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Characteristics of RTS

Large and complex

Concurrent control of separate system components
Facilities to interact with special purpose hardware.
Guaranteed response times

Extreme reliability

Efficient implementation
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Aim

* To illustrate the requirements for concurrent programming
* To demonstrate the variety of models for creating processes

* To show how processes are created in Ada (tasks), POSIX/C (processes and
threads) and Java (threads)

* ADA og java er her lagt ud til selvstudie for de interesserede
* ADA er smart
* Mindre udbredt end gnskeligt
* Der er lige kommet en linux/RTlinux udgave af gnat
* [ kurset vil vi bruge C sammen med SDL (www.libsdl.org), som er til
windows og linuxog solaris — sa ingen religionskrig :-)

* To lay the foundations for studying inter-process communication
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Concurrent Programming

The name given to programming notation and techniques for expressing
potential parallelism and solving the resulting synchronization and
communication problems

Implementation of parallelism is a topic in computer systems (hardware
and software) that is essentially independent of concurrent programming

Concurrent programming is important because it provides an abstract
setting in which to study parallelism without getting bogged down in the
implementation details
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Why we need it

Response time in seconds

* To fully utilise the processor
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Parallelism Between CPU and I/O Devices
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Another argument - Why we need it

To allow the expression of potential parallelism so that more than one
computer/CPU/thread/... can be used to solve the problem

Consider trying to find the way through a maze (labyrint)

More people in search more efficient task
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Sequential Maze Search
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Concurrent Maze Search

Ex: cooperative robotter, parallelliserbare algoritmer,..
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Why we need it

To model the parallelism in the real world

Virtually all real-time systems are inherently concurrent — devices operate
in parallel in the real world

This is, perhaps, the main reason to use concurrency

Parallel systems can be more efficient programmed, utilized, ...
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Airline Reservation System
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Air Traffic Control




Why we need it

The alternative is to use sequential programming techniques

The programmer must construct the system so that it involves the cyclic execution
of a program sequence to handle the various concurrent activities

This complicates the programmer's already difficult task and involves him/her in

considerations of structures which are irrelevant to the control of the activities in
hand

The resulting programs will be more obscure and inelegant
It makes decomposition of the problem more complex

Parallel execution of the program on more than one processor will be much more
difficult to achieve

The placement of code to deal with faults is more problematic

In a sequential program for handling a complex parallel “world” the programmer
must explicit a every step take all “sub situations” into account

Aka spagetti programming
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Terminology

* A concurrent program a collection of autonomous sequential processes,
executing (logically) in parallel

* Each process has a single thread of control

* The actual implementation (i.e. execution) of a collection of processes
usually takes one of three forms.

Multiprogramming
* processes multiplex their executions on a single processor
Multiprocessing

* processes multiplex their executions on a multiprocessor system where
there is access to shared memory

* Aka known as UMA (uniform memory access systems)

Distributed Processing

* processes multiplex their executions on several processors which do not
share memory

* Aka known as NUMA (non uniform ...)

JDN — 2003 / © Alan Burns and Andy Wellings, 2001 — s1 14



Process States
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Run-Time Support System

RTTS can be viewed as a small operating system -often pronounced kernels

An RTSS has many of the properties of the scheduler in an operating
system, and sits logically between the hardware and the application
software.

In reality it may take one of a number of forms:

* A software structure programmed as part of the application. This is the
approach adopted in Modula-2.

* A standard software system generated with the program object code by
the compiler. This is normally the structure with Ada programs.

* A hardware structure microcoded into the processor for efficiency. An
occam?2 program running on the transputer has such a run-time system.

* A stand-alone RTTS(kernel) which has a structured API for running
threads based on C, C++, asm or other sequential languages.
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Processes and Threads

All operating systems provide processes (JDN except DOS :-)

Processes execute in their own virtual machine (VM) to avoid interference
from other processes — iff the HW provide mechanism for that: MMU)

Or processes execute flat in a non protected environment — beware of
pointers ;-)

Recent OSs provide mechanisms for creating threads within the same
virtual machine; threads are sometimes provided transparently to the OS

Threads have unrestricted access to their VM

The programmer and the language must provide the protection from
interference

Long debate over whether language should define concurrency or leave it
up to the O.S.

* Ada, Java, Modula provide concurrency
e C,C++ donot

JDN — 2003 / © Alan Burns and Andy Wellings, 2001 — sl 17



Processes and Threads II

Many discussions about RTTS, operating systems,...
Virtual environment(MMU) or not
Protected mode or not

Parallel (nr of running threads <= nr of processsing units)

Pseudo (nr of running threads >= nr of processing units)

Level of abstraction, nr of layers, virtual machines btwn CPU(s) and your

code
hreads: controller, MMI, rs232,...
x

CPU(s)
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Concurrent Programming Constructs

Allow Processes may be

* The expression of concurrent * independent
execution through the notion of * cooperating
process

* competing
* Process synchronization

* Inter-process communication.
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Concurrent Execution

Processes differ in

* Structure — static, dynamic

* Level — nested, flat

Language

conc pascal
occam?2
modula(2,...)
ada

c/posix

java

structure

static
static
dynamic
dynamic
dynamic
dynamic

level

flat
nested
flat
nested
flat
nested
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Concurrent Execution

* Granularity — coarse (Ada, POSIX processes/threads, Java), fine (occam2)

* Initialization — parameter passing, IPC

* Termination

completion of execution of the process body;

suicide, by execution of a self-terminate statement;
abortion, through the explicit action of another process;
occurrence of an untrapped error condition;

never: processes are assumed to be non-terminating loops;

when no longer needed.
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Nested Processes

Hierarchies of processes can be created and inter-process relationships
formed

For any process a distinction can be made between the process (or block)
that created it and the process (or block) which is affected by its
termination

The former relationship is know as parent/child and has the attribute that
the parent may be delayed while the child is being created and initialized

The latter relationship is termed guardian/dependent. A process may be
dependent on the guardian process itself or on an inner block of the
guardian

The guardian is not allowed to exit from a block until all dependent
processes of that block have terminated
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Nested Processes

A guardian cannot terminate until all its dependents have terminated
A program cannot terminate until all its processes have terminated

A parent of a process may also be its guardian (e.g. with languages that
allow only static process structures)

With dynamic nested process structures, the parent and the guardian may
or may not be identical
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Process States
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* Den traditionelle procesmodel

* Active de, er er eller vil veere kgrende
* Running <= antale CPU'er
* Readyer: alle de andre

* Passive: blokeret venter pa andre

. . EEE—
Active running ready's

Passive ¥ sleeping

JDN — 2003 / © Alan Burns and Andy Wellings, 2001 — s1 25



Processes and Objects

Active objects — undertake spontaneous actions
Reactive objects — only perform actions when invoked
Resources — reactive but can control order of actions
Passive — reactive, but no control over order
Protected resource — passive resource controller

Server — active resource controller
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Process Representation

Coroutines
Fork and Join
Cobegin

Explicit Process Declaration
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Coroutine Flow Control

Coroutine A Coroutine B Coroutine C

1 2 4 5 6
3
6 v
v + resume A
\ resume B resume C '\
1
8 12
9

resume A

v <_—__________——————__—

resume B«l/O
1 1[ 15

k resume c
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Note

* No return statement — only a resume statement
* The value of the data local to the coroutine persit between successive calls

* The execution of a coroutine is supended as control leaves it, only to carry
on where it left off when it resumed

Do coroutines express true parallelism?
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Fork and Join

The fork specifies that a designated routine should start executing
concurrently with the invoker

Join allows the invoker to wait for the completion of the invoked routine

function F return is ...;
procedure P;

C:= for.IZF;
J:= join C;
end P;

After the fork, P and F will be executing concurrently. At the point of the
join, P will wait until the F has finished (if it has not already done so)

Fork and join notation can be found in Mesa and UNIX/POSIX
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UNIX Fork Example

For (i=0;1i!= 10; i++)
pid[i] = fork();
¥

wait ...

How many processes created?
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Cobegin

* The cobegin (or parbegin or par) is a structured way of denoting the
concurrent execution of a collection of statements:
cobegin
S1;
S2;
S3;

Sn
coend

S1, S2 etc, execute concurrently

* The statement terminates when S1, S2 etc have terminated

Each Si may be any statement allowed within the language

* Cobegin can be found in Edison and occam?2.
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Explicit Process Declaration

* The structure of a program can be made clearer if routines state whether
they will be executed concurrently

* Note that this does not say when they will execute

task body Process is
begin

end;

* Languages that support explicit process declaration may have explicit or
implicit process/task creation
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Tasks and Ada

The unit of concurrency in Ada is called a task

Tasks must be explicitly declared, there is no fork/join statement,
COBEGIN/PAR etc

Tasks may be declared at any program level; they are created implicitly
upon entry to the scope of their declaration or via the action of an
allocator

Tasks may communicate and synchronise via a variety of mechanisms:
rendezvous (a form of synchronised message passing), protected units (a
form of monitor/conditional critical region), and shared variables
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Task Types and Task Objects

* A task can be declared as a type or as a single instance
(anonymous type)

* A task type consists of a specification and a body
* The specification contains
* the type name

* an optional discriminant part which defines the
parameters that can be passed to instances of the task type
at their creation time

* avisible part which defines any entries and
representation clauses

* a private part which defines any hidden entries and
representation clauses
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Example Task Structure

task type Server (Init : Parameter) is
entry Service;

specification

end Server;

task body Server 1is
begin

accept Service do
-- Sequence of statements;
end Service;

end Server: body
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Example Task Specifications

task type Controller;

<« this task type has no entries; no other

tasks can communicate directly

task type Agent(Param : Integer);

task type Garage Attendant(
Pump : Pump Number := 1) is
entry Serve Leaded(G : Gallons);

entry Serve Unleaded(G : Gallons);

end Garage Attendant;

this task type has no entries but
task objects can be passed an
integer parameter at their
creation time

objects will allow
communication via two entries;
the number of the pump to be
served is passed at task creation
time; if no value is passed a
default of 1 is used
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An Example

(libsdl)
int thread 1(void * parmblock)
{ while (1) ; }

int thread 2(void * parmblock)
{ while (1) ; }

void main(void)

{
SDL init(...);
SDL CreateThread(threadl,NULL);
SDL CreateThread(thread2,NULL) ;

printf(“..."”); /* hvem glemte at chekke returkoder ... */
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Processer med info -

* (@nske om at et stykke kode kan genbruges til flere parallelle opgaver (eks.
En serial driver til com1 og com2,...)

* [bogen er der fine ADA eksempler. Her er lidt C.

Char s1[]=com1”, s2[]="com?2”;

int rs232thread(void *p)
{
switch ( *((int *)p)) {
case 1: /* com 1 */
case 2: /* com 2 */
default: /* hvorforkommer vi her ? */
}
}

inti=1;

SDL CreateThread(rs232thread,&i);
1=2;

SDL CreateThread(rs232thread,&i);
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Dynamic Task Creation

* By giving non-static values to the bounds of an array (of tasks), a dynamic
number of tasks is created.

* Dynamic task creation can be obtained explicitly using the "new" operator
on an access type (of a task type)

procedure Example2 is

task type T; _ . .
type A is access T: This creates a task that immediately starts
P : A; its Initialization and execution; the task is
Q : A:= new T; designated Q.all

begin
P := new T;
Q :=new T; -- What happens to old Q.all?

end example2;
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Dynamiske processer

Blot at man on-the-fly kan oprette dem

I mange RT systemer er der ofte et krav om at al dynamisk aktivitet skal
veere overstaet fgr “man starter”

* Processer
* Anden multitasking objekter
* Dynamisk lager (malloc,free)
Argument: Man skal vide pa forhand om der er resourcer nok
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Activation, Execution & Finalisation

The execution of a task object has three main phases:

* Activation [J the elaboration of the declarative part, if any, of the task
body (any local variables of the task are created and initialised during
this phase)

* Normal Execution [ the execution of the statements within the body
of the task

* Finalisation [1 the execution of any finalisation code associated with
any objects in its declarative part
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Task Activation

All static tasks created within a single declarative region begin their
activation immediately the region has elaborated

The first statement following the declarative region is not executed until
all tasks have finished their activation

Follow activation, the execution of the task object is defined by the
appropriate task body

A task need not wait for the activation of other task objects before
executing its body

A task may attempt to communicate with another task once that task has
been created; the calling task is delayed until the called task is ready
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Exceptions and Task Activation

If an exception is raised in the elaboration of a declarative part, any tasks
created during that elaboration are never activated but become terminated

If an exception is raised during a task's activation, the task becomes
completed or terminated and the predefined exception Tasking Error is
raised prior to the first executable statement of the declarative block (or
after the call to the allocator); this exception is raised just once

The raise will wait until all currently activating tasks finish their activation

JDN: dette athenger meget af prog sprog og operativsystem
* Embeddede small footprint kerner “velter” ved fejl
* Unix,XP,... har rimelig respons pa fejl
* Stadig: C: while (1); /* ader en CPU - fejl ???? */
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Creation and Hierarchies

A task which is responsible for creating another task is called the parent of
the task, and the created task is called the child

When a parent task creates a child, it must wait for the child to finish
activating

This suspension occurs immediately after the action of the allocator, or
after it finishes elaborating the associated declarative part

Linux/UNIX : prgv ordren pstree der viser hierarki
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Termination and Hierarchies

* The parent of a task is responsible for the creation of a child

* The master of a dependent task must wait for the dependent to terminate
before itself can terminate

* In many cases the parent is also the master
* JDN: zombie begreb

task Parent And Master;
task body Parent And Master is

task Child _And Dependent;
task body Child And Dependent is

begin ... end;
.g t ask becones Conpl et ed,
begi n 1t
Ter m nat es when

end Parent And Master; k//////,////’ Chi | d_And_Dependent
term nat es
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Completion versus Termination

A task completes when

* finishes execution of its body (either normally or as the result of an
unhandled exception).

* it executes a "terminate" alternative of a select statement (see later) thereby
implying that it is no longer required.
* it is aborted.
A task terminates when all is dependents have terminated.
JDN: gzlder for parent baserede systemer som win,lin,unx

Parent relationer kan brydes :-)
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Example Exam Question

Explain fully the following relationships between processes (tasks) in the
context of concurrent programming

* parent <=> child
* guardian (or master) <=> dependent

Indicate in your answer the difference between a guardian process and a
guardian block.

Draw the state transition diagram for a process which during its life time
can be a child, a parent, a guadian and a dependent.
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Task Identification

* In some circumstances, it is useful for a task to have a unique identifier

* E.g, aserver task is not usually concerned with the type of the client tasks.
However, there are occasions when a server needs to know that the client
task it is communicating with is the same client task with which it
previously communicated

* Although the core Ada language provides no such facility, the Systems
Programming Annex provides a mechanism by which a task can obtain its
own unique identification. This can then be passed to other tasks
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Attributes

* The Annex supports two attributes:

* For any prefix T of a task type, T | dentity returns a value of
type Task | dthat equals the unique identifier of the task
denoted by T

* For any prefix Ethat denotes an entry declaration, E Ci | er
returns a value of type Task | dthat equals the unique
identifier of the task whose entry call is being serviced

Care must be taken when using task identifiers since
there is no guarantee that, at some later time, the task
will still be active or even in scope
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Concurrency in Java

Java has a predefined class | ava. | ang. Thr ead which provides the
mechanism by which threads (processes) are created.

However to avoid all threads having to be child classes of Thr ead, it also
uses a standard interface

public interface Runnabl e {
public abstract void run();

}

Hence, any class which wishes to express concurrent execution must
implement this interface and provide the r un method
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public class Thread extends Object inplenents Runnabl e
{

public Thread();
public Thread(Runnabl e target);

public void run();
public native synchronized void start();
/[l throws ||| egal ThreadSt at eExcepti on

public static Thread current Thread();
public final void join() throws I|nterruptedException;
public final native boolean isAlive();

public void destroy();
/'l throws SecurityException;
public final void stop();

/'l throws SecurityException --- DEPRECI ATED
public final void setDaenon();
/'l throws SecurityException, |llegal ThreadStateException

public final bool ean i sDaenon();
/'l Note, RuntinmeExceptions are not |isted as part of the
/'l method specification. Here, they are shown as comments
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Robot Arm Example

public class Userlnterface

public int newSetting (int bbm \{ ... \}
\
public class Arm
\ public void nove(int dim int pos) \{ ... \}
Userinterface U = new Userlnterface();

Arm Robot = new Arn();
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Robot Arm Example

FUbIIC cl ass Control extends Thread
private int dim
ublic Control (int D nension) // constructor
super (
dim = %XHEHSIOH

}

ublic void run()

I nt position = O;
I nt setting;

whi | e(true)
Robot . ane(d|n1 osition);
setting = Ul . etting(dim;
position = p05|t|on + setting;

}
} }
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Robot Arm Example

final I nt xPl ane
final int yPlane
final 1 nt zPl ane

O;: [/ final indicates a constant

11l
=

Control Cl1 = new Control (xPl ane);
Control C2 = new Control (yPl ane);
Control C3 = new Control (zPl ane);
Cl.start();
C2.start();
C3.start();
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Alternative Robot Control

ublic class Control
private int dim
ublic Control (int D nmension)

di m = D nensi on;

}

ublic void run()

I nt position = O;
I nt setting;

whi | e(true)
Robot . nnve(dinl I tion);
setting = Ul . et I ng(di
position = p03|t|on + sSett
}

| npl ement s Runnabl e

/] constructor

JDN — 2003 / © Alan Burns and Andy Wellings, 2001 — s1 56



Alternative Robot Control

final int xPlane = O;
final int yPlane = 1;
final int zPl ane = 2;

Control Cl1 = new Control (xPlane); // no thread created yet
Control C2 = new Control (yPl ane);
Control C3 = new Control (zPl ane);

/'l constructors passed a Runnable interface and threads created

Thread X = new Thread(Cl);
Thread Y = new Thread(C2);
Thread Z = new Thread(C2);

X.start(); // thread started
Y.start();
Z.start();
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Java Thread States

[ non-existing }

l Create thread object

e

l start

executable } run method exits

/ W

[ blocked } [ dead }
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Points about Java Threads

Java allows dynamic thread creation

Java (by means of constructor methods) allows arbitrary data to be passed
as parameters

Java allows thread hierarchies and thread groups to be created but there is
no master or guardian concept; Java relies on garbage collection to clean
up objects which can no longer be accessed

The main program in Java terminates when all its user threads have
terminated (see later)

One thread can wait for another thread (the target) to terminate by issuing
the | ol n method call on the target's thread object.

The | sAl i ve method allows a thread to determine if the target thread has
terminated
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A Thread Terminates:

* when it completes execution of its r un method either normally or as the result
of an unhandled exception;

* via its st op method — the r un method is stopped and the thread class cleans

up before terminating the thread (releases locks and executes any finally
clauses)

* the thread object is now eligible for garbage collection.

* if a Thr onabl e object is passed as a parameter to st op, then this exception
is thrown in the target thread; this allows the run method to exit more
gracefully and cleanup after itself

— st op is inherently unsafe as it releases locks on objects and can leave those
objects in inconsistent states; the method is now deemed obsolete
(depreciated) and should not be used

* by its destroy method being called -- destroy terminates the thread without
any cleanup (never been implemented in the JVM)
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Daemon Threads

Java threads can be of two types: user threads or daemon threads

Daemon threads are those threads which provide general services and
typically never terminate

When all user threads have terminated, daemon threads can also be
terminated and the main program terminates

The set Daenon method must be called before the thread is started

(Daemon threads provide the same functionality as the Ada " "or
terminate" option on the select statement)
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Thread Exceptions

The | | | egal Thr eadSt at eExcept | on is thrown when:
* the start method is called and the thread has already been started

* the set Daenon method has been called and the thread has already been
started

The Securi t yExcepti on is thrown by the security manager when:

* astopordestroy method has been called on a thread for which the caller
does not have the correct permissions for the operation requested

The Nul | Poi nt er Except i on is thrown when:
* A null pointer is passed to the st op method

The | nt er r upt Except i on is thrown if a thread which has issued a j ol n method
is woken up by the thread being interrupted rather than the target thread
terminating
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Concurrent Execution in POSIX

Provides two mechanisms: fork and pthreads.

fork creates a new process

pthreads are an extension to POSIX to allow threads to be created
All threads have attributes (e.g. stack size)

To manipulate these you use attribute objects

Threads are created using an appropriate attribute object
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Typical C POSIX interface

typedef ... pthread t; [/* details not defined */
typedef ... pthread attr _t;

i nt pthread attr _init(pthread attr_t *attr);
i nt pthread attr _destroy(pthread attr_t *attr);

i nt pthread attr_setstacksize(..);
i nt pthread attr _getstacksize(..);

i nt pthread create(pthread t *thread, const pthread attr_t *attr,
void *(*start _routine)(void *), void *arg),;
/|* create thread and call the start _routine with the argument */

i nt pthread join(pthread t thread, void **value ptr);
i nt pthread exit(void *val ue ptr);
/* term nate the calling thread and make the pointer value ptr
available to any joining thread */

All functions returns O if successful,
pthread t pthread sel f(void); ot herwi se an error nunber
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Robot Arm in C/POSIX

#i ncl ude <pthread. h>

pthread attr _t attri butes;
pthread t xp, yp, zp;

t ypedef enum {xpl ane, ypl ane, zplane} di nensi on;

I nt new setting(di nension D);
void nove arn(int D, int P);

void controller(di nension *dim

{

I nt position, setting;

position = O;

while (1) {
setting = new_setting(*din;
position = position + setting;
nove_arm(*dim position);

b
/ *

note, process does not term nate */
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int main() {
di mension X, Y, Z;
void *result;

X = xpl ane Need JOI N as when a process term nates,
Y = ypl ane: all its threads are forced to term nate

Z = zpl ane;
PTHREAD ATTR_INIT(&attri butes);
/| * set default attri butes */

PTHREAD CREATE( &xp, &attributes, (void *)controller, &X);
PTHREAD CREATE( &yp, &attributes, (void *)controller, &Y);
PTHREAD CREATE( &zp, &attributes, (void *)controller, &Z);
PTHREAD JOI N( xp, &result);

/* need to block main program */

exit(-1); /* error exit, the program should not term nate */

SYS CALL style indicates a call to
sys call with a check for error returns




A Simple Embedded System

Thermocouples "ADC Pressure
j Transducer

/ P —= ADC

A

Switch

l

Heater

/ |

Screen DAC > Pump/Valve

* Overall objective is to keep the temperature and pressure of some chemical
process within well-defined limits
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Possible Software Architectures

* A ssingle program is used which ignores the logical concurrency of T, P and
S; no operating system support is required

* T, P and S are written in a sequential programming language (either as
separate programs or distinct procedures in the same program) and

operating system primitives are used for program/process creation and
interaction

* A ssingle concurrent program is used which retains the logical structure of
T, P and S; no operating system support is required although a run-time
support system is needed

Which is the best approach?
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Useful Packages

package Data Types is
type Tenp Reading is new I nteger range 10..500;
type Pressure Reading is new I nteger range 0..750;
type Heater Setting is (On, Of);
type Pressure Setting is new Integer range 0..09;
end Data_Types;

with Data Types; use Data Types;
package 10 1is

procedure Read(TR : out Tenp Reading); -- from ADC

procedure Read(PR : out Pressure_ Readi ng);

procedure Wite(HS : Heater Setting);-- to swtch

procedure Wite(PS : Pressure _Setting); -- to DAC

procedure Wite(TR : Tenp Reading); -- to screen

procedure Wite(PR : Pressure Reading);-- to screen
end | O

necessary

type

definitions

procedures
for data
exchange

with the

environment
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Control Procedures

wth Data Types; use Data Types;
package Control Procedures is
-- procedures for converting a reading into
-- an appropriate setting for output.
procedure Tenp Convert (TR : Tenp_ Readi ng;
HS . out Heater Setting);
procedure Pressure Convert (PR : Pressure Readi ng;
PS : out Pressure Setting);
end Control Procedures;
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Sequential Solution

wth Data Types; use Data Types;

w th Control Procedures;

procedure Controller is
TR : Tenp_Readi ng;
PR : Pressure_Readi ng;
HS : Heater_Setting;
PS : Pressure _Settl ng;

begi n

| oop
Read( TR) ; -- from ADC
Tenp_Convert (TR, HS) ;
Wite(HS); -- to swtch
Wite(TR); -- to screen
Read( PR) ;
Pressure_Convert (PR, PS);
Wite(PS);
Wite(PR);

end loop; -- infinite |oop

end Controll er;

wth |Q use IO
use Control Procedures;

No O.S. Required
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Disadvantages of the Sequential Solution

Temperature and pressure readings must be taken at the same rate
The use of counters and if statements will improve the situation

But may still be necessary to split up the conversion procedures
Tenp Convert and Pressure Convert, and interleave their actions so as
to meet a required balance of work

While waiting to read a temperature no attention can be given to pressure
(and vice versa)

Moreover, a system failure that results in, say, control never returning
from the temperature Read, then in addition to this problem no further
calls to Read the pressure would be taken
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An Improved System

wth Data Types; use Data Types; with IO use I1Q
with Control Procedures; use Control Procedures;
procedure Controller is

TR : Tenp_Readi ng; PR : Pressure_Readi ng;

HS . Heater Setting;, PS : Pressure_Setting;

Ready Tenp, Ready Pres : Bool ean;
begi n
| oop
| f Ready_ Tenp then

Read(TR); Tenp_ Convert (TR, HS); _ _ _
Wite(HS);: Wite(TR); W hat is wrong with this?
end i1 f;

| f Ready Pres then
Read(PR); Pressure_Convert (PR, PS);
Wite(PS); Wite(PR);
end i1 f;
end | oop;
end Controller;
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Problems

e The solution is more reliable

* Unfortunately the program now spends a high proportion of its time in a
busy loop polling the input devices to see if they are ready

* Busy-waits are unacceptably inefficient

* Moreover programs that rely on busy-waiting are difficult to design,
understand or prove correct

The major criticism with the sequential program is that no recognition
IS given to the fact that the pressure and temperature cycles are
entirely independent subsystems. In a concurrent programming

environment this can be rectified by coding each system as a task.

JDN — 2003 / © Alan Burns and Andy Wellings, 2001 — sl 74




Using O.S. Primitives I

package (8l is
type Thread IDis private;
type Thread i s access procedure;

function Oeate Thread(Code : Thread)
return Thread | D
-- ot her subprograns
procedure Start(ID: Thread |ID);
private
type Thread IDis ...;
end O35l ;
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Using O.S. Primitives II

package Processes is

procedure Tenp C
procedure Pressure C
end Processes;

wth I1Q use IQ
wth Control Procedures; use Control Procedures;
package body Processes is
procedure Tenp Cis
TR : Tenp Reading; HS : Heater Setting;
begi n
| oop
Read(TR); Tenp Convert (TR HS);
Wite(HS); Wite(TR);
end | oop;
end Tenp C
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Using O.S. Primitives III

procedure Pressure Cis
PR : Pressure Readi ng;
PS . Pressure Setting;
begi n
| oop
Read( PR) ;
Pressure Convert (PR PS);
Wite(PS);
Wite(PR;
end | oop;
end Pressure G
end Processes;
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Using O.S. Primitives IV

wth G8l, Processes; use (5l, Processes;
procedure Controller is
TC, PC: Thread ID
begi n
TC .= O eate Thread(Tenp C Access);
PC .= Qeate Thread(Pressure C Access);
Sart(TO;
Sart(PO;

end Controll er;

For realistic OS,
Better, more reliable

. solution becomes
solution

unreadable!
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Advantages of Concurrent Approach

Controller tasks execute concurrently and each contains an indefinite loop
within which the control cycle is defined

While one task is suspended waiting for a read the other may be executing;
if they are both suspended a busy loop is not executed

The logic of the application is reflected in the code; the inherent
parallelism of the domain is represented by concurrently executing tasks in
the program

JDN — 2003 / © Alan Burns and Andy Wellings, 2001 — sl 79



Disadvantages

Both tasks send data to the screen, but the screen is a resource that can
only sensibly be accessed by one process at a time

A third entity is required. This has transposed the problem from that of
concurrent access to a non-concurrent resource to one of resource control

It is necessary for controller tasks to pass data to the screen resource
The screen must ensure mutual exclusion

The whole approach requires a run-time support system
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OS versus Language Concurrency

Should concurrency be in a language or in the OS?
Arguments for concurrency in the languages:
* It leads to more readable and maintainable programs

* There are many different types of OSs; the language approach makes
the program more portable

* An embedded computer may not have any resident OS
Arguments against concurrency in a language:

* [t is easier to compose programs from different languages if they all use
the same OS model

* It may be difficult to implement a language's model of concurrency
efficiently on top of an OS’s model

* OS standards are beginning to emerge

The Ada/Java philosophy is that the advantages outweigh the
disadvantages
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Summary of Concurrent Programming

* The application domains of most real-time systems are inherently parallel

* The inclusion of the notion of process within a real-time programming
language makes an enormous difference to the expressive power and ease of
use of the language

* Without concurrency the software must be constructed as a single control
loop

* The structure of this loop cannot retain the logical distinction between
systems components. It is particularly difficult to give process-oriented timing
and reliability requirements without the notion of a process being visible in
the code
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Summary Continued

The use of a concurrent programming language is not without its costs. In
particular, it becomes necessary to use a run-time support system to
manage the execution of the system processes
The behaviour of a process is best described in terms of states

* non-existing

* created

* initialized

* executable

* waiting dependent termination

* waiting child initialization

* terminated
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Variations in the Process Model

structure

* static, dynamic
level

* top level processes only (flat)

* multilevel (nested)
initialization

* with or without parameter passing
granularity

* fine or coarse grain
termination

* natural, suicide

* abortion, untrapped error

* never, when no longer needed
representation

* coroutines, fork/join, cobegin, explicit process declarations
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Ada, Java and C/POSIX

Ada and Java provide a dynamic model with support for nested tasks and a
range of termination options.

POSIX allows dynamic threads to be created with a flat structure; threads
must explicitly terminate or be killed.
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