected body Interrupt_Interface is
 entry Read(Chan : Channel; M : out Measurement)
 when Next_Request is
 Shadow : Control_Register;
 begin
 Shadow := (Ad_Start => Set, IE => Set,
 Done => Down, Ch => Chan, Error => Down);
 Cr.all := Shadow;
 Interrupt_Occurred := False;
 Next_Request := False;
 requeue Done;
 end Read;

 procedure Handler is
 begin
 Interrupt_Occurred := True;
 end Handler;

 entry Done(Chan : Channel; M : out Measurement)
 when Interrupt_Occurred is
 begin
 Next_Request := True;
 if Cr.Done = Set and Cr.Error = Down then
 M := Measurement(Dr.all);
 else
 raise Conversion_Error;
 end if;
 end Done;
 end Interrupt_Interface;

 procedure Read(Ch : Channel; M : out Measurement) is
 begin
 for I in 1 .. 3 loop
 begin
 Adc_Interface.Read(Ch, M);
 return;
 exception
 when Conversion_Error => null;
 end;
 end loop;
 raise Conversion_Error;
 end Read;
end Adc_Device_Driver;

© Alan Burns and Andy Wellings, 2001

Dynamic Attachment of Handlers
n To change dynamically the interrupt handler, requires

that the definition be changed:
n Here the pragma now indicates the intention for Handler

to be used as an interrupt handler
protected type Interrupt_Interface (
 Cr : access Control_Register;
 Dr : access Data_Register) is
 entry Read(Ch : Channel; M : out Measurement);
 procedure Handler;
 pragma Interrupt_Handler(Handler);
private
 entry Done(Ch : Channel; M : out Measurement);
 pragma Interrupt_Priority(Interrupt_Priority);
 -- register declaration etc
end Interrupt_Interface;

© Alan Burns and Andy Wellings, 2001

New_Adc_Interface : New_Interrupt_Interface(
 Control_Reg'Access, Data_Reg'Access);

Old : Parameterless_Handler := null;
...
-- attach new handler
if Is_Attached(Names.Adc) then
 Exchange_Handler(Old, New_Adc_Interface.Handler'access,
 Names.Adc);
else
 Attach_Handler(New_Adc_Interface.Handler'access,
 Names.Adc);
end if;
...
if Old = null then
 Detach(Names.Adc);
else
 Attach_Handler(Old, Names.Adc);
end if;

Dynamic Attachment of Handlers II

© Alan Burns and Andy Wellings, 2001

Real-Time Java

n RTJ allows access to memory mapped device registers
via the concept of raw memory

n An implementation is allowed to support a range of
memory types, e.g. DMA, shared memory, IO_Page

public class RawMemoryAccess {
 protected RawMemoryAccess(long base, long size);
 protected RawMemoryAccess(RawMemoryAccess memory,
 long base, long size);

 public static RawMemoryAccess create(
 java.lang.Object type, long size)
 throws SecurityException, OffsetOutOfBoundsException,
 SizeOutOfBoundsException,
 UnsupportedPhysicalMemoryException;

 public static RawMemoryAccess create(
 java.lang.Object type, long base, long size)
 throws SecurityException, OffsetOutOfBoundsException,
 SizeOutOfBoundsException,
 UnsupportedPhysicalMemoryException;

 public byte getByte(long offset)
 throws SizeOutOfBoundsException, OffsetOutOfBoundsException;
 // similarly for integers, long integers, etc

 public void setByte(long offset, byte value)
 throwsSizeOutOfBoundsException, OffsetOutOfBoundsException;
 // similarly for integers, long integers etc
}

© Alan Burns and Andy Wellings, 2001

Control and Status Register
public class ControlAndStatusRegister
{

 RawMemoryAccess rawMemory;

 public ControlAndStatusRegister(long base, long size)
 {
 rawMemory = RawMemoryAccess.create(IO_Page, base, size);
 }

 public void setControlWord(short value)
 {
 rawMemory.setShort(0, value);
 }

};

© Alan Burns and Andy Wellings, 2001

Using the CSR

{
 byte shadow, channel;
 final byte start = 01;
 final byte enable = 040;
 final long csrAddress = 015002;
 final long csrSize = 2;
 ControlAndStatusRegister csr = new
 ControlAndStatusRegister(csrAddress, csrSize);

 channel = 6;
 shadow = (channel << 8) | start | enable;
 csr.setControlWord(shadow);
}

© Alan Burns and Andy Wellings, 2001

Interrupt Handling

n RTJ views an interrupt as an asynchronous event
n The interrupt is equivalent to a call of the fire method
n The association between the interrupt and the event is

achieved via the bindTo method in the AsyncEvent class
n The parameter is of string type, and this is used in an

implementation-dependent manner — one approach might be
to pass the address of the interrupt vector

n When the interrupt occurs, the appropriate handler's fire
method is called

n Now, it is possible to associate the handler with a
schedulable object and give it an appropriate priority and
release parameters

© Alan Burns and Andy Wellings, 2001

Interrupt Handling

AsyncEvent Interrupt = new AsyncEvent();
AsyncEventHandler InterruptHandler = new
 BoundAsyncEventHandler(
 priParams, releaseParams, null, null, null);

Interrupt.addHandler(InterruptHandler);
Interrupt.bindTo(”0177760");

© Alan Burns and Andy Wellings, 2001

Device Driving in C

n Device registers are addressed by pointer variables which can
be assigned to the memory location of the register

n They are manipulated by low-level bitwise logical operators
n For example, the following procedure assigns n bits starting at

position p in register pointed at by reg to x
unsigned int setbits(unsigned int *reg, unsigned int n,
 unsigned int p, unsigned int x)
{
 unsigned int data, mask;

 data = (x & (~(~0 << n))) << (p); /* data to be masked in */
 mask = ~(~0 << n); /* mask */
 reg &= ~(mask << (p)); / clear current bits */
 reg |= data; / or in data */
}

© Alan Burns and Andy Wellings, 2001

Interrupt Handling in C

n With the simple I/O architecture, interrupts handlers are
assigned by placing the address of a parameterless
procedure in the appropriate interrupt vector location

n Once the procedure is executed, any communication
and synchronization with the rest of the program must
be programmed directly

n Although POSIX provides alternative mechanisms
which, in theory, could be used to provide an alternative
model of interrupt handling (for example, associating an
interrupt with a condition variable), there is currently no
standard mechanism for attaching user-defined
handlers to interrupts

© Alan Burns and Andy Wellings, 2001

Memory Management

n Embedded RTS often have a limited amount of memory
n This is due to: cost, or size, power or weight constraints)
n It is necessary to control how this memory is allocated

so that it can be used effectively
n Where there is more than one type of memory (with

different access characteristics), it is necessary to
instruct the compiler to place certain data types at
certain locations (e.g. Ada’s Representation Specs)

n The more general issue is of storage management of
the
– heap
– stack

© Alan Burns and Andy Wellings, 2001

Heap Management

n For use with allocators (the new operator)
n Key problems:

– how much space is required (requires application knowledge)
– when can allocated space be released

n Returning allocated space
– require the programmer to do it (malloc, free, sizeof in C) ;

error prone
– require the run-time to monitor memory and determine when it

logically can no longer be accessed (the scope rules of Ada and
Real-Time Java allow this)

– require the run-time to monitor memory and release it when it it
is no longer being used (garbage collection in Java)

© Alan Burns and Andy Wellings, 2001

Real-Time Perspective

n These approaches have an increasing impact on the
ability to analyse the timing properties of the program

n In particular, garbage collection may be performed
either when the heap is empty or by an asynchronous
activity (incremental garbage collection)

n In either case, running the garbage collector may have a
significant impact on the response time of a time-critical
task

n Although there has been much work on real-time
garbage collection and progress continues to be made,
there is still a reluctance to rely on these techniques in
time-critical systems

© Alan Burns and Andy Wellings, 2001

Heap Management in Ada

n The heap is represented by one or more storage pools
n Each object (access type) has an associated storage pool
n The allocator takes its memory from the target pool
n The Ada.Unchecked_Deallocation facility returns data

to the pool
n An implementation may support

– a single global pool (reclaimed when the program terminates)
– pools defined at different accessibility levels (reclaimed when

associated scope is exited)

n Note, all objects accessed directly (not via a pointer) are
placed on the stack, not the heap.

n To give more user control over storage management, Ada
defines a package called System.Storage_Pools

with Ada.Finalization; with System.Storage_Elements;
package System.Storage_Pools is
 pragma Preelaborate(System.Storage_Pools);
 type Root_Storage_Pool is abstract new
 Ada.Finalization.Limited_Controlled with private;
 procedure Allocate(Pool : in out Root_Storage_Pool;
 Storage_Address : out Address;
 Size_In_Storage_Elements : in System.
 Storage_Elements.Storage_Count;
 Alignment : in System.Storage_Elements.Storage_Count)
 is abstract;
 procedure Deallocate(Pool : in out Root_Storage_Pool;
 Storage_Address : in Address;
 Size_In_Storage_Elements : in System.
 Storage_Elements.Storage_Count;
 Alignment : in System.Storage_Elements.Storage_Count)
 is abstract;
 function Storage_Size(Pool : Root_Storage_Pool) return
 System.Storage_Elements.Storage_Count is abstract;
private ...
end System.Storage_Pools;

© Alan Burns and Andy Wellings, 2001

Storage Pools
n Programmers can implement their own storage pools by

extending the Root_Storage_Pool type and providing
concrete implementations for the subprogram bodies

n To associate an access type with a storage pool, the pool is
declared and then the Storage_Pool attribute is used:
My_Pool : Some_Storage_Pool_Type;

type A is access Some_Object;
for A'Storage_Pool use My_Pool;

n Calls to new using A will automatically call Allocate; calls
to Ada.Unchecked_Deallocation will call Deallocate;
both referring to My_Pool

n Deallocate is called when A goes out of scope
n Note, Ada does not require an implementation to support

garbage collection

© Alan Burns and Andy Wellings, 2001

Heap Management in Real-Time Java

public abstract class MemoryArea {
 protected MemoryArea(long sizeInBytes);
 public void enter(java.lang.Runnable logic);
 // associate this memory area to the current thread
 // for the duration of the logic.run method
 public static MemoryArea getMemoryArea(java.lang.Object object);
 // get the memory area associated with the object
 public long memoryConsumed();
 // number of bytes consumed in this memory area
 public long memoryRemaining();
 // number of bytes remaining
 . . .
 public synchronized java.lang.Object newInstance(
 java.lang.Class type)throws IllegalAccessException,
 InstantiationException, OutOfMemoryError;
 // allocate an object
 public long size(); // the size of the memory area
}

© Alan Burns and Andy Wellings, 2001

Immortal Memory

n Immortal memory is shared among all threads in an
application

n Objects created in immortal memory are never subject to
garbage collection and are freed only when the program
terminates

public final class ImmortalMemory extends MemoryArea
{
 public static ImmortalMemory instance();
}

n There is also a class called ImmortalPhysicalMemory
which has the same characteristics as immortal memory
but allows objects to be allocated from within a range of
physical addresses

© Alan Burns and Andy Wellings, 2001

Scoped Memory
n A memory area where objects which have a well-defined

lifetime
n May be entered explicitly (by the use of the enter method)

or implicitly by attaching it to a RealtimeThread at thread
creation time

n Associated with each scoped memory is a reference count
which incremented for every call to enter and at every
associated thread creation

n It is decremented when the enter method returns and at
every associated thread exit

n When the reference count reaches 0, all objects resident in
the scoped memory have their finalization method executed
and the memory is reclaimed

n Scoped memory can be nested by nested calls to enter

© Alan Burns and Andy Wellings, 2001

Scoped Memory
public abstract class ScopedMemory extends MemoryArea
{
 public ScopedMemory(long size);

 public void enter(java.lang.Runnable logic);

 public int getMaximumSize();

 public MemoryArea getOuterScope();

 public java.lang.Object getPortal();

 public void setPortal(java.lang.Object object);
}

© Alan Burns and Andy Wellings, 2001

Scoped Memory

n The ScopedMemory class which has several subclasses
– VTMemory: allocations may take variable amounts of time
– LTMemory: allocations occur in linear time (related to the size of

the object)
– ScopedPhysicalMemory: allowing objects to be allocated at

physical memory locations

n To avoid the possibility of dangling pointers, a set of
access restrictions are placed on the use of the various
memory areas
– Heap objects -- can reference other heap objects and objects in

immortal memory only (i.e. it cannot access scoped memory)
– Immortal objects -- can reference heap objects and immortal

memory objects only;
– Scoped objects -- can reference heaped objects, immortal objects

and objects in the same scope or an outer scope only

© Alan Burns and Andy Wellings, 2001

Example
import javax.realtime.*;
public class ThreadCode implements Runnable
{
 private void computation()
 {
 final int min = 1*1024;
 final int max = 1*1024;
 final LTMemory myMem = new LTMemory(min, max);

 myMem.enter(new Runnable()
 {
 public void run()
 {
 // code here which requires access
 // to temporary memory
 }
 });
 }

© Alan Burns and Andy Wellings, 2001

Example

n The thread can now be created; note, no parameters other
than the memory area and the Runnable are given

public void run()
 {
 ...
 computation();
 ...
 }
}

ThreadCode code = new ThreadCode();

RealtimeThread myThread = new RealtimeThread(
 null, null, null, ImmortalMemory.instance(),
 null, code);

© Alan Burns and Andy Wellings, 2001

Stack Management
n Embedded programmers also have to be concerned with

stack size
n Specifying the stack size of a task/thread requires trivial

support (for example, in Ada it is via the Storage_Size
attribute applied to a task; in POSIX it is via pthread
attributes)

n Calculating the stack size is more difficult; as tasks enter
blocks and execute procedures their stacks grow

n To estimate the maximum extent of this growth requires
knowledge of the execution behaviour of each task

n This knowledge is similar to that required to undertake
WCET analysis

n WCET and worst-case stack usage bounds can be
obtained from control flow analysis of the task's code

© Alan Burns and Andy Wellings, 2001

Summary

n To program device drivers in high-level languages requires:
– the ability to pass data and control information to and from the device
– the ability to handle interrupts

n Control and data information is passed via device registers
n These are either accessed by special addresses, or via

special machine instructions
n Interrupt handling requires context switching, device and

interrupt identification, interrupt control, and device
prioritisation

n The main requirement on a high-level language is that it
provides an abstract model of device handling

n Encapsulation facilities are also required so that the non-
portable code of the program can be separated from the
portable part

© Alan Burns and Andy Wellings, 2001

Summary
n There are several ways to model interrupts
n In a pure shared-variable model, the driver and the device

communicate using the shared device registers, and the
interrupt provides condition synchronization

n Modula-1, has such a model
– Driver processes are encapsulated in device modules which have

the functionality of monitors
– Device registers are accessed as scalar objects or arrays of bits,

and an interrupt is viewed as a signal on a condition variable

n In Ada
– Device registers can be defined as scalars and user defined record

types, with a comprehensive set of facilities for mapping types onto
the underlying hardware.

– Interrupts are viewed as hardware generated procedure calls to a
protected object

© Alan Burns and Andy Wellings, 2001

Summary

n Real-Time Java supports the access to memory-
mapped I/O registers through the RawMemoryClass;
however, it lacks expressive power for manipulating
device registers

n Interrupts are viewed as asynchronous events.

© Alan Burns and Andy Wellings, 2001

Summary

n Low-level programming also involves the more general issue
of managing the memory resources of the processor

n Ada
– does not require a garbage collector
– memory can be explicitly deallocated
– the scope rules of the language allow automatic deallocation when

an access types goes out of scope
– user-defined storage pools to be defined which enable programmers

to define their own memory management policies

n Real-Time Java
– recognizes that the memory allocation policy of Java is not

sustainable for real-time systems
– allows memory to be allocated outside of the heap,
– supports the notion of scoped memory which allows automatic

reclamation of memory without garbage collection

