
© Alan Burns and Andy Wellings, 2001

Characteristics of Real-Time Systems

n Large and Complex

n Concurrent control of system components

n Facilities for hardware control

n Extremely reliable and safe

n Real-time facilities

n Efficiency of execution

© Alan Burns and Andy Wellings, 2001

Aim

n Review of language support for programming in the large

n Illustrate the use of modules/packages to aid decomposition
and abstraction

n Separate compilation

n Modules and separate compilation in C

n Child packages and OOP in Ada 95

n OOP and Java

© Alan Burns and Andy Wellings, 2001

Decomposition and Abstraction

n Decomposition — the systematic breakdown of a
complex system into smaller and smaller parts until
components are isolated that can be understood and
engineered by individuals and small groups
TOP DOWN DESIGN

n Abstraction — Allows detailed consideration of
components to be postponed yet enables the essential
part of the component to be specified
BOTTOM UP DESIGN

© Alan Burns and Andy Wellings, 2001

Modules

n A collection of logically related objects and operations
n Encapsulation — the technique of isolating a system

function within a module with a precise specification of
the interface
– information hiding
– separate compilation
– abstract data types

n How should large systems be decomposed into
modules?

The answer to this is at the heart of all Software Engineering!

© Alan Burns and Andy Wellings, 2001

Information Hiding

n A module structure supports reduced visibility by
allowing information to be hidden inside its body

n The specification and body of a module can be given
separately

n Ideally, the specification should be compilable without
the body being written

n E.g in Ada, there is a package specification and a
package body; formal relationship; compile time errors

n In C, modules are not so well formalised. Typically,
programmers use a separate .h file to contain the
interface to a module and a .c file for the body. No
formal relationship. Errors caught at link time

n Modules are not first class language entities

© Alan Burns and Andy Wellings, 2001

Information Hiding

n Java, has the concept of a package
n There is no language syntax to represent the

specification and body of a package
n A package is a directory where related classes are

stored
n To add a class to the directory, simply put the package

name (path name) at the beginning of the source file

© Alan Burns and Andy Wellings, 2001

Abstract data types

n A module can define both a type and the operations on the
type.

n The details of the type must be hidden from the user.

n As modules are not first class, the type must be declared and
instances of the type passed as a parameter to the operation.

n To ensure the user is not aware of the details of the type, it is
either defined to be private (as in Ada) or always passed as a
pointer (as you would do in C). An incomplete declaration of
the type is given in the .h file.

© Alan Burns and Andy Wellings, 2001

Queue Example in Ada
package Queuemod is
 type Queue is limited private;
 procedure Create (Q : in out Queue);
 function Empty (Q : Queue) return Boolean;
 procedure Insert (Q : in out Queue; E : Element);
 procedure Remove (Q : in out Queue; E : out Element);
private
 -- none of the following declarations are externally visible
 type Queuenode;
 type Queueptr is access Queuenode;
 type Queuenode is
 record
 Contents : Processid; Next : Queueptr;
 end record;
 type Queue is
 record
 Front : Queueptr; Back : Queueptr;
 end record;
end Queuemod;

© Alan Burns and Andy Wellings, 2001

Queue Example in C (Header File)

typedef struct queue_t *queue_ptr_t;

queue_ptr_t create();
int empty(queue_ptr_t Q);

void insertE(queue_ptr_t Q, element E);
void removeE(queue_ptr_t Q, element *E);

© Alan Burns and Andy Wellings, 2001

Object-Oriented Programming

n OOP has:
– type extensibility (inheritance)
– automatic object initialisation (constructors)
– automatic object finalisation (destructors)
– run-time dispatching of operations (polymorphism)

n Ada 95 supports the above through tagged types and
class-wide programming

n Java supports OOP though the use of classes

© Alan Burns and Andy Wellings, 2001

OOP and Ada

n Based on type extensions (tagged types) and dynamic
polymorphism (class-wide types)

type A is record … end record; -- normal record type

type EA is tagged record … end record; -- tagged type

procedure Op1(E : EA; Other_Param : Param);
 -- primitive operation
 procedure Op2(E : EA; Other_Param : Param);
 -- primitive operation

© Alan Burns and Andy Wellings, 2001

Ada and OOP

type EEA is new EA with record … end record;
-- inherit OP1

procedure Op2(E : EEA; Other_Param : Param);
-- override Op2

procedure Op3(E : EEA; Other_Param : Param);
-- add new primitive operation

type EEEA is new EA with record … end record;
...

type EAE is new EA with record … end record;
...

type EAEE is new EAE with record … end record;
...

© Alan Burns and Andy Wellings, 2001

Ada and OOP

EA

EEA

EEEA

EAE

EAEE

Type Hierarchy routed at EA
called EA’Class

© Alan Burns and Andy Wellings, 2001

Class-wide Programming

procedure Generic_Call(X : EA’Class) is
begin
 OP1(X,Param) ;
end Generic_Call;

Results in run-time dispatching

© Alan Burns and Andy Wellings, 2001

Child Packages
package Coordinate_Class is
 type Coordinates is tagged private;

 procedure Plot(P: Coordinates);

 procedure Set_X(P: Coordinates; X: Float);
 function Get_X(P: Coordinates) return Float;
 -- similarly for Y
private
 type Coordinates is tagged
 record
 X : Float;
 Y : Float;
 end record;
end Objects;

© Alan Burns and Andy Wellings, 2001

Child Packages

n Allow access to parent’s private data without going
through the parent’s interface

n Reduces recompilation

package Coordinate_Class.Three_D is
 type Three_D is new Coordinates with private;

 -- new primitive operations
 procedure Set_Z(P: Coordinates; Z: Float);
 function Get_Z(P: Coordinates) return Float;

 procedure Plot(P: Three_D); -- overrides the Plot subprogram

private

 type Three_D is new Coordinates with
 record
 Z : Float;
 end record;
end Coordinate_Class.Three_D;

© Alan Burns and Andy Wellings, 2001

Controlled Types

n With these types, it is possible to define subprograms
that are called (automatically) when objects of the type:
– are created (initialize)
– cease to exist (finalize)
– are assigned a new value (adjust)

n To gain access to these features, the type must be
derived from Controlled, a predefined type declared
in the library package Ada.Finalization

n This defines procedures for Initialize, Finalize
and Adjust

n When a type is derived from Controlled, these
procedures may be overridden

© Alan Burns and Andy Wellings, 2001

OOP and Java

n Based on the class construct
n Each class encapsulates data (instance variables) and

operations on the data (methods including constructor
methods)

n Each class can belong to a package
n It may be local to the package or visible to other

packages (in which case it is labelled public)
n Other class modifiers are abstract and final
n Similarly, methods and instance variables have

modifiers as being
– public (visible outside the class)
– protected (visible only within package or in a subclass)
– private (visible only to the class)

© Alan Burns and Andy Wellings, 2001

Java Example

import somepackage.Element; // import element type
package queues; // package name

class QueueNode // class local to package
{
 Element data;
 QueueNode next;
}

public class Queue // class available from outside the package
{

 QueueNode front, back; // instance variables

 public Queue() // public constructor
 {
 front = null;
 back = null;
 }

© Alan Burns and Andy Wellings, 2001

Java Example
 public void insert(Element E) // visible method
 {
 QueueNode newNode = new QueueNode();

 newNode.data = E; newNode.next = null;
 if(empty()) {front = newNode;}
 else { back.next = newNode; }
 back = newNode;
 }

 public Element remove() //visible method
 {
 if(!empty()) { Element tmpE = front.data;
 front = front.next; if(empty)) back = null; }
 // garbage collection will free up the QueueNode object
 return tmpE;
 }

 public boolean empty() // visible method
 { return (front == null); }
}

© Alan Burns and Andy Wellings, 2001

Inheritance and Java
package coordinate;
public class Coordinate // Java is case sensitive
{
 float X, Y;

 public Coordinate(float initial_X, float initial_Y) // constructor
 { X = initial_X;
 Y = initial_Y; };

 public void set(float F1, float F2)
 { X = F1;
 Y = F2; };

 public float getX()
 { return X; }

 public float getY()
 { return Y; };

 public void plot() {
 // plot a two D point};
};

© Alan Burns and Andy Wellings, 2001

Inheritance and Java

package coordinate;
public class ThreeDimension extends Coordinate {
 // subclass of Coordinate

 float Z; // new field

 public ThreeDimension(float initialX, float initialY,
 float initialZ) // constructor
 { super(initialX, initialY); // call superclass constructor
 Z = initialZ;
 };

 public void set(float F1, float F2, float F3) //overridden method
 { super.set(F1, F2); // call superclass set
 Z = F3;
 };

 public float getZ() // new method
 { return Z;}

 public void plot() {//overridden method
 // plot a three D point};
};

© Alan Burns and Andy Wellings, 2001

Inheritance and Java

n Unlike Ada, all method calls are dispatching

{
 Coordinate A = new Coordinate(0f, 0f);
 A.plot();
}

would plot a two dimension coordinate; where as

{
 Coordinate A = new Coordinate(0f, 0f);
 ThreeDimension B = new ThreeDimension(0f, 0f, 0f);

 A = B;
 A.plot();
}

will plot a three D coordinate even though A was originally declared to be of type
Coordinate. This is because A and B are reference types. By assigning B to A
only the reference has changed not the object itself.

© Alan Burns and Andy Wellings, 2001

The Object Class

n All classes are implicit subclasses of the Object class

public class Object {
 ...
 public boolean equals(Object obj);

 // methods to support monitors
 public final void wait()throws IllegalMonitorStateException,
 InterruptedException;
 public final void wait(long millis)throws
 IllegalMonitorStateException, InterruptedException;
 public final void wait(long millis, int nanos) throws
 IllegalMonitorStateException, InterruptedException;
 public final void notify() throws IllegalMonitorStateException;
 public final void notifyAll() throws IllegalMonitorStateException;

 //override for finalization
 protected void finalize()
 throws Throwable;
}

© Alan Burns and Andy Wellings, 2001

Interfaces in Java

n Interfaces in Java augment classes to increase the
reusability of code (compare with Ada’s generics)

n An interface is a special form of class that defines the
specification of a set of methods and constants

n They are by definition abstract so no instances of
interfaces can be declared

n Instead, one or more classes can implement an
interface, and objects implementing interfaces can be
passed as arguments to methods by defining the
parameter to be of the interface type

n Interfaces allow relationships to be constructed
between classes outside of the class hierarchy

© Alan Burns and Andy Wellings, 2001

Interface Example

package interfaceExamples;

public interface Ordered {
 boolean lessThan (Ordered O);
};

n lessThan takes as a parameter any object that
implements the Ordered interface

© Alan Burns and Andy Wellings, 2001

Interface Example
import interfaceExamples.*;
class ComplexNumber implements Ordered {
 protected float realPart;
 protected float imagPart;

 public boolean lessThan(Ordered O) // interface implementation
 {
 ComplexNumber CN = (ComplexNumber) O; // cast the parameter

 if((realPart*realPart + imagPart*imagPart) <
 (CN.getReal()*CN.getReal() + CN.getImag()*CN.getImag()))
 { return true; }
 return false;
 };

 public ComplexNumber (float I, float J) // constructor
 { realPart = I; imagPart = J; };

 public float getReal() { return realPart;};

 public float getImag() { return imagPart; };

}

© Alan Burns and Andy Wellings, 2001

Interface Example
package interfaceExamples;
public class ArraySort
{
 public static void sort (Ordered oa[], int size) //sort method
 {
 Ordered tmp;
 int pos;

 for (int i = 0; i < size - 1; i++) {
 pos = i;
 for (int j = i + 1; j < size; j++) {
 if (oa[j].lessThan(oa[pos])) {
 pos = j;
 }
 }
 tmp = oa[pos];
 oa[pos] = oa[i];
 oa[i] = tmp;
 };
 };

© Alan Burns and Andy Wellings, 2001

Interface Example

 public static Ordered largest(Ordered oa[], int size)
 // largest method
 {
 Ordered tmp;
 int pos;

 pos = 0;
 for (int i = 1; i < size; i++) {
 if (! oa[i].lessThan(oa[pos])) {
 pos = i;
 };
 };
 return oa[pos];
 };
}

© Alan Burns and Andy Wellings, 2001

Interface Example

{

 ArraySort AR = new ArraySort();
 ComplexNumber arrayComplex[] = { // say
 new ComplexNumber(6f,1f),
 new ComplexNumber(1f, 1f),
 new ComplexNumber(3f,1f),
 new ComplexNumber(1f, 0f),
 new ComplexNumber(7f,1f),
 new ComplexNumber(1f, 8f),
 new ComplexNumber(10f,1f),
 new ComplexNumber(1f, 7f)
 };
 // array unsorted
 AR.sort(arrayComplex, 8);
 // array sorted
}

© Alan Burns and Andy Wellings, 2001

Summary

n Module supports: information hiding, separate compilation and
abstract data types

n Ada and C have a static module structure
n C informally supports modules; Java has a dynamic module

structure called a class
n Both packages in Ada (and Java) and classes in Java have well-

defined specifications which act as the interface between the
module and the rest of the program

n Separate compilation enables libraries of precompiled components
to be constructed

n The decomposition of a large program into modules is the essence
of programming in the large

n The use of abstract data types or object-oriented programming,
provides one of the main tools programmers can use to manage
large software systems

