
© Alan Burns and Andy Wellings, 2001

Exceptions and Exception Handling

n Goal:
– To illustrate the various models of exception handling and to

show how exception handling can be used as a framework for
implementing fault-tolerant systems

n Structure:
– Exception handling in older real-time languages
– Modern exception handling
– Exception handling in Ada, Java and C
– Recovery blocks and exceptions
– Summary

© Alan Burns and Andy Wellings, 2001

Introduction

n There are a number of general requirements for an
exception handling facility:
– R1: The facility must be simple to understand and use
– R2: The code for exception handling should not obscure

understanding of the program's normal error-free operation
– R3: The mechanism should be designed so that run-time

overheads are incurred only when handling an exception
– R4: The mechanism should allow the uniform treatment of

exceptions detected both by the environment and by the
program

– R5: the exception mechanism should allow recovery actions to
be programmed

© Alan Burns and Andy Wellings, 2001

EH in Older Real-time Languages

n Unusual return value or error return from a procedure or
a function.

n C supports this approach

if(function_call(parameters) == AN_ERROR) {
 -- error handling code
} else {

 -- normal return code
};

n Meets the simplicity requirement R1 and allows
recovery actions to be programmed (R5)

n Fails to satisfy R2, R3 and R4; the code is obtrusive, it
entails overheads every time it is used, and it is not
clear how to handle errors detected by the environment

© Alan Burns and Andy Wellings, 2001

EH: Forced Branch
n Used mainly in assembly languages,

– the typical mechanism is for subroutines to skip return
– the instruction following the subroutine call is skipped to indicate the

presence/absence of an error
– achieved by incrementing its return address (program counter) by the

length of a simple jump instruction
– where more than one exceptional return is possible, the PC can be

manipulated accordingly
jsr pc, PRINT_CHAR
jmp IO_ERROR
jmp DEVICE_NOT_ENABLED
normal processing

n Approach incurs little overhead(R3) and enables recovery
actions to be programmed(R5). It can lead to obscure
program structures and, therefore, violates requirements R1
and R2. R4 also cannot be satisfied

© Alan Burns and Andy Wellings, 2001

EH: Non-local Goto
n A high-level language version of a forced branch which

uses label variables; e.g. RTL/2 - a non-local goto
svc data rrerr label erl; %a label variable % enddata
proc WhereErrorIsDetected();
 ...
 goto erl;
 ...
endproc;
proc Caller();
 ...
 WhereErrorIsDetected();
 ...
endproc;
proc main();
 ...
restart:
 ...
 erl := restart;
 ...
 Caller();
 ...
end proc;

© Alan Burns and Andy Wellings, 2001

EH: Non-local Goto

n When used in this way, the goto is more than just a
jump; it implies an abnormal return from a procedure

n The stack must be unwound, until the environment
restored is that of the procedure containing the
declaration of the label

n The penalty of unwinding the stack is only incurred
when an error has occurred so requirement R3 has
been satisfied

n Although the use of gotos is very flexible (satisfying R4
and R5), they can lead to very obscure programs; they
fail to satisfy the requirements R1 and R2

© Alan Burns and Andy Wellings, 2001

Procedure Variables

n With goto, the control flow of the program has been broken
n In RTL/2, the error label is generally used for

unrecoverable errors and an error procedure variable used
when control should be returned to the point where the
error originated

svc data rrerr;
 label erl;
 proc(int) erp; % erp is a procedure variable %

enddata;

proc recover(int);
 ...
endproc;

proc WhereErrorIsDetected();
 ...
 if recoverable then erp(n)
 else goto erl end;
 ...
endproc;

proc Caller();
 ...
 WhereErrorIsDetected();
 ...
endproc;

proc main();
 ...
 erl := fail;
 erp := recover;
 ...
 Caller();
 ...
fail:
 ...
end proc

Programs can become very
difficult to understand and
maintain

These default functions can be
re-defined by the programmer.

Recently, languages like C++
provide default functions (within
the context of language-level
exception handling) which are
called when no handler for an
exception can be found

© Alan Burns and Andy Wellings, 2001

Exceptions and their Representation

n Environmental detection and application error detection

n A synchronous exception is raised as an immediate
result of a process attempting an inappropriate operation

n An asynchronous exception is raised some time after the
operation causing the error; it may be raised in the
process which executed the operation or in another
process

n Asynchronous exceptions are often called asynchronous
notifications or signals and will be considered later

© Alan Burns and Andy Wellings, 2001

Classes of Exceptions

n Detected by the environment and raised synchronously;
e.g. array bounds error or divide by zero

n Detected by the application and raised synchronously, e.g.
the failure of a program-defined assertion check

n Detected by the environment and raised asynchronously;
e.g. an exception raised due to the failure of some health
monitoring mechanism

n Detected by the application and raised asynchronously;
e.g. one process may recognise that an error condition has
occurred which will result in another process not meeting
its deadline or not terminating correctly

© Alan Burns and Andy Wellings, 2001

Synchronous Exceptions

n There are two models for their declaration.
– a constant name which needs to be explicitly declared, e.g. Ada
– an object of a particular type which may or may not need to be

explicitly declared; e.g. Java

n Ada: e.g., the exceptions that can be raised by the Ada
RTS are declared in package Standard:

package Standard is
 ...
 Constraint_Error : exception;
 Program_Error : exception;
 Storage_Error : exception;
 Tasking_Error : exception;
 ...
end Standard;

n This package is visible to all Ada programs.

© Alan Burns and Andy Wellings, 2001

The Domain of an Exception Handler

n Within a program, there may be several handlers for a
particular exception

n Associated with each handler is a domain which
specifies the region of computation during which, if an
exception occurs, the handler will be activated

n The accuracy with which a domain can be specified will
determine how precisely the source of the exception can
be located

© Alan Burns and Andy Wellings, 2001

Ada

n In a block structured language, like Ada, the domain is normally
the block.
declare

 subtype Temperature is Integer range 0 .. 100;
begin
 -- read temperature sensor and calculate its value
exception
 -- handler for Constraint_Error
end;

n Procedures, functions, accept statements etc. can also act as
domains

© Alan Burns and Andy Wellings, 2001

Java

n Not all blocks can have exception handlers. Rather, the
domain of an exception handler must be explicitly indicated
and the block is considered to be guarded; in Java this is
done using a try-block

try {
 // statements which may raise exceptions

}
catch (ExceptionType e) {

 // handler for e
}

© Alan Burns and Andy Wellings, 2001

Granularity of Domain
n Is the granularity of the block is inadequate?

declare
 subtype Temperature is Integer range 0 .. 100;
 subtype Pressure is Integer range 0 .. 50;
 subtype Flow is Integer range 0 .. 200;

begin
 -- read temperature sensor and calculate its value
 -- read pressure sensor and calculate its value
 -- read flow sensor and calculate its value
 -- adjust temperature, pressure and flow
 -- according to requirements

exception
 -- handler for Constraint_Error

end;

n The problem for the handler is to decide which calculation
caused the exception to be raised

n Further difficulties arise when arithmetic overflow and
underflow can occur

declare -- First Solution: decrease block size
 subtype Temperature is Integer range 0 .. 100;
 subtype Pressure is Integer range 0 .. 50;
 subtype Flow is Integer range 0 .. 200;
begin
 begin
 -- read temperature sensor and calculate its value
 exception -- handler for Constraint_Error for temperature
 end;
 begin
 -- read pressure sensor and calculate its value
 exception -- handler for Constraint_Error for pressure
 end;
 begin
 -- read flow sensor and calculate its value
 exception -- handler for Constraint_Error for flow
 end;
 -- adjust temperature, pressure and flow according

-- to requirements
exception -- handler for other possible exceptions
end;
-- this is long-winded and tedious!

© Alan Burns and Andy Wellings, 2001

Solution 2: Allow exceptions to be handled at the statement level

-- NOT VALID Ada
declare
 subtype Temperature is Integer range 0 .. 100;
 subtype Pressure is Integer range 0 .. 50;
 subtype Flow is Integer range 0 .. 200;
begin
 Read_Temperature_Sensor;
 exception -- handler for Constraint_Error;
 Read_Pressure_Sensor;
 exception -- handler for Constraint_Error;
 Read_Flow_Sensor;
 exception -- handler for Constraint_Error;
 -- adjust temperature, pressure and flow
 -- according to requirements
end;
n The CHILL programming language has such a facility.
n But, it intermingles the EH code with the normal flow of

operation, which violates Requirement R2

© Alan Burns and Andy Wellings, 2001

Solution 3

n Allow parameters to be passed with the exceptions.
n With Java, this is automatic as the exception is an object

and, therefore, can contain as much information and the
programmer wishes

n In contrast, Ada provides a predefined procedure
Exception_Information which returns implementation-
defined details on the occurrence of the exception

© Alan Burns and Andy Wellings, 2001

Exception propagation

n If there is no handler associated with the block or
procedure
– regard it as a programmer error which is reported at compile

time
– but an exception raised in a procedure can only be handled

within the context from which the procedure was called
– eg, an exception raised in a procedure as a result of a failed

assertion involving the parameters

n CHILL requires that a procedure specifies which exceptions it
may raise (that is, not handle locally); the compiler can then
check the calling context for an appropriate handler

n Java allows a function to define which exceptions it can raise;
however, unlike CHILL, it does not require a handler to be
available in the calling context

© Alan Burns and Andy Wellings, 2001

Alternative Approach
n Look for handlers up the chain of invokers; this is called

propagating the exception — the Ada and Java approach
n A problem occurs where exceptions have scope; an

exception may be propagated outside its scope, thereby
making it impossible for a handler to be found

n Most languages provide a catch all exception handler
n An unhandled exception causes a sequential program to

be aborted
n If the program contains more than one process and a

particular process does not handle an exception it has
raised, then usually that process is aborted

n However, it is not clear whether the exception should be
propagated to the parent process

© Alan Burns and Andy Wellings, 2001

Resumption versus termination model

n Should the invoker of the exception continue its
execution after the exception has been handled

n If the invoker can continue, then it may be possible for
the handler to cure the problem that caused the
exception to be raised and for the invoker to resume as
if nothing has happened

n This is referred to as the resumption or notify model
n The model where control is not returned to the invoker is

called termination or escape
n Clearly it is possible to have a model in which the

handler can decide whether to resume the operation
which caused the exception, or to terminate the
operation; this is called the hybrid model

© Alan Burns and Andy Wellings, 2001

The Resumption Model

n Consider three procedures P, Q and R.
n P invokes Q which in turn invokes R.
n R raises an exception r which is handled by Q assuming

there is no local handler in R.
n The handler for r is Hr.
n In the course of handling r, Hr raises exception q which

is handled by Hq in procedure P (the caller of Q).
n Once this has been handled Hr continues its execution

and when finished R continues
n Most easily understood by viewing the handler as an

implicit procedure which is called when the exception is
raised

© Alan Burns and Andy Wellings, 2001

The Resumption Model

Hq

Hr

P

Q

R

P invokes Q

Q invokes R
R raises r

Hr raises q

Hq resumes
Hr

Hr
resumes R

© Alan Burns and Andy Wellings, 2001

The Resumption Model
n Problem: it is difficult to repair errors raised by the RTS
n Eg, an arithmetic overflow in the middle of a sequence of

complex expressions results in registers containing partial
evaluations; calling the handler overwrites these registers

n Pearl & Mesa support the resumption and termination models
n Implementing a strict resumption model is difficult, a

compromise is to re-execute the block associated with the
exception handler; Eiffel provides such a facility.

n Note that for such a scheme to work, the local variables of the
block must not be re-initialised on a retry

n The advantage of the resumption model comes when the
exception has been raised asynchronously and, therefore,
has little to do with the current process execution

© Alan Burns and Andy Wellings, 2001

The Termination Model

n In the termination model, when an exception has been
raised and the handler has been called, control does not
return to the point where the exception occurred

n Instead the block or procedure containing the handler is
terminated, and control is passed to the calling block or
procedure

n An invoked procedure, therefore, may terminate in one
of a number of conditions

n One of these is the normal condition, while the others
are exception conditions

n When the handler is inside a block, control is given to
the first statement following the block after the
exception has been handled

© Alan Burns and Andy Wellings, 2001

declare

 subtype Temperature is Integer range 0 .. 100;

begin
 ...
 begin
 -- read temperature sensor and calculate its value,
 -- may result in an exception being raised
 exception
 -- handler for Constraint_Error for temperature,
 -- once handled this block terminates
 end;
 -- code here executed when block exits normally
 -- or when an exception has been raised and handled.
exception
 -- handler for other possible exceptions
end;

The Termination Model

n With procedures, as opposed to blocks, the flow of control can quite
dramatically change

n Ada and Java support the termination model

© Alan Burns and Andy Wellings, 2001

The Termination Model
Procedure P

Procedure Q
Procedure RP invokes Q

Q invokes R

Exception r
raised

Handler sought

Handler
for r

Procedure terminates

© Alan Burns and Andy Wellings, 2001

The Hybrid Model

n With the hybrid model, it is up to the handler to decide if
the error is recoverable

n If it is, the handler can return a value and the semantics
are the same as in the resumption model

n If the error is not recoverable, the invoker is terminated
n The signal mechanisms of Mesa provides such a facility
n Eiffel also supports the restricted `retry' model

© Alan Burns and Andy Wellings, 2001

Exception Handling and Operating Systems

n Languages like Ada or Java will usually be executed on
top of an operating system

n These systems will detect certain synchronous error
conditions, eg, memory violation or illegal instruction

n This will usually result in the process being terminated;
however, many systems allow error recovery

n POSIX allows handlers to be called when these
exceptions are detected (called signals in POSIX)

n Once the signal is handled, the process is resumed at the
point where it was “interrupted” — hence POSIX supports
the resumption model

n If a language supports the termination model, the RTSS
must catch the error and manipulate the program state so
that the program can use the termination model

© Alan Burns and Andy Wellings, 2001

Exception Handling in Ada

n Ada supports: explicit exception declaration, the
termination model, propagation of unhandled
exceptions, and a limited form of exception parameters.

n Exception declared: either by language keyword:
stuck_valve : exception;

n or by the predefined package Ada.Exceptions which
defines a private type called Exception_Id

n Every exception declared by keyword has an associated
Exception_Id which can be obtained using the pre-
defined attribute Identity

package Ada.Exceptions is
 type Exception_Id is private;
 Null_Id : constant Exception_Id;
 function Exception_Name(Id : Exception_Id) return String;

 type Exception_Occurrence is limited private;
 Null_Occurrence : constant Exception_Occurrence;
 procedure Raise_Exception(E : in Exception_Id;

Message : in String := "");
 function Exception_Message(X :

 Exception_Occurrence) return String;
 procedure Reraise_Occurrence(X : in

 Exception_Occurrence);
 function Exception_Identity(X : Exception_Occurrence)

 return Exception_Id;
 function Exception_Name(X : Exception_Occurrence)

return String;
 function Exception_Information(X :

 Exception_Occurrence) return String;

private
 ... -- not specified by the language
end Ada.Exceptions;

© Alan Burns and Andy Wellings, 2001

Exception Declaration

with Ada.Exceptions;
with Valves;
package My_Exceptions is
 Id : Ada.Exceptions.Exception_Id :=

 Valves.Stuck_Valve'Identity;
end My_Exceptions;

n Applying the function Exception_Name to Id will now
return the string My_Exceptions.Id and not
Stuck_Valve

n An exception can be declared in the same place as any
other declaration and, like every other declaration, it has
scope

© Alan Burns and Andy Wellings, 2001

Raising an Exception

n If IO_Error was of type Exception_Id, it would have been
necessary to use Ada.Exceptions.Raise_Exception; this would
have allowed a textual string to be passed as a parameter to the
exception.

n Each individual raising of an exception is called an exception occurrence
n The handler can find the value of the Exception_Occurrence and used it

to determine more information about the cause of the exception

Exceptions may be raised explicitly

begin
 ...
 -- statements which request a device to
 -- perform some I/O
 if IO_Device_In_Error then
 raise IO_Error;
 end if; -- no else,as no return from raise
 ...
end;

© Alan Burns and Andy Wellings, 2001

Exception Handling

n Optional exception handlers can be declared at the end of
the block (or subprogram, accept statement or task)

n Each handler is a sequence of statements
declare
 Sensor_High, Sensor_Low, Sensor_Dead : exception;
begin
 -- statements which may cause the exceptions
exception
 when E: Sensor_High | Sensor_Low =>
 -- Take some corrective action
 -- if either sensor_high or sensor_low is raised.
 -- E contains the exception occurrence
 when Sensor_Dead =>
 -- sound an alarm if the exception
 -- sensor_dead is raised
end;

© Alan Burns and Andy Wellings, 2001

Exception Handling

n when others is used to avoid enumerating all possible
exception names

n Only allowed as the last choice and stands for all
exceptions not previously listed

declare
 Sensor_High, Sensor_Low, Sensor_Dead: exception;
begin
 -- statements which may cause exceptions
exception
 when Sensor_High | Sensor_Low =>
 -- take some corrective action
 when E: others =>
 Put(Exception_Name(E));
 Put_Line(" caught. Information is available is ");
 Put_Line(Exception_Information(E));
 -- sound an alarm
end;

© Alan Burns and Andy Wellings, 2001

Exception Handling

n An exception raised in an handler cannot be handled by
that handler or other handlers in the same block (or
procedure)

n Instead, the block is terminated and a handler sought in
the surrounding block or at the point of call for a
subprogram

© Alan Burns and Andy Wellings, 2001

Exception propagation

n If there is no handler in the enclosing block/subprogram/
accept statement, the exception is propagated

n For a block, the exception is raised in the enclosing block,
or subprogram.

n For a subprogram, it is raised at its point of call
n For an accept statement, it is raised in both the called and

the calling task
n Exception handlers provided in the initialisation section of

packages WILL NOT handle exceptions that are raised in
the execution of their nested subprograms

package Temperature_Control is
 subtype Temperature is Integer range 0 .. 100;
 Sensor_Dead, Actuator_Dead : exception;
 procedure Set_Temperature(New_Temp: Temperature);
end Temperature_Control;

package body Temperature_Control is
 procedure Set_Temperature(...) is
 begin ... raise; end Set_Temperature;

begin
 -- initialisation of package
 Set_Temperature(Initial_Reading);
exception
 when Actuator_Dead =>
 -- take some corrective action
end Temperature_Control;

© Alan Burns and Andy Wellings, 2001

Last wishes

n Often the significance of an exception is unknown to the
handler which needs to clean up any partial resource allocation

n Consider a procedure which allocates several devices.
procedure Allocate (Number : Devices) is
begin

 -- request each device be allocated in turn
 -- noting which requests are granted
exception

 when others =>
 -- deallocate those devices allocated
 raise; -- re-raise the exception
end Allocate;

n Used in this way, the procedure can be considered to
implement the failure atomicity property of an atomic action; all
the resources are allocated or none are

© Alan Burns and Andy Wellings, 2001

Difficulties with the Ada model of Exceptions

n Exceptions and packages
– Exceptions which are raised a package are declared its specification
– It is not known which subprograms can raise which exceptions
– The programmer must resort to enumerating all possible exceptions

every time a subprogram is called, or use of when others
– Writers of packages should indicate which subprograms can raise

which exceptions using comments

n Parameter passing
– Ada only allows strings to be passed to handlers

n Scope and propagation
– Exceptions can be propagated outside the scope of their declaration
– Such exception can only be trapped by when others
– They may go back into scope again when propagated further up the

dynamic chain; this is probably inevitable when using a block
structured language and exception propagation

© Alan Burns and Andy Wellings, 2001

Java Exceptions

n Java is similar to Ada in that it supports a termination
model of exception handling

n However, the Java model is integrated into the OO
model

n In Java, all exceptions are subclasses of the predefined
class java.lang.Throwable

n The language also defines other classes, for example:
Error, Exception, and RuntimeException

© Alan Burns and Andy Wellings, 2001

The Throwable Class Hierarchy

Throwable

Error Exception

LinkageError VirtualMachineError RuntimeErrors

User-Defined Exceptions
unchecked

checked

© Alan Burns and Andy Wellings, 2001

Example
public class IntegerConstraintError extends Exception
{
 private int lowerRange, upperRange, value;

 public IntegerConstraintError(int L, int U, int V)
 {
 super(); // call constructor on parent class
 lowerRange = L;
 upperRange = U;
 value = V;
 }

 public String getMessage()
 {
 return ("Integer Constraint Error: Lower Range " +
 java.lang.Integer.toString(lowerRange) + " Upper Range " +
 java.lang.Integer.toString(upperRange) + " Found " +
 java.lang.Integer.toString(value));
 }
}

import exceptionLibrary.IntegerConstraintError;

public class Temperature
{
 private int T;

 public Temperature(int initial) throws IntegerConstraintError
 // constructor
 {
 ...;
 }

 public void setValue(int V) throws IntegerConstraintError
 {
 ...;
 };

 public int readValue()
 {
 return T;
 };

 // both the constructor and setValue can throw an
 // IntegerConstraintError
};

class ActuatorDead extends Exception
{
 public String getMessage()
 { return ("Actuator Dead");}
};
class TemperatureController
{
 public TemperatureController(int T)
 throws IntegerConstraintError
 {
 currentTemperature = new Temperature(T);
 };
 Temperature currentTemperature;

 public void setTemperature(int T)
 throws ActuatorDead, IntegerConstraintError
 { currentTemperature.setValue(T); };

 int readTemperature()
 {
 return currentTemperature.readValue();
 }
};

© Alan Burns and Andy Wellings, 2001

Declaration

n In general, each function must specify a list of throwable
checked exceptions throw A, B, C
– in which case the function may throw any exception in this list

and any of the unchecked exceptions.

n A, B and C must be subclasses of Exception
n If a function attempts to throw an exception which is not

allowed by its throws list, then a compilation error
occurs

© Alan Burns and Andy Wellings, 2001

Throwing an Exception
import exceptionLibrary.IntegerConstraintError;
class Temperature
{
 int T;

 void check(int value) throws IntegerConstraintError
 {
 if(value > 100 || value < 0) {
 throw new IntegerConstraintError(0, 100, value);
 };
 }

 public Temperature(int initial) throws IntegerConstraintError
 // constructor
 { check(initial); T = initial; }

 public void setValue(int V) throws IntegerConstraintError
 { check(V); T = V; };

 public int readValue()
 { return T; };
};

© Alan Burns and Andy Wellings, 2001

Exception Handling
// given TemperatureController TC

try {
 TemperatureController TC = new TemperatureController(20);

 TC.setTemperature(100);
 // statements which manipulate the temperature
}
catch (IntegerConstraintError error) {
 // exception caught, print error message on
 // the standard output
 System.out.println(error.getMessage());
}
catch (ActuatorDead error) {
 System.out.println(error.getMessage());
}

© Alan Burns and Andy Wellings, 2001

The catch Statement

n The catch statement is like a function declaration, the
parameter of which identifies the exception type to be caught

n Inside the handler, the object name behaves like a local
variable

n A handler with parameter type T will catch a thrown object of
type E if:
– T and E are the same type, or
– T is a parent (super) class of E at the throw point

n It is this last point that makes the Java exception handling
facility very powerful

n In the last example, two exceptions are derived from the
Exception class: IntegerConstraintError and
ActuatorDead

© Alan Burns and Andy Wellings, 2001

Catching All
try {
 // statements which might raise the exception
 // IntegerConstraintError or ActuatorDead
}
catch(Exception E) {
 // handler will catch all exceptions of
 // type exception and any derived type;
 // but from within the handler only the
 // methods of Exception are accessible
}

n A call to E.getMessage will dispatch to the appropriate
routine for the type of object thrown

n catch(Exception E) is equivalent to Ada's when
others

© Alan Burns and Andy Wellings, 2001

Finally
n Java supports a finally clause as part of a try statement
n The code attached to this clause is guaranteed to execute

whatever happens in the try statement irrespective of
whether exceptions are thrown, caught, propagated or,
indeed, even if there are no exceptions thrown at all
try
{
 ...
}
catch(..)
{
...
}
finally
{
 // code executed under all circumstances
}

© Alan Burns and Andy Wellings, 2001

C Exceptions

n C does not define any exception handling facilities

n This clearly limits its in the structured programming of reliable
systems

n However, it is possible to provide some form of exception handling
mechanism by using the C macro facility

n To implement a termination model, it is necessary to save the
status of a program's registers etc. on entry to an exception domain
and then restore them if an exception occurs.

n The POSIX facilities of setjmp and longjmp can be used for this
purpose

© Alan Burns and Andy Wellings, 2001

Setjmp and Longjmp

n setjump saves the program status and returns a 0

n longjmp restores the program status and results in the
program abandoning its current execution and restarting from
the position where setjump was called

n This time setjump returns the values passed by longjmp

/* begin exception domain */

typedef char *exception;
 /* a pointer type to a character string */
exception error ="error";
 /* the representation of an exception named "error" */

if(current_exception = (exception) setjmp(save_area) == 0) {
 /* save the registers and so on in save_area */
 /* 0 is returned */

 /* the guarded region */

 /* when an exception "error" is identified */
 longjmp(save_area, (int) error);
 /* no return */

}
else {
 if(current_exception == error) {
 /* handler for "error" */
 }
 else {
 /* re-raise exception in surrounding domain */
 }
}

© Alan Burns and Andy Wellings, 2001

C Macros

#define NEW_EXCEPTION(name) ...
 /* code for declaring an exception */
#define BEGIN ...
 /* code for entering an exception domain */
#define EXCEPTION ...
 /* code for beginning exception handlers */
#define END ...
 /* code for leaving an exception domain */
#define RAISE(name) ...
 /* code for raising an exception */
#define WHEN(name) ...
 /* code for handler */
#define OTHERS ...
 /* code for catch all exception handler */

 NEW_EXCEPTION(sensor_high);

 NEW_EXCEPTION(sensor_low);

 NEW_EXCEPTION(sensor_dead);
 /* other declarations */

BEGIN
 /* statements which may cause the above */
 /* exceptions to be raised; for example */
 RAISE(sensor_high);

EXCEPTION
 WHEN(sensor_high)
 /* take some corrective action */
 WHEN(sensor_low)
 /* take some corrective action */
 WHEN(OTHERS)
 /* sound an alarm */
END;

Termination Model

© Alan Burns and Andy Wellings, 2001

Recovery Blocks and Exceptions

n Remember:
ensure <acceptance test>
by

 <primary module>
else by

 <alternative module>
else by

 <alternative module>
 ...
else by

 <alternative module>
else error

n Error detection is provided by the acceptance test; this is
simply the negation of a test which would raise an exception

n The only problem is the implementation of state saving and
state restoration

© Alan Burns and Andy Wellings, 2001

 A Recovery Cache

n Consider

package Recovery_Cache is
 procedure Save; -- save volatile state
 procedure Restore; --restore state
end Recovery_Cache;

n The body may require support from the run-time system
and possibly even hardware support for the recovery cache

n Also, this may not be the most efficient way to perform
state restoration

n It may be more desirable to provide more basic primitives,
and to allow the program to use its knowledge of the
application to optimise the amount of information saved

© Alan Burns and Andy Wellings, 2001

Recovery Blocks in Ada

procedure Recovery_Block is
 Primary_Failure, Secondary_Failure,
 Tertiary_Failure: exception;
 Recovery_Block_Failure : exception;
 type Module is (Primary, Secondary, Tertiary);

 function Acceptance_Test return Boolean is
 begin
 -- code for acceptance test
 end Acceptance_Test;

procedure Primary is
begin
 -- code for primary algorithm
 if not Acceptance_Test then
 raise Primary_Failure;
 end if;
exception
 when Primary_Failure =>
 -- forward recovery to return environment
 -- to the required state
 raise;
 when others =>
 -- unexpected error
 -- forward recovery to return environment
 -- to the required state
 raise Primary_Failure;
end Primary;
-- similarly for Secondary and Tertiary

 begin
 Recovery_Cache.Save;
 for Try in Module loop
 begin
 case Try is
 when Primary => Primary; exit;
 when Secondary => Secondary; exit;
 when Tertiary => Tertiary;
 end case;
 exception
 when Primary_Failure =>
 Recovery_Cache.Restore;
 when Secondary_Failure =>
 Recovery_Cache.Restore;
 when Tertiary_Failure =>
 Recovery_Cache.Restore;
 raise Recovery_Block_Failure;
 when others =>
 Recovery_Cache.Restore;
 raise Recovery_Block_Failure;
 end;
 end loop;
end Recovery_Block;

© Alan Burns and Andy Wellings, 2001

Summary

n All exception handling models address the following
issues
– Exception representation: an exception may, or may not, be

explicitly represented in a language
– The domain of an exception handler: associated with each

handler is a domain which specifies the region of computation
during which, if an exception occurs, the handler will be
activated

– Exception propagation: when an exception is raised and there is
no exception handler in the enclosing domain, either the
exception can be propagated to the next outer level enclosing
domain, or it can be considered to be a programmer error

– Resumption or termination model: this determines the action to
be taken after an exception has been handled.

© Alan Burns and Andy Wellings, 2001

Summary

n With the resumption model, the invoker of the exception
is resumed at the statement after the one at which the
exception was invoked

n With the termination model, the block or procedure
containing the handler is terminated, and control is
passed to the calling block or procedure.

n The hybrid model enables the handler to choose
whether to resume or to terminate

n Parameter passing to the handler -- may or may not be
allowed

© Alan Burns and Andy Wellings, 2001

Summary

Language Domain Propagation Model Parameters

Ada Block Yes Termination Limited

Java Block Yes Termination Yes

C++ Block Yes Termination Yes

CHILL Statement No Termination No

CLU Statement No Termination Yes

Mesa Block yes Hybrid Yes

© Alan Burns and Andy Wellings, 2001

Summary

n It is not unanimously accepted that exception handling
facilities should be provided in a language

n The C and the occam2 languages, for example, have
none

n To sceptics, an exception is a GOTO where the
destination is undeterminable and the source is
unknown!

n They can, therefore, be considered to be the antithesis
of structured programming

n This is not the view taken here!

