Characteristics of Real-Time Systems

m Largeand Complex

m Concurrent control of system components
m Facilitiesfor hardware control

m Extremey reliable and safe

m Real-timefacilities

m Efficiency of execution

© Alan Burnsand Andy Wellings, 2001

Alm

Review of language support for programming in the large

lllugtrate the use of modules/packages to aid decomposition
and abstraction

Separate compilation
Modules and separate compilation in C
Child packages and OOP in Ada 95

OOP and Java

© Alan Burnsand Andy Wellings, 2001

Decomposmo and Abstract

m Decomposition — the systematic breakdown of a
complex system into smaller and smaller parts until
components are isolated that can be understood and
engineered by individuals and small groups
TOP DOWN DESIGN

m Abstraction — Allows detailed consideration of
components to be postponed yet enables the essential

part of the component to be specified
BOTTOM UP DESIGN

© Alan Burnsand Andy Wellings, 2001

Modules

m A collection of logically related objects and operations

m Encapsulation — the technique of isolating a system
function within a module with a precise specification of

the interface
— Information hiding
— separate compilation

— abstract data types
m How should large systems be decomposed into

modules?

The answer to thisis at the heart of all Software Engineering!

© Alan Burnsand Andy Wellings, 2001

| nformation Hiding

A module structure supports reduced visibility by
allowing information to be hidden inside its body

The specification and body of a module can be given
separately

|deally, the specification should be compilable without
the body being written

E.g in Ada, there is a package specification and a
package body; formal relationship; compile time errors

In C, modules are not so well formalised. Typically,
programmers use a separate .h file to contain the
Interface to a module and a .c file for the body. No
formal relationship. Errors caught at link time

Modules are not first class language entities

© Alan Burnsand Andy Wellings, 2001

m Java, has the concept of a package

m There is no language syntax to represent the
specification and body of a package

m A package is a directory where related classes are
stored

m To add a class to the directory, simply put the package
name (path name) at the beginning of the source file

© Alan Burnsand Andy Wellings, 2001

Abstract data types

m A module can define both a type and the operations on the
type.

m Thedetallsof the type must be hidden from the user.

m As modules are not first class, the type must be declared and
Instances of the type passed as a parameter to the operation.

m Toensuretheuser isnot aware of the details of thetype, it Is
either defined to be private (asin Ada) or always passed as a
pointer (asyou would do in C). An incomplete declaration of
thetypeisgiveninthe.hfile.

© Alan Burnsand Andy Wellings, 2001

Queue Examplein Ada

package Queuenod is
type Queue is limted private;

procedure Create (Q : in out Queue);

function Enpty (Q : Queue) return Bool ean;
procedure Insert (Q: in out Queue; E : Elenent),;

procedure Renmove (Q : in out Queue; E : out Elenent);

private
none of the follow ng declarations are externally visible

t ype Queuenode;
type Queueptr is access Queuenode;

type Queuenode is
record
Contents : Processid; Next : Queueptr;
end record,;

type Queue is
record
Fr ont Queueptr; Back : Queueptr;

end record,;

end Queuenod;

© Alan Burnsand Andy Wellings, 2001

Queue Example in C (Header File)

typedef struct queue t *queue ptr t;

gueue ptr_t create();
Int empty(queue ptr_t Q);

void insertE(queue ptr t Q, eement E);
void removeE(queue ptr t Q, element *E);

© Alan Burnsand Andy Wellings, 2001

Obj ect-Oriented Programmlng

m OOP has:

— type extensibility (inheritance)

— automatic object initialisation (constructors)

— automatic object finalisation (destructors)

— run-time dispatching of operations (polymorphism)

m Ada 95 supports the above through tagged types and
class-wide programming

m Java supports OOP though the use of classes

© Alan Burnsand Andy Wellings, 2001

OOP and Ada -

m Based on type extensions (tagged types) and dynamic
polymorphism (class-wide types)
-- normal record type

..end record,;
-- tagged type

type Ais record .
...end record,

type EA is tagged record
procedure p1(E : EA, O her Param : Paramn;

primtive operation
EA, O her Param : Param;

procedure Op2(E :
primtive operation

© Alan Burnsand Andy Wellings, 2001

OOP

I
Cl
‘
I
|
|

type EEA is new EA wth record ...end record;

| nherit OP1

procedure p2(E : EEA, O her Param : Param;

-- override Op2

procedure p3(E : EEA, O her Param : Param;
-- add new primtive operation

type EEEA is new EA with record ...end record,

type EAE is new EA wth record ...end record;

type EAEE is new EAE with record ...end record,

© Alan Burnsand Andy Wellings, 2001

EEA

EEEA

Type Hierarchy routed at EA
called EA’ Class

EAEE

© Alan Burnsand Andy Wellings, 2001

Class-wide Programming

procedure Generic Call (X : EA dass) Is
begi n

OP1(X, Param ;
end Generic_Call;

Results in run-time dispatching

© Alan Burnsand Andy Wellings, 2001

Child Packages B

package Coordinate Class is
type Coordinates is tagged private;

procedure Plot(P: Coordinates);

procedure Set X(P: Coordinates; X Float);
function Get X(P: Coordinates) return Float;

simlarly for Y

private
type Coordi nates is tagged
record
X : Float;
Y : Float;
end record;
end Obj ects;

© Alan Burnsand Andy Wellings, 2001

Child Packages

package Coordinate Class. Three D is
type Three D is new Coordinates with private;

-- new primtive operations
procedure Set Z(P: Coordinates; Z: Float);
function Get Z(P: Coordinates) return Fl oat;

procedure Plot(P: Three D); -- overrides the Pl ot subprogram
private
type Three D is new Coordi nates wth
record
Z . Float;

end record;
end Coordi nate C ass. Three_D;

m Allow access to parent’s private data without going
through the parent’s interface

m Reduces recompilation

© Alan Burnsand Andy Wellings, 2001

Controlled Types B

m With these types, it is possible to define subprograms
that are called (automatically) when objects of the type:

— are created (initialize)

— cease to exist (finalize)
— are assigned a new value (adjust)

m To gain access to these features, the type must be
derived from Cont r ol | ed, a predefined type declared

In the library package Ada. Fi nal | zat i on
m This defines proceduresforinitialize,Finalize

and Adj ust
m When a type is derived from Cont r ol | ed, these

procedures may be overridden

© Alan Burnsand Andy Wellings, 2001

OOP and Java

Based on the class construct

Each class encapsulates data (instance variables) and
operations on the data (methods including constructor
methods)

Each class can belong to a package

It may be local to the package or visible to other
packages (in which case it is labelled public)

Other class modifiers are abstract and final

Similarly, methods and instance variables have
modifiers as being
— public (visible outside the class)
— protected (visible only within package or in a subclass)
— private (visible only to the class)

© Alan Burnsand Andy Wellings, 2001

Java Example

| nport sonepackage. Elenent; // inport elenent type

package queues; // package nane

cl ass QueueNode // class local to package

{

El enent dat a;
QueueNode next;

}

public class Queue // class available fromoutside the package

{
QueueNode front, back;

public Queue() // public constructor

{

/] 1 nstance vari abl es

front = null;
back = null;

© Alan Burnsand Andy Wellings, 2001

Java Example

public void insert(Element E) // visible nethod

{
QueueNode newNode = new QueueNode();

newNode. data = E; newNode. next = nul |;
| f(empty()) {front = newNode;}

el se { back. next = newNode; }

back = newNode;

}
public El enent renove() //visible nethod

{
I f(lempty()) { Elenent tnpE = front. dat a;

front = front.next; if(enpty)) back = null; }
/| garbage collection will free up the QueueNode obj ect
return tnpE;

}

public boolean enpty() // visible nethod
{ return (front == null); }

© Alan Burnsand Andy Wellings, 2001

- | nheritance and Java -

package coordi nat e;
public class Coordinate // Java is case sensitive

{
float X, Y;

public Coordinate(float initial X, float initial _Y) // constructor
{ X =1initial _X;
Y =initial Y; };

{ X =F1;

public void set(float Fl1l, float F2)
Y = F2; };

public float getX()
{ return X; }

public float getY()
{ returnY,; };

public void plot() {
/'l plot a two D point};

};

© Alan Burnsand Andy Wellings, 2001

| nheritance and Java

package coordi nat e;
public class ThreeD nension extends Coordi nate {
/'l subcl ass of Coordinate

float Z; // new field

public ThreeD nension(float initialX, float initial,
float initialZ) // constructor
{ super(initialX, initialY); // call superclass constructor
Z = 1initial Z
b
public void set(float F1, float F2, float F3) //overridden nethod
{ super.set(Fl, F2); // call superclass set
Z = F3;
b
public float getZ() // new nethod
{ return Z;}

public void plot() {//overridden nethod
/|l plot a three D point};

'

© Alan Burnsand Andy Wellings, 2001

m Unlike Ada, all method calls are dispatching

{
Coordi nate A = new Coordi nate(O0f, Of);

A plot();
}

would plot a two dimension coordinate; where as

{
Coordi nate A = new Coordi nate(0f, Of);

ThreeD nensi on B = new ThreeDi nensi on(0f, Of, Of);

A = B;

A plot();
}
will plot a three D coordinate even though A was originally declared to be of type
Coor di nat e. This is because A and B are reference types. By assigning Bto A
only the reference has changed not the object itself. © Alan Burns and Andy Wellings, 2001

The Object Class -

m All classes are implicit subclasses of the Obj ect class

public class (Object {

publ i ¢ bool ean equal s((bj ect obj);

/'l methods to support nonitors
void wait()throws Il egal MonitorStateException,

public final
| nt errupt edExcepti on;
public final void wait(long mllis)throws
|1 1 egal Moni t or St at eException, | nterruptedException;
public final void wait(long mllis, int nanos) throws
| 1 1 egal Moni t or St at eException, | nterruptedException;
public final void notify() throws |11 egal MonitorStateException;
public final void notifyAll() throws Il egal MonitorStateException;

[/ override for finalization

protected void finalize()
t hrows Thr owabl e:
© Alan Burnsand Andy Wellings, 2001

| nterfaces in Java

Interfaces in Java augment classes to increase the
reusability of code (compare with Ada’s generics)

An interface Is a special form of class that defines the
specification of a set of methods and constants

They are by definition abstract so no instances of
Interfaces can be declared

Instead, one or more classes can implement an
Interface, and objects implementing interfaces can be
passed as arguments to methods by defining the
parameter to be of the interface type

Interfaces allow relationships to be constructed
between classes outside of the class hierarchy

© Alan Burnsand Andy Wellings, 2001

package 1 nterfacekExanpl es;

public Iinterface Ordered {
bool ean | essThan (Ordered O ;

'

m | essThan takes as a parameter any object that
Implements the Or der ed interface

© Alan Burnsand Andy Wellings, 2001

| nterface Example

| nport interfaceExanpl es. *;
| npl enments Ordered {

cl ass Conpl exNunber
real Part;

protected fl oat
protected float i nmagPart;
public boolean | essThan(Ordered O // interface inplenentation

{
Conpl exNunber CN = (Conpl exNunber) O // cast the paraneter

| f((real Part*real Part + imagPart*i magPart) <
(CN.getReal ()*CN. getReal () + CN.getlmag()*CN. getlmag()))

{ return true; }

return fal se;
float J) // constructor

b
publ i ¢ Conpl exNunber (float I,
{ realPart =1; imagPart = J; };

public float getReal () { return real Part;};
public float getlmag() { return imagPart; };

© Alan Burnsand Andy Wellings, 2001

erface Example

-
—r

package i nterfacekxanpl es;
public class ArraySort
I nt size) //sort nethod

{
public static void sort (Ordered oa[],
{
Ordered t np;
| nt pos;
for (int 1 =0; I <size - 1; 1i++) {
pos = i;
for (int j =1 + 1;] < size; j++) {
I f (oa[]].lessThan(oa[pos])) {
pos = |;
}
}
tmp = oa[pos];
oa[pos] = oali];
oa[i] = tnp;
¥
© Alan Burnsand Andy Wellings, 2001

public static Ordered | argest(Ordered oa[],

/1l 1argest nethod
{

Ordered t np;

| nt pos;

pos = O;
for (int i =1;, I < size; i++) {
I f (! oa[i].lessThan(oa[pos])) {
pos = i;
¥
¥

return oal posj;

| nterface Example

I Nt size)

© Alan Burnsand Andy Wellings, 2001

-
f—|'

erfac Example

ArraySort AR = new ArraySort();

Conpl exNunber arrayComplex[] = { // say
new Conpl exNunber (6f, 1f),
new Conpl exNunber (1f, 1f),
new Conpl exNunber (3f, 1f),
new Conpl exNunber (1f, Of),
new Conpl exNunber (7f, 1f),
new Conpl exNunber (1f, 8f),
new Conpl exNunber (10f, 1f),
new Conpl exNunber (1f, 7f)

}

/'l array unsorted

AR sort (arrayConpl ex, 8);

/|l array sorted

© Alan Burnsand Andy Wellings, 2001

Summary

Module supports: information hiding, separate compilation and
abstract data types

Ada and C have a static module structure

C informally supports modules; Java has a dynamic module
structure called a class

Both packages in Ada (and Java) and classes in Java have well-
defined specifications which act as the interface between the
module and the rest of the program

Separate compilation enables libraries of precompiled components
to be constructed

The decomposition of a large program into modules is the essence
of programming in the large

The use of abstract data types or object-oriented programming,
provides one of the main tools programmers can use to manage
large software systems

© Alan Burnsand Andy Wellings, 2001

