
© Burns and Welling, 2001

Characteristics of a RTS

n Large and complex
n Concurrent control of separate system components
n Facilities to interact with special purpose hardware
n Guaranteed response times
n Extreme reliability
n Efficient implementation

© Burns and Welling, 2001

Reliability and Fault Tolerance

n Goal
– To understand the factors which affect the reliability of a system

and how software design faults can be tolerated.

n Topics
– Reliability, failure and faults
– Failure modes
– Fault prevention and fault tolerance
– N-Version programming
– Software dynamic redundancy
– The recovery block approach to software fault tolerance
– A comparison between n-version programming and recovery

blocks
– Dynamic redundancy and exceptions
– Safety, reliability and dependability

© Burns and Welling, 2001

Scope

Four sources of faults which can result in system failure:

n Inadequate specification — not covered in this course
n Design errors in software — covered now
n Processor failure — not covered in course, see book
n Interference on the communication subsystem — not

covered in course, see book

© Burns and Welling, 2001

Reliability, Failure and Faults

n The reliability of a system is a measure of the success
with which it conforms to some authoritative
specification of its behaviour

n When the behaviour of a system deviates from that
which is specified for it, this is called a failure

n Failures result from unexpected problems internal to the
system which eventually manifest themselves in the
system's external behaviour

n These problems are called errors and their mechanical
or algorithmic cause are termed faults

n Systems are composed of components which are
themselves systems: hence
– > failure -> fault -> error -> failure -> fault

© Burns and Welling, 2001

Fault Types

n A transient fault starts at a particular time, remains in the
system for some period and then disappears

n E.g. hardware components which have an adverse
reaction to radioactivity

n Many faults in communication systems are transient
n Permanent faults remain in the system until they are

repaired; e.g., a broken wire or a software design error.
n Intermittent faults are transient faults that occur from

time to time
n E.g. a hardware component that is heat sensitive, it

works for a time, stops working, cools down and then
starts to work again

© Burns and Welling, 2001

Failure Modes

Failure mode

Value domain Timing domain Arbitrary
(Fail uncontrolled)

Constraint
error

Value
error

Early Omission Late

Fail silent Fail stop Fail controlled

© Burns and Welling, 2001

Approaches to Achieving Reliable Systems

n Fault prevention attempts to eliminate any possibility of
faults creeping into a system before it goes operational

n Fault tolerance enables a system to continue functioning
even in the presence of faults

n Both approaches attempt to produces systems which
have well-defined failure modes

© Burns and Welling, 2001

Fault Prevention

n Two stages: fault avoidance and fault removal
n Fault avoidance attempts to limit the introduction of

faults during system construction by:
– use of the most reliable components within the given cost and

performance constraints
– use of thoroughly-refined techniques for interconnection of

components and assembly of subsystems
– packaging the hardware to screen out expected forms of

interference.
– rigorous, if not formal, specification of requirements
– use of proven design methodologies
– use of languages with facilities for data abstraction and

modularity
– use of software engineering environments to help manipulate

software components and thereby manage complexity

© Burns and Welling, 2001

Fault Removal

n In spite of fault avoidance, design errors in both hardware
and software components will exist

n Fault removal: procedures for finding and removing the
causes of errors; e.g. design reviews, program
verification, code inspections and system testing

n System testing can never be exhaustive and remove all
potential faults
– A test can only be used to show the presence of faults, not their

absence.
– It is sometimes impossible to test under realistic conditions
– most tests are done with the system in simulation mode and it is

difficult to guarantee that the simulation is accurate
– Errors that have been introduced at the requirements stage of the

system's development may not manifest themselves until the
system goes operational

© Burns and Welling, 2001

Failure of Fault Prevention Approach

n In spite of all the testing and verification techniques,
hardware components will fail; the fault prevention
approach will therefore be unsuccessful when
– either the frequency or duration of repair times are

unacceptable, or
– the system is inaccessible for maintenance and repair activities

n An extreme example of the latter is the crewless
spacecraft Voyager

n Alternative is Fault Tolerance

© Burns and Welling, 2001

Levels of Fault Tolerance

n Full Fault Tolerance — the system continues to operate in
the presence of faults, albeit for a limited period, with no
significant loss of functionality or performance

n Graceful Degradation (fail soft) — the system continues to
operate in the presence of errors, accepting a partial
degradation of functionality or performance during recovery
or repair

n Fail Safe — the system maintains its integrity while
accepting a temporary halt in its operation

n The level of fault tolerance required will depend on the
application

n Most safety critical systems require full fault tolerance,
however in practice many settle for graceful degradation

© Burns and Welling, 2001

Graceful Degradation in an ATC System

Full functionality within
required response times

Minimum functionality
required to maintain basic
air traffic control

Emergency functionality to
provide separation between
aircraft only

Adjacent facility backup: used in the advent
of a catastrophic failure, e.g. earthquake

© Burns and Welling, 2001

Redundancy

n All fault-tolerant techniques rely on extra elements
introduced into the system to detect & recover from faults

n Components are redundant as they are not required in a
perfect system

n Often called protective redundancy
n Aim: minimise redundancy while maximising reliability,

subject to the cost and size constraints of the system
n Warning: the added components inevitably increase the

complexity of the overall system
n This itself can lead to less reliable systems
n E.g., first launch of the space shuttle
n It is advisable to separate out the fault-tolerant

components from the rest of the system

© Burns and Welling, 2001

Hardware Fault Tolerance

n Two types: static (or masking) and dynamic redundancy
n Static: redundant components are used inside a system to

hide the effects of faults; e.g. Triple Modular Redundancy
n TMR — 3 identical subcomponents and majority voting

circuits; the outputs are compared and if one differs from the
other two that output is masked out

n Assumes the fault is not common (such as a design error) but
is either transient or due to component deterioration

n To mask faults from more than one component requires NMR
n Dynamic: redundancy supplied inside a component which

indicates that the output is in error; provides an error detection
facility; recovery must be provided by another component

n E.g. communications checksums and memory parity bits

© Burns and Welling, 2001

Software Fault Tolerance

n Used for detecting design errors
n Static — N-Version programming
n Dynamic

– Detection and Recovery
– Recovery blocks: backward error recovery
– Exceptions: forward error recovery

© Burns and Welling, 2001

N-Version Programming

n Design diversity
n The independent generation of N (N > 2) functionally

equivalent programs from the same initial specification
n No interactions between groups
n The programs execute concurrently with the same

inputs and their results are compared by a driver
process

n The results (VOTES) should be identical, if different the
consensus result, assuming there is one, is taken to be
correct

© Burns and Welling, 2001

N-Version Programming

Version 2Version 1 Version 3

Driver
vote

status

votevote

status
status

© Burns and Welling, 2001

Vote Comparison

n To what extent can votes be compared?
n Text or integer arithmetic will produce identical results
n Real numbers => different values
n Need inexact voting techniques

© Burns and Welling, 2001

Consistent Comparison Problem

T3

> Tth

no

P3

> Pth

T1

> Tth

yes
P1

> Pth

yes

V1

T2

> Tth

yes
P2

no
> Pth

V2 V3

Each version
will produce a
different but
correct result

Even if use inexact
comparison techniques,
the problem occurs

© Burns and Welling, 2001

N-version programming depends on

n Initial specification — The majority of software faults stem
from inadequate specification? A specification error will
manifest itself in all N versions of the implementation

n Independence of effort — Experiments produce conflicting
results. Where part of a specification is complex, this leads to a
lack of understanding of the requirements. If these
requirements also refer to rarely occurring input data, common
design errors may not be caught during system testing

n Adequate budget — The predominant cost is software. A 3-
version system will triple the budget requirement and cause
problems of maintenance. Would a more reliable system be
produced if the resources potentially available for constructing
an N-versions were instead used to produce a single version?

military versus civil avionics industry

© Burns and Welling, 2001

Software Dynamic Redundancy

Four phases
n error detection — no fault tolerance scheme can be utilised

until the associated error is detected
n damage confinement and assessment — to what extent has

the system been corrupted? The delay between a fault
occurring and the detection of the error means erroneous
information could have spread throughout the system

n error recovery — techniques should aim to transform the
corrupted system into a state from which it can continue its
normal operation (perhaps with degraded functionality)

n fault treatment and continued service — an error is a
symptom of a fault; although damage repaired, the fault may
still exist

© Burns and Welling, 2001

Error Detection

n Environmental detection
– hardware — e.g. illegal instruction
– O.S/RTS — null pointer

n Application detection
– Replication checks
– Timing checks
– Reversal checks
– Coding checks
– Reasonableness checks
– Structural checks
– Dynamic reasonableness check

© Burns and Welling, 2001

Damage Confinement and Assessment

n Damage assessment is closely related to damage
confinement techniques used

n Damage confinement is concerned with structuring the
system so as to minimise the damage caused by a
faulty component (also known as firewalling)

n Modular decomposition provides static damage
confinement; allows data to flow through well-define
pathways

n Atomic actions provides dynamic damage confinement;
they are used to move the system from one consistent
state to another

© Burns and Welling, 2001

Error Recovery

n Probably the most important phase of any fault-
tolerance technique

n Two approaches: forward and backward
n Forward error recovery continues from an erroneous

state by making selective corrections to the system state
n This includes making safe the controlled environment

which may be hazardous or damaged because of the
failure

n It is system specific and depends on accurate
predictions of the location and cause of errors (i.e,
damage assessment)

n Examples: redundant pointers in data structures and the
use of self-correcting codes such as Hamming Codes

© Burns and Welling, 2001

Backward Error Recovery (BER)

n BER relies on restoring the system to a previous safe state
and executing an alternative section of the program

n This has the same functionality but uses a different
algorithm (c.f. N-Version Programming) and therefore no
fault

n The point to which a process is restored is called a
recovery point and the act of establishing it is termed
checkpointing (saving appropriate system state)

n Advantage: the erroneous state is cleared and it does not
rely on finding the location or cause of the fault

n BER can, therefore, be used to recover from unanticipated
faults including design errors

n Disadvantage: it cannot undo errors in the environment!

© Burns and Welling, 2001

The Domino Effect

n With concurrent processes that interact with each other,
BER is more complex Consider:

R22

R21

R13

R12

R11

IPC4

IPC3

IPC2

IPC1

Ex
ec

ut
io

n
tim

e

Terror

P1 P2
If the error is detected in
P1 rollback to R13

If the error is detected in
P2 ?

© Burns and Welling, 2001

Fault Treatment and Continued Service

n ER returned the system to an error-free state; however, the error
may recur; the final phase of F.T. is to eradicate the fault from the
system

n The automatic treatment of faults is difficult and system specific
n Some systems assume all faults are transient; others that error

recovery techniques can cope with recurring faults
n Fault treatment can be divided into 2 stages: fault location and

system repair
n Error detection techniques can help to trace the fault to a

component. For, hardware the component can be replaced
n A software fault can be removed in a new version of the code
n In non-stop applications it will be necessary to modify the program

while it is executing!

© Burns and Welling, 2001

The Recovery Block approach to FT

n Language support for BER
n At the entrance to a block is an automatic recovery point and

at the exit an acceptance test
n The acceptance test is used to test that the system is in an

acceptable state after the block’s execution (primary module)
n If the acceptance test fails, the program is restored to the

recovery point at the beginning of the block and an
alternative module is executed

n If the alternative module also fails the acceptance test, the
program is restored to the recovery point and yet another
module is executed, and so on

n If all modules fail then the block fails and recovery must take
place at a higher level

© Burns and Welling, 2001

Recovery Block Syntax

n Recovery blocks can be nested

n If all alternatives in a nested recovery block fail the acceptance
test, the outer level recovery point will be restored and an
alternative module to that block executed

ensure <acceptance test>
by
 <primary module>
else by
 <alternative module>
else by
 <alternative module>
 ...
else by
 <alternative module>
else error

© Burns and Welling, 2001

Recovery Block Mechanism

Establish
Recovery

Point

Any
Alternatives

Left?

Evaluate
Acceptance

Test

Restore
Recovery

Point

Execute
Next

Alternative

Discard
Recovery

Point

Fail Recovery Block

Yes

No

Pass

Fail

© Burns and Welling, 2001

Example: Solution to Differential Equation

n Explicit Kutta Method fast but inaccurate when equations are
stiff

n Implicit Kutta Method more expensive but can deal with stiff
equations

n The above will cope with all equations
n It will also potentially tolerate design errors in the Explicit

Kutta Method if the acceptance test is flexible enough

ensure Rounding_err_has_acceptable_tolerance
by
 Explicit Kutta Method
else by
 Implicit Kutta Method

 else error

© Burns and Welling, 2001

Nested Recovery Blocks

ensure rounding_err_has_acceptable_tolerance
by
 ensure sensible_value
 by
 Explicit Kutta Method
 else by
 Predictor-Corrector K-step Method
 else error
else by
 ensure sensible_value
 by
 Implicit Kutta Method
 else by
 Variable Order K-Step Method
 else error
else error

© Burns and Welling, 2001

The Acceptance Test

n The acceptance test provides the error detection
mechanism which enables the redundancy in the system
to be exploited

n The design of the acceptance test is crucial to the
efficacy of the RB scheme

n There is a trade-off between providing comprehensive
acceptance tests and keeping overhead to a minimum,
so that fault-free execution is not affected

n Note that the term used is acceptance not correctness;
this allows a component to provide a degraded service

n All the previously discussed error detection techniques
discussed can be used to form the acceptance tests

n However, care must be taken as a faulty acceptance test
may lead to residual errors going undetected

© Burns and Welling, 2001

N-Version Programming vs Recovery Blocks

n Static (NV) versus dynamic redundancy (RB)
n Design overheads — both require alternative

algorithms, NV requires driver, RB requires acceptance
test

n Runtime overheads — NV requires N * resources, RB
requires establishing recovery points

n Diversity of design — both susceptible to errors in
requirements

n Error detection — vote comparison (NV) versus
acceptance test(RB)

n Atomicity — NV vote before it outputs to the
environment, RB must be structure to only output
following the passing of an acceptance test

© Burns and Welling, 2001

Dynamic Redundancy and Exceptions

n An exception can be defined as the occurrence of an error
n Bringing an exception to the attention of the invoker of the

operation which caused the exception, is called raising (or
signally or throwing) the exception

n The invoker's response is called handling (or catching) the
exception

n Exception handling is a forward error recovery
mechanism, as there is no roll back to a previous state;
instead control is passed to the handler so that recovery
procedures can be initiated

n However, the exception handling facility can be used to
provide backward error recovery

© Burns and Welling, 2001

Exceptions

Exception handling can be used to:

n cope with abnormal conditions arising in the
environment

n enable program design faults to be tolerated
n provide a general-purpose error-detection and recovery

facility

© Burns and Welling, 2001

Ideal Fault-Tolerant Component
Interface

Exception
Failure

Exception

Interface
Exception

Failure
Exception

Service
Request

Normal
Response

Service
Request

Normal
Response

Normal Activity Exception Handlers

Return to Normal
Service

Internal
Exception

© Burns and Welling, 2001

Safety and Reliability

n Safety: freedom from those conditions that can cause
death, injury, occupational illness, damage to (or loss of)
equipment (or property), or environmental harm
– By this definition, most systems which have an element of risk

associated with their use as unsafe

n A mishap is an unplanned event or series of events that
can result in death, injury, etc.

n Reliability: a measure of the success with which a
system conforms to some authoritative specification of
its behaviour.

n Safety is the probability that conditions that can lead to
mishaps do not occur whether or not the intended
function is performed

© Burns and Welling, 2001

Safety

n E.g., measures which increase the likelihood of a
weapon firing when required may well increase the
possibility of its accidental detonation.

n In many ways, the only safe airplane is one that never
takes off, however, it is not very reliable.

n As with reliability, to ensure the safety requirements of
an embedded system, system safety analysis must be
performed throughout all stages of its life cycle
development.

© Burns and Welling, 2001

Aspects of Dependability

Dependability

Available Reliable Safe Confidential Integral Maintainable

Readiness
for Usage

Continuity
of Service
Delivery

Non-occurrence of
Catastrophic

Consequences

Non-
occurrence of
unauthorized
disclosure of
information

Non-
occurrence of

improper
alteration if
information

Aptitude to
undergo

repairs of
evolutions

© Burns and Welling, 2001

Dependability Terminology

Dependability

Availability

Confidentiality

Reliability

Safety

Integrity

Maintainability

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

Failures

Attributes

Means

Impairments

© Burns and Welling, 2001

Summary

n Reliability: a measure of the success with which the system
conforms to some authoritative specification of its behaviour

n When the behaviour of a system deviates from that which is
specified for it, this is called a failure

n Failures result from faults
n Faults can be accidentally or intentionally introduced into a

system
n They can be transient, permanent or intermittent
n Fault prevention consists of fault avoidance and fault removal
n Fault tolerance involves the introduction of redundant

components into a system so that faults can be detected and
tolerated

© Burns and Welling, 2001

Summary

n N-version programming: the independent generation of N
(where N >= 2) functionally equivalent programs from the
same initial specification

n Based on the assumptions that a program can be
completely, consistently and unambiguously specified, and
that programs which have been developed independently
will fail independently

n Dynamic redundancy: error detection, damage confinement
and assessment, error recovery, and fault treatment and
continued service

n Atomic actions to aid damage confinement

© Burns and Welling, 2001

Summary

n With backward error recovery, it is necessary for
communicating processes to reach consistent recovery
points to avoid the domino effect

n For sequential systems, the recovery block is an
appropriate language concept for BER

n Although forward error recovery is system specific,
exception handling has been identified as an
appropriate framework for its implementation

n The concept of an ideal fault tolerant component was
introduced which used exceptions

n The notions of software safety and dependability have
been introduced

