Characterlstl CS of a RTS

Large and complex

Concurrent control of separate system components
Facilities to interact with special purpose hardware
Guaranteed response times

Extreme reliability

Efficient implementation

© Burnsand Welling, 2001

Rellabl Ity and Fault Tolerance

m Goal
— To understand the factors which affect the reliability of a system

and how software design faults can be tolerated.

m Topics

Reliability, failure and faults

Failure modes

Fault prevention and fault tolerance
N-Version programming

Software dynamic redundancy

The recovery block approach to software fault tolerance
A comparison between n-version programming and recovery

blocks
Dynamic redundancy and exceptions
Safety, reliability and dependability

© Burnsand Welling, 2001

Scope

Four sources of faults which can result in system failure:

m |Inadequate specification — not covered in this course
m Design errors in software — covered now

m Processor fallure — not covered in course, see book
N

Interference on the communication subsystem — not
covered in course, see book

© Burnsand Welling, 2001

Reliability, Fallure and Faults

The reliability of a system is a measure of the success
with which it conforms to some authoritative
specification of its behaviour

When the behaviour of a system deviates from that
which is specified for it, this is called a failure

Failures result from unexpected problems internal to the
system which eventually manifest themselves in the
system's external behaviour

These problems are called errors and their mechanical
or algorithmic cause are termed faults

Systems are composed of components which are
themselves systems: hence
— > failure -> fault -> error -> failure -> fault

© Burnsand Welling, 2001

Fault Types

A transient fault starts at a particular time, remains in the
system for some period and then disappears

E.g. hardware components which have an adverse
reaction to radioactivity

Many faults in communication systems are transient

Permanent faults remain in the system until they are
repaired; e.g., a broken wire or a software design error.

Intermittent faults are transient faults that occur from
time to time

E.g. a hardware component that is heat sensitive, it
works for a time, stops working, cools down and then
starts to work again

© Burnsand Welling, 2001

Fallure I\/Iod

Fail ure mode
Value domain Timing domal n Arbltrary
(Fail uncontrolled)
Condraint Value Ealy Omisson
error error
v
Fail stop Fail controlled

Fall slent

Approach esto Achlevmg Rellable Systems

m Fault prevention attempts to eliminate any possibility of
faults creeping into a system before it goes operational

m Fault tolerance enables a system to continue functioning
even in the presence of faults

m Both approaches attempt to produces systems which
have well-defined failure modes

© Burnsand Welling, 2001

Fault Preventlon

m Two stages: fault avoidance and fault removal

m Fault avoidance attempts to limit the introduction of
faults during system construction by:

use of the most reliable components within the given cost and
performance constraints

use of thoroughly-refined techniques for interconnection of
components and assembly of subsystems

packaging the hardware to screen out expected forms of
Interference.

rigorous, if not formal, specification of requirements
use of proven design methodologies

use of languages with facilities for data abstraction and
modularity

use of software engineering environments to help manipulate
software components and thereby manage complexity

© Burnsand Welling, 2001

Fault Removal

m |n spite of fault avoidance, design errors in both hardware
and software components will exist

m Fault removal: procedures for finding and removing the
causes of errors; e.g. design reviews, program
verification, code inspections and system testing

m System testing can never be exhaustive and remove all
potential faults

A test can only be used to show the presence of faults, not their
absence.

It is sometimes impossible to test under realistic conditions

most tests are done with the system in simulation mode and it is
difficult to guarantee that the simulation is accurate

Errors that have been introduced at the requirements stage of the
system's development may not manifest themselves until the
system goes operational

© Burnsand Welling, 2001

Fallure of Fault Preventlon Approach

m |n spite of all the testing and verification techniques,

hardware components will fail; the fault prevention
approach will therefore be unsuccessful when
— either the frequency or duration of repair times are

unacceptable, or
the system is inaccessible for maintenance and repair activities

m An extreme example of the latter is the crewless
spacecraft Voyager

m Alternative Is Fault Tolerance

© Burnsand Welling, 2001

Levels of Fault Tolerance

Full Fault Tolerance — the system continues to operate in
the presence of faults, albeit for a limited period, with no
significant loss of functionality or performance

Graceful Degradation (fail soft) — the system continues to
operate in the presence of errors, accepting a partial
degradation of functionality or performance during recovery
or repair

Fail Safe — the system maintains its integrity while
accepting a temporary halt in its operation

The level of fault tolerance required will depend on the
application

Most safety critical systems require full fault tolerance,
however in practice many settle for graceful degradation

© Burnsand Welling, 2001

radation in an ATC Syst

&

Graceful D
Full functionality within
required response times

Emergency functionality to
provide separation between

aircraft only

Minimum functionality

required to maintain basic
air traffic control l I
Adjacent facility backup: used in the advent
of a catastrophic failure, e.g. earthquake

© Burnsand Welling, 2001

Redundancy

All fault-tolerant techniques rely on extra elements
Introduced into the system to detect & recover from faults

Components are redundant as they are not required in a
perfect system

Often called protective redundancy

Aim: minimise redundancy while maximising reliability,
subject to the cost and size constraints of the system

Warning: the added components inevitably increase the
complexity of the overall system

This itself can lead to less reliable systems
E.g., first launch of the space shuttle

It is advisable to separate out the fault-tolerant
components from the rest of the system

© Burnsand Welling, 2001

Hardware Fault Tolerance

Two types: static (or masking) and dynamic redundancy

Static: redundant components are used inside a system to
hide the effects of faults; e.g. Triple Modular Redundancy

TMR — 3 identical subcomponents and majority voting
circuits; the outputs are compared and if one differs from the
other two that output iIs masked out

Assumes the fault is not common (such as a design error) but
IS either transient or due to component deterioration

To mask faults from more than one component requires NMR

Dynamic: redundancy supplied inside a component which
Indicates that the output is in error; provides an error detection
facility; recovery must be provided by another component

E.g. communications checksums and memory parity bits

© Burnsand Welling, 2001

N Software Fault Tolerance

m Used for detecting design errors
m Static — N-Version programming

m Dynamic
— Detection and Recovery
— Recovery blocks: backward error recovery
— Exceptions: forward error recovery

© Burnsand Welling, 2001

N-V

| ©

sion Programmin

Design diversity

The independent generation of N (N > 2) functionally
equivalent programs from the same initial specification

No interactions between groups

The programs execute concurrently with the same
Inputs and their results are compared by a driver
process

The results (VOTES) should be identical, if different the
consensus result, assuming there is one, Is taken to be
correct

© Burnsand Welling, 2001

© Burnsand Welling, 2001

Vote Comparlson

m To what extent can votes be compared?
m Text or integer arithmetic will produce identical results

m Real numbers => different values
m Need inexact voting techniques

© Burnsand Welling, 2001

Consistent Comparison Problem

Tl 12 l T3 Each verson
will produce a
o different but
correct result
y€s yes
P1 P2 P3

no

Even if use inexact
comparison techniques,

M \ 4 the problem occurs
V 1 V2 V3 © Burnsand Welling, 2001

YES

N-version programming depends on

m [nitial specification — The majority of software faults stem
from inadequate specification? A specification error will
manifest itself in all N versions of the implementation

m Independence of effort — Experiments produce conflicting
results. Where part of a specification is complex, this leads to a
lack of understanding of the requirements. If these
requirements also refer to rarely occurring input data, common
design errors may not be caught during system testing

m Adequate budget — The predominant cost is software. A 3-
version system will triple the budget requirement and cause
problems of maintenance. Would a more reliable system be
produced if the resources potentially available for constructing
an N-versions were instead used to produce a single version?

military versus civil avionicsindustry

© Burnsand Welling, 2001

Softwa e Dynam CRedundancy

Four phases

error detection — no fault tolerance scheme can be utilised
until the associated error Is detected

damage confinement and assessment — to what extent has
the system been corrupted? The delay between a fault
occurring and the detection of the error means erroneous
iInformation could have spread throughout the system

error recovery — techniques should aim to transform the
corrupted system into a state from which it can continue its
normal operation (perhaps with degraded functionality)

fault treatment and continued service — an error is a
symptom of a fault; although damage repaired, the fault may
still exist

© Burnsand Welling, 2001

Error Detection

m Environmental detection

— hardware — e.q. illegal instruction
— O.S/RTS — null pointer

m Application detection
— Replication checks
— Timing checks
— Reversal checks
— Coding checks
— Reasonableness checks
— Structural checks
— Dynamic reasonableness check

© Burnsand Welling, 2001

Damage Confl nement and Assessment

m Damage assessment is closely related to damage
confinement techniques used

Damage confinement is concerned with structuring the
system so as to minimise the damage caused by a
faulty component (also known as firewalling)

Modular decomposition provides static damage
confinement; allows data to flow through well-define

pathways
Atomic actions provides dynamic damage confinement;
they are used to move the system from one consistent
state to another

© Burnsand Welling, 2001

Error Recovery

Probably the most important phase of any fault-

tolerance technique
Two approaches: forward and backward

Forward error recovery continues from an erroneous

state by making selective corrections to the system state
This includes making safe the controlled environment
which may be hazardous or damaged because of the

failure

It is system specific and depends on accurate
predictions of the location and cause of errors (i.e,

damage assessment)

Examples: redundant pointers in data structures and the
use of self-correcting codes such as Hamming Codes

Backward Error Recovery (BER)

BER relies on restoring the system to a previous safe state
and executing an alternative section of the program

This has the same functionality but uses a different
algorithm (c.f. N-Version Programming) and therefore no
fault

The point to which a process is restored is called a
recovery point and the act of establishing it is termed
checkpointing (saving appropriate system state)

Advantage: the erroneous state is cleared and it does not
rely on finding the location or cause of the fault

BER can, therefore, be used to recover from unanticipated
faults including design errors

Disadvantage: it cannot undo errors in the environment!

© Burnsand Welling, 2001

The Domln Effect

m With concurrent processes that interact with each other,
BER Iis more complex Consider:

Pl I:)2
|f the error is detected in (R_}j
P1 rollback to R13 141 IPC,
If the error is detected in R Q
P2 7 p |PC, 21 g
S
OIS
o)
n

© Burnsand ing, 2001

error

Fault Treatment and Continued Service

m ER returned the system to an error-free state; however, the error
may recur; the final phase of F.T. is to eradicate the fault from the
system

m The automatic treatment of faults is difficult and system specific

m Some systems assume all faults are transient; others that error
recovery technigues can cope with recurring faults

m Fault treatment can be divided into 2 stages: fault location and
system repair

m Error detection techniques can help to trace the fault to a
component. For, hardware the component can be replaced

m A software fault can be removed in a new version of the code

m |n non-stop applications it will be necessary to modify the program
while it is executing!

© Burnsand Welling, 2001

The Recovery Block approach to FT

m Language support for BER

m At the entrance to a block is an automatic recovery point and
at the exit an acceptance test

m The acceptance test is used to test that the system is in an
acceptable state after the block’s execution (primary module)

m |f the acceptance test fails, the program is restored to the
recovery point at the beginning of the block and an
alternative module Is executed

m If the alternative module also fails the acceptance test, the
program is restored to the recovery point and yet another
module Is executed, and so on

m If all modules fail then the block fails and recovery must take
place at a higher level

© Burnsand Welling, 2001

Recovery Block Syntax _

ensure <acceptance test>

by

<primary nodul e>
el se by

<alternative nodul e>
el se by

<al ternati ve nodul e>

el se by
<al ternati ve nodul e>
el se error

m Recovery blocks can be nested

m If all alternatives in a nested recovery block fail the acceptance
test, the outer level recovery point will be restored and an
alternative module to that block executed

© Burnsand Welling, 2001

- Recovery Block Mechanism

Restore
Recovery |«
Point
Fail
Establish Execute Discard
—>| Recover Next Recovery|—»
Point Alternative Point

Fail Recovery Block

© Burnsand Welling, 2001

Solution to Differential Equation

Example:

ensure Roundi ng_err_has_accept abl e _tol erance

by
Explicit Kutta Method

el se by
| mplicit Kutta Met hod

el se error

Explicit Kutta Method fast but inaccurate when equations are

O
stiff

m Implicit Kutta Method more expensive but can deal with stiff
equations

m The above will cope with all equations

m It will also potentially tolerate design errors in the Explicit
Kutta Method if the acceptance test is flexible enough

Nested Recovery Blocks

ensure roundi ng_err_has_accept abl e tol erance

by
ensure sensi bl e val ue
by
Explicit Kutta Method
el se by

Predi ctor-Corrector K-step Mt hod
el se error
el se by
ensure sensi bl e val ue
by
| mplicit Kutta Met hod
el se by
Vari abl e Order K-Step Met hod
el se error
el se error

© Burnsand Welling, 2001

The Acceptance Test

m The acceptance test provides the error detection
mechanism which enables the redundancy in the system

to be exploited
m The design of the acceptance test is crucial to the
efficacy of the RB scheme
m There is a trade-off between providing comprehensive
acceptance tests and keeping overhead to a minimum,

so that fault-free execution is not affected
m Note that the term used is acceptance not correctness;
this allows a component to provide a degraded service
m All the previously discussed error detection techniques

discussed can be used to form the acceptance tests

m However, care must be taken as a faulty acceptance test

may lead to residual errors going undetected

N-Version

Static (NV) versus dynamic redundancy (RB)
Design overheads — both require alternative

Programming vs Recovery Blocks

algorithms, NV requires driver, RB requires acceptance

test

Runtime overheads — NV requires N * resources, RB

requires establishing recovery points

Diversity of design — both susceptible to errors in

requirements

Error detection — vote comparison (NV) versus
acceptance test(RB)

Atomicity — NV vote before it outputs to the

environment, RB must be structure to only output

following the passing of an acceptance test

© Burnsand Welling, 2001

Dynamlc Redundancy and Exceptlons

m An exception can be defined as the occurrence of an error

m Bringing an exception to the attention of the invoker of the
operation which caused the exception, is called raising (or
signally or throwing) the exception

m The invoker's response is called handling (or catching) the
exception

m Exception handling is a forward error recovery
mechanism, as there is no roll back to a previous state;
Instead control is passed to the handler so that recovery
procedures can be initiated

m However, the exception handling facility can be used to
provide backward error recovery

© Burnsand Welling, 2001

Exceptions

Exception handling can be used to:

m cope with abnormal conditions arising in the

environment
m enable program design faults to be tolerated

m provide a general-purpose error-detection and recovery

facility

© Burnsand Welling, 2001

~ldeal Fault-Tolerant Component

Service Normal | nterface Failure
Request Response Exception Exception

Return to Normal
Service

Normal Activity Exception Handlers

Internal
Exception

Service Normal | nterface Failure
Request Response Exception Exception

© Burnsand Welling, 2001

Safety and Reliability

m Safety: freedom from those conditions that can cause
death, injury, occupational iliness, damage to (or loss of)
equipment (or property), or environmental harm

— By this definition, most systems which have an element of risk
associated with their use as unsafe

m A mishap is an unplanned event or series of events that
can result in death, injury, etc.

m Reliability: a measure of the success with which a
system conforms to some authoritative specification of
Its behaviour.

m Safety Is the probability that conditions that can lead to
mishaps do not occur whether or not the intended
function is performed

© Burnsand Welling, 2001

Safety

m E.g., measures which increase the likelihood of a
weapon firing when required may well increase the
possibility of its accidental detonation.

m In many ways, the only safe airplane is one that never
takes off, however, it is not very reliable.

m As with reliability, to ensure the safety requirements of
an embedded system, system safety analysis must be
performed throughout all stages of its life cycle
development.

© Burnsand Welling, 2001

Aspects of L of Depen dabil |ty

Dependability

Readiness Continuity

for Usage

v.
Avallable

of Service
Delivery

v
Reliable

Non-occurrence of

Catastrophic
Consequences

v
Safe

Non- Non- Aptitudeto
occurrence of occurrence of undergo
unauthorized mproper repairs of
disclosure of aterationif evolutions

information information
v

Confidential Integral Maintainable

© Burnsand Welling, 2001

Jep

Dependability —

endability Terminology

—ATttributes

— Means

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Fault Prevention

— | mpairments

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

© Burnsand Welling, 2001

Failures

Summary

Reliability: a measure of the success with which the system
conforms to some authoritative specification of its behaviour

When the behaviour of a system deviates from that which is
specified for it, this is called a failure

Failures result from faults
Faults can be accidentally or intentionally introduced into a

system
They can be transient, permanent or intermittent

Fault prevention consists of fault avoidance and fault removal

Fault tolerance involves the introduction of redundant
components into a system so that faults can be detected and

tolerated

© Burnsand Welling, 2001

Summary

m N-version programming: the independent generation of N
(where N >= 2) functionally equivalent programs from the
same initial specification

m Based on the assumptions that a program can be
completely, consistently and unambiguously specified, and
that programs which have been developed independently
will fail independently

m Dynamic redundancy: error detection, damage confinement
and assessment, error recovery, and fault treatment and
continued service

m Atomic actions to aid damage confinement

© Burnsand Welling, 2001

Summary

With backward error recovery, it is necessary for
communicating processes to reach consistent recovery
points to avoid the domino effect

For sequential systems, the recovery block is an
appropriate language concept for BER

Although forward error recovery is system specific,
exception handling has been identified as an
appropriate framework for its implementation

The concept of an ideal fault tolerant component was
Introduced which used exceptions

The notions of software safety and dependability have
been introduced

© Burnsand Welling, 2001

