
© Alan Burns and Andy Wellings, 2001

Shared Variable-Based
Synchronization and

Communication

n To understand the requirements for communication and
synchronisation based on shared variables
n To briefly review semaphores, monitors and conditional
critical regions
n To understand Ada 95 protected objects, POSIX
mutexes and Java synchronized methods

© Alan Burns and Andy Wellings, 2001

Prerequisites

n Understanding the issues of busy-waiting and
semaphores from an Operating System Course.

n However:
– Course book give full details on busy-waiting, semaphores,

conditional critical regions, monitors etc.

© Alan Burns and Andy Wellings, 2001

Synchronisation and Communication

n The correct behaviour of a concurrent program depends
on synchronisation and communication between its
processes

n Synchronisation: the satisfaction of constraints on the
interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)

n Communication: the passing of information from one
process to another
– Concepts are linked since communication requires

synchronisation, and synchronisation can be considered as
contentless communication.

– Data communication is usually based upon either shared
variables or message passing.

© Alan Burns and Andy Wellings, 2001

Shared Variable Communication

n Examples: busy waiting, semaphores and monitors
n Unrestricted use of shared variables is unreliable and

unsafe due to multiple update problems
n Consider two processes updating a shared variable, X,

with the assignment: X:= X+1
– load the value of X into some register
– increment the value in the register by 1 and
– store the value in the register back to X

n As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect
result

Shared Resource Communication

task body Helicopter is

 Next: Coordinates;

begin

 loop

 Compute_New_Cordinates(Next);

 Shared_Cordinates := Next;

 end loop

end;

task body Helicopter is

 Next: Coordinates;

begin

 loop

 Compute_New_Cordinates(Next);

 Shared_Cordinates := Next;

 end loop

end;

task body Police_Car is

begin

 loop

 Plot(Shared_Cordinates);

 end loop;

end;

task body Police_Car is

begin

 loop

 Plot(Shared_Cordinates);

 end loop;

end;

type Coordinates is

 record

 X : Integer;

 Y : Integer;

 end record;

Shared_Cordinate: Coordinates;

type Coordinates is

 record

 X : Integer;

 Y : Integer;

 end record;

Shared_Cordinate: Coordinates;

 Shared_Cordinates := Next;

Plot(Shared_Cordinates);

1,1

2,2

3,3

4,4

5,5

6,6

...

1,1

2,2

3,3

4,4

5,5

6,6

...

Villain's Escape

Route

(seen by helicopter)

Police Car’s

Pursuit Route

X = 0

Y = 0

X = 1

Y = 0

X = 1

Y = 1

11
11

22
22

X = 2

Y = 1

X = 2

Y = 2

X = 3

Y = 2

X = 3

Y = 3

3

X = 4

Y = 3

3
33

4

X = 4

Y = 4

4

X = 5

Y = 4
44

5
54

Villain
Escapes!

1,1

2.2

3,3

4,4

4,5

© Alan Burns and Andy Wellings, 2001

Avoiding Interference

n The parts of a process that access shared variables
must be executed indivisibly with respect to each other

n These parts are called critical sections
n The required protection is called mutual exclusion

© Alan Burns and Andy Wellings, 2001

Mutual Exclusion

n A sequence of statements that must appear to be
executed indivisibly is called a critical section

n The synchronisation required to protect a critical section
is known as mutual exclusion

n Atomicity is assumed to be present at the memory level.
If one process is executing X:= 5, simultaneously with
another executing X:= 6, the result will be either 5 or 6
(not some other value)

n If two processes are updating a structured object, this
atomicity will only apply at the single word element level

© Alan Burns and Andy Wellings, 2001

Condition Synchronisation

n Condition synchronisation is needed when a process
wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state

n E.g. a bounded buffer has 2 condition synchronisation:
– the producer processes must not attempt to deposit data onto

the buffer if the buffer is full
– the consumer processes cannot be allowed to extract objects

from the buffer if the buffer is empty

head tail

Is mutual
exclusion
necessary?

© Alan Burns and Andy Wellings, 2001

Busy Waiting

n One way to implement synchronisation is to have
processes set and check shared variables that are
acting as flags

n This approach works well for condition synchronisation
but no simple method for mutual exclusion exists

n Busy wait algorithms are in general inefficient; they
involve processes using up processing cycles when
they cannot perform useful work

n Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)

© Alan Burns and Andy Wellings, 2001

Semaphores

n A semaphore is a non-negative integer variable that
apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)

n WAIT(S) If the value of S > 0 then decrement its value
by one; otherwise delay the process until S > 0 (and
then decrement its value).

n SIGNAL(S) Increment the value of S by one.
n WAIT and SIGNAL are atomic (indivisible). Two

processes both executing WAIT operations on the same
semaphore cannot interfere with each other and cannot
fail during the execution of a semaphore operation

© Alan Burns and Andy Wellings, 2001

process P1;
 (* waiting process *)
 statement X;
 wait (consyn)
 statement Y;
end P1;

process P2;
 (* signalling proc *)
 statement A;
 signal (consyn)
 statement B;
end P2;

var consyn : semaphore (* init 0 *)

In what order will the statements execute?

Condition synchronisation

© Alan Burns and Andy Wellings, 2001

Mutual Exclusion

process P2;
 statement A;
 wait (mutex);
 statement B;
 signal (mutex);
 statement C;
end P2;

process P1;
 statement X
 wait (mutex);
 statement Y
 signal (mutex);
 statement Z
end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?

© Alan Burns and Andy Wellings, 2001

Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Child
Initialization

Waiting Dependent
Termination

Suspended

© Alan Burns and Andy Wellings, 2001

type Sem is ...;
X : Sem := 1; Y : Sem := 1;

task B;
task body B is
begin

...
Wait(Y);
Wait(X);
...

end B;

task A;
task body A is
begin

...
Wait(X);
Wait(Y);
...

end A;

Deadlock

n Two processes are deadlocked if each is holding a
resource while waiting for a resource held by the other

© Alan Burns and Andy Wellings, 2001

Livelock

n Two processes are livelocked if each is executing but
neither is able to make progress.

type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin
 ...
 while Flag1 = Up loop
 null;
 end loop;
 ...
end A;

task A;
task body A is
begin
 ...
 while Flag1 = Up loop
 null;
 end loop;
 ...
end A;

© Alan Burns and Andy Wellings, 2001

Binary and quantity semaphores

n A general semaphore is a non-negative integer; its
value can rise to any supported positive number

n A binary semaphore only takes the value 0 and 1; the
signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1

n A general semaphore can be implemented by two
binary semaphores and an integer. Try it!

n With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, i)

© Alan Burns and Andy Wellings, 2001

package Semaphore_Package is
 type Semaphore(Initial : Natural) is limited private;
 procedure Wait (S : Semaphore);
 procedure signal (S : Semaphore);
private
 type Semaphore ...
end Semaphore_Package;

Example semaphore programs in Ada

n Ada does not directly support semaphores; the wait and
signal procedures can, however, be constructed from
the Ada synchronisation primitives

n The essence of abstract data types is that they can be
used without knowledge of their implementation!

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

package Buffer is
 procedure Append (I : Integer);
 procedure Take (I : out Integer);
end Buffer;

package body Buffer is
 Size : constant Natural := 32;
 type Buffer_Range is mod Size;
 Buf : array (Buffer_Range) of Integer;
 Top, Base : Buffer_Range := 0;
 Mutex : Semaphore(1);
 Item_Available : Semaphore(0);
 Space_Available : Semaphore(Size);
 procedure Append (I : Integer) is separate;
 procedure Take (I : out Integer) is separate;
end Buffer;

© Alan Burns and Andy Wellings, 2001

procedure Append(I : Integer) is
begin
 Wait(Space_Available);
 Wait(Mutex;
 Buf(Top) := I;
 Top := Top+1
 Signal(Mutex;
 Signal(Item_Available);
end Append;

procedure Take(I : out Integer) is
begin
 Wait(Item_Available);
 Wait(Mutex);
 I := BUF(base);
 Base := Base+1;
 Signal(Mutex);
 Signal(Space_Available);
end Take;

The Bounded Buffer

© Alan Burns and Andy Wellings, 2001

Criticisms of semaphores

n Semaphore are an elegant low-level synchronisation
primitive, however, their use is error-prone

n If a semaphore is omitted or misplaced, the entire
program to collapse. Mutual exclusion may not be
assured and deadlock may appear just when the
software is dealing with a rare but critical event

n A more structured synchronisation primitive is required
n No high-level concurrent programming language relies

entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain

© Alan Burns and Andy Wellings, 2001

Conditional Critical Regions (CCR)

n A critical region is a section of code that is guaranteed
to be executed in mutual exclusion

n Shared variables are grouped together into named
regions and are tagged as being resources

n Processes are prohibited from entering a region in
which another process is already active

n Condition synchronisation is provided by guards. When
a process wishes to enter a critical region it evaluates
the guard (under mutual exclusion); if the guard
evaluates true it may enter, but if it is false the process
is delayed

n As with semaphores, no access order can be assumed

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

program buffer_eg;
 type buffer_t is record
 slots : array(1..N) of character;
 size : integer range 0..N;
 head, tail : integer range 1..N;
 end record;
 buffer : buffer_t;
 resource buf : buffer;

 process producer is separate;
 process consumer is separate;
end.

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

 process producer;
 loop
 region buf when buffer.size < N do
 -- place char in buffer etc
 end region
 end loop;
 end producer

 process consumer;
 loop
 region buf when buffer.size > 0 do
 -- take char from buffer etc
 end region
 end loop;
 end consumer

© Alan Burns and Andy Wellings, 2001

Problem

n One problem with CCRs is that processes must re-
evaluate their guards every time a CCR naming that
resource is left. A suspended process must become
executable again in order to test the guard; if it is still
false it must return to the suspended state

n A version of CCRs has been implemented in Edison, a
language intended for embedded applications,
implemented on multiprocessor systems. Each
processor only executes a single process so it may
continually evaluate its guards if necessary

© Alan Burns and Andy Wellings, 2001

Monitors

n A problem with CCRs is that they can be dispersed
throughout the program

n Monitors provide encapsulation, and efficient condition
synchronisation

n The critical regions are written as procedures and are
encapsulated together into a single module

n All variables that must be accessed under mutual
exclusion are hidden; all procedure calls into the module
are guaranteed to be mutually exclusive

n Only the operations are visible outside the monitor

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

 monitor buffer;

 export append, take;

 var (*declare necessary vars*)

 procedure append (I : integer);
 ...
 end;

 procedure take (var I : integer);
 ...
 end;
begin
 (* initialisation *)

 end;

How do we get condition
synchronisation?

© Alan Burns and Andy Wellings, 2001

Condition Variables

n Different semantics exist
n In Hoare’s monitors: a condition variable is acted upon

by two semaphore-like operators WAIT and SIGNAL
n A process issuing a WAIT is blocked (suspended) and

placed on a queue associated with the condition
variable (cf semaphores: a wait on a condition variable
always blocks unlike a wait on a semaphore)

n A blocked process releases its hold on the monitor,
allowing another process to enter

n A SIGNAL releases one blocked process. If no process
is blocked then the signal has no effect (cf semaphores)

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

 monitor buffer;
 export append, take;

 var BUF : array[. . .] of integer;
 top, base : 0..size-1; NumberInBuffer : integer;

 spaceavailable, itemavailable : condition;

 procedure append (I : integer);
 begin
 if NumberInBuffer = size then
 wait(spaceavailable);
 end if;
 BUF[top] := I;
 NumberInBuffer := NumberInBuffer+1;
 top := (top+1) mod size;
 signal(itemavailable)
 end append;

© Alan Burns and Andy Wellings, 2001

 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then
 wait(itemavailable);
 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;
 signal(spaceavailable);
 end take;

begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0; base := 0
end;

The Bounded Buffer

• A process appending an
item will, however, signal
this suspended process
when an item does become
available.

• If a process calls take
when there is nothing in
the buffer then it will
become suspended on
itemavailable.

© Alan Burns and Andy Wellings, 2001

The semantics of SIGNAL

n What happens to the signalling process and the process
that is restarted? Both must not be active in the monitor

n There are various semantics for SIGNAL

© Alan Burns and Andy Wellings, 2001

The Semantics of SIGNAL

n A signal is allowed only as the last action of a process
before it leaves the monitor

n A signal operation has the side-effect of executing a
return statement, i.e. the process is forced to leave

n A signal operation which unblocks another process has
the effect of blocking itself; this process will only execute
again when the monitor is free

n A signal operation which unblocks a process does not
block the caller. The unblocked process must gain
access to the monitor again

P1 P2 P3

produce

leave

signal NotEmpty

produce

produce

consume

time

wait NotFull

leave

signal NotFull

leave

© Alan Burns and Andy Wellings, 2001

POSIX Mutexes and Condition Variables

n Provide the equivalent of a monitor for communication and
synchronisation between threads

n Mutexes and condition variables have associated attribute
objects; we will use default attributes only

n Example attributes:
– set the semantics for a thread trying to lock a mutex it already has

locked
– allow sharing of mutexes and condition variables between processes
– set/get priority ceiling
– set/get the clock used for timeouts

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
 /* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
 /* destroys a mutex */
 /* undefined behaviour if the mutex is locked */

int pthread_cond_init(pthread_cond_t *cond,
 const pthread_condattr_t *attr);
 /* initialises a condition variable with certain attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
 /* destroys a condition variable */
 /* undefined, if threads are waiting on the cond. variable */

int pthread_mutex_lock(pthread_mutex_t *mutex);
 /* lock the mutex; if locked already suspend calling thread */
 /* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
 /* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
 const struct timespec *abstime);
 /* as lock but gives an error if mutex cannot be obtained */
 /* by the timeout */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
 /* unlocks the mutex if called by the owning thread */
 /* undefined behaviour if calling thread is not the owner */
 /* undefined behaviour if the mutex is not locked } */
 /* when successful, a blocked thread is released */

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
 /* called by thread which owns a locked mutex */
 /* undefined behaviour if the mutex is not locked */
 /* atomically blocks the caller on the cond variable and */
 /* releases the lock on mutex */
 /* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond,
 pthread_mutex_t *mutex, const struct timespec *abstime);
 /* the same as pthread_cond_wait, except that a error is */
 /* returned if the timeout expires */

int pthread_cond_signal(pthread_cond_t *cond);
 /* unblocks at least one blocked thread */
 /* no effect if no threads are blocked */

int pthread_cond_broadcast(pthread_cond_t *cond);
 /* unblocks all blocked threads */
 /* no effect if no threads are blocked */

 /*all unblocked threads automatically contend for */
 /* the associated mutex */

All functions return 0 if successful

© Alan Burns and Andy Wellings, 2001

Bounded Buffer in POSIX
#define BUFF_SIZE 10

typedef struct {
 pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf[BUFF_SIZE];
 } buffer;

int append(int item, buffer *B) {
 PTHREAD_MUTEX_LOCK(&B->mutex);
 while(B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT(&B->buffer_not_full, &B->mutex); }
 /* put data in the buffer and update count and last */
 PTHREAD_MUTEX_UNLOCK(&B->mutex);
 PTHREAD_COND_SIGNAL(&B->buffer_not_empty);
 return 0;
}

int take(int *item, buffer *B) {
 PTHREAD_MUTEX_LOCK(&B->mutex);
 while(B->count == 0) {
 PTHREAD_COND_WAIT(&B->buffer_not_empty, &B->mutex);
 }
 /* get data from the buffer and update count and first */
 PTHREAD_MUTEX_UNLOCK(&B->mutex);
 PTHREAD_COND_SIGNAL(&B->buffer_not_full);
 return 0;
}

int initialize(buffer *B) {
 /* set the attribute objects and initialize the */
 /* mutexes and condition variable */
}

© Alan Burns and Andy Wellings, 2001

Readers/Writers Problem

Block of Data

reader reader writer writer

How can monitors be used to
allow many concurrent readers
or a single writer but not both?

© Alan Burns and Andy Wellings, 2001

Hint

You will need to have an entry and exit protocol

Reader:
start_read
. . .
stop_read

Writer:
start_write
. . .
stop_write

© Alan Burns and Andy Wellings, 2001

Nested Monitor Calls

n What should be done if a process having made a nested
monitor call is suspended in another monitor?

n The mutual exclusion in the last monitor call will be
relinquished by the process, due to the semantics of the
wait operation

n However, mutual exclusion will not be relinquished by
processes in monitors from which the nested calls have
been made; processes that attempt to invoke procedures
in these monitors will become blocked

n Maintain the lock: e.g. POSIX
n Prohibit nested procedure calls altogether: e.g. Modula-1
n Provide constructs which specify that certain monitor

procedures may release their mutual exclusion lock during
remote calls

© Alan Burns and Andy Wellings, 2001

Criticisms of Monitors

n The monitor gives a structured and elegant solution to
mutual exclusion problems such as the bounded buffer

n It does not, however, deal well with condition
synchronization — requiring low-level condition
variables

n All the criticisms surrounding the use of semaphores
apply equally to condition variables

© Alan Burns and Andy Wellings, 2001

Protected Objects

n Combines the advantages of monitors with the
advantages of conditional critical regions

n Data and operations are encapsulated
n Operations have automatic mutual exclusion
n Guards can be placed on operations for condition

synchronization

© Alan Burns and Andy Wellings, 2001

A Protected Object

n Encapsulates data items and allows access to them
only via protected actions — protected subprograms or
protected entries

n The language guarantees that the data will only be
updated under mutual exclusion, and that all data read
will be internally consistent

n A protected unit may be declared as a type or as a
single instance

© Alan Burns and Andy Wellings, 2001

protected type Name (Discriminant) is

 function Fname(Params)

 return Type_Name;

 procedure Pname(Params);

 entry E1_Name(Params);

private

 entry E2_Name(Params);

 O_Name : T_Name;

end Name;

Syntax

Only subprograms,
entries and object
declarations

Only subprograms
and entries

No type declarations

© Alan Burns and Andy Wellings, 2001

Protected Types and Mutual Exclusion

protected type Shared_Data(Initial : Data_Item) is
 function Read return Data_Item;
 procedure Write (New_Value : in Data_Item);
private
 The_Data : Data_Item := Initial;
end Shared_Data_Item;

© Alan Burns and Andy Wellings, 2001

The Protected Unit Body

protected body Shared_Data_Item is

 function Read return Data_Item is
 begin
 return The_Data;
 end Read;

 procedure Write (New_Value : in Data_Item) is
 begin
 The_Data := New_Value;
 end Write;

end Shared_Data_Item;

© Alan Burns and Andy Wellings, 2001

Protected Procedures and Functions

n A protected procedure provides mutually exclusive
read/write access to the data encapsulated

n Concurrent calls to Write will be executed one at a
time

n Protected functions provide concurrent read only access
to the encapsulated data

n Concurrent calls to Read may be executed
simultaneously

n Procedure and function calls are mutually exclusive
n The core language does not define which calls take

priority

© Alan Burns and Andy Wellings, 2001

Protected Entries and Synchronisation

n A protected entry is similar to a protected procedure in
that calls are executed in mutual exclusion and have
read/write access to the data

n A protected entry can be guarded by a boolean
expression (called a barrier)
– if this barrier evaluates to false when the entry call is made, the

calling task is suspended and remains suspended while the
barrier evaluates to false, or there are other tasks currently
active inside the protected unit

n Hence protected entry calls can be used to implement
condition synchronisation

© Alan Burns and Andy Wellings, 2001

Condition Synchronisation Example

-- a bounded buffer
Buffer_Size : constant Integer :=10;
type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer is array (Index) of Data_Item;

protected type Bounded_Buffer is
 entry Get (Item : out Data_Item);
 entry Put (Item : in Data_Item);
private
 First : Index := Index'First;
 Last : Index := Index'Last;
 Num : Count := 0;
 Buf : Buffer;
end Bounded_Buffer;

© Alan Burns and Andy Wellings, 2001

barriers

Bounded Buffer
protected body Bounded_Buffer is
 entry Get (Item : out Data_Item) when Num /= 0 is
 begin
 Item := Buf(First);
 First := First + 1;
 Num := Num - 1;
 end Get;

 entry Put (Item : in Data_Item) when
 Num /= Buffer_Size is
 begin
 Last := Last + 1;
 Buf(Last) := Item
 Num := Num + 1;
 end Put;
end Bounded_Buffer;
My_Buffer : Bounded_Buffer;

© Alan Burns and Andy Wellings, 2001

Subprogram Calls, Entry Calls and Barriers

n To call a protected object, simply name the object and
the subprogram or entry:

My_Buffer.Put(Some_Data);

n As with task entry calls, the caller can use the select
statement to issue timed or conditional protected entry
calls

select select
 My_Buffer.Put(Some_Data); My_Buffer.Put(Some_Data);
or else
 delay 10.0; -- do something else
 -- do something else end select;
end select;

© Alan Burns and Andy Wellings, 2001

Barrier Evaluation

n At any instance in time, a barrier is either open or
closed; it is open if the boolean expression evaluates to
true, otherwise it is closed

n Barriers are evaluated when:
1. a task calls one of its protected entries and the associated

barrier references a variable or an attribute which might have
changed since the barrier was last evaluated

2. a task executes and leaves a protected procedure or entry, and
there are tasks queued on entries whose barriers reference
variables or attributes which might have changed since the
barriers were last evaluated

Why are barriers not evaluated after a function call?

© Alan Burns and Andy Wellings, 2001

Write Access to a Protected Object

task executing with read access

task requesting read access

task executing with read/write access

task requesting read/write access

protected object

Barrier queue

© Alan Burns and Andy Wellings, 2001

Read Access to a Protected Object

task executing with read access

task requesting read access

task executing with read/write access

task requesting read/write access

protected object

Barrier queue

© Alan Burns and Andy Wellings, 2001

Resource Control Example

protected Resource_Control is
 entry Allocate;
 procedure Deallocate;
private
 Free : Boolean := True;
end Resource_Control;

Assuming a single resource,
what is the body of this
protected object? Answer is in RTSPL

book chapter 8

© Alan Burns and Andy Wellings, 2001

The Count Attribute

n The Count attribute defines the number of tasks queued
on an entry

n Its evaluation requires the read/write lock

protected Blocker is
 entry Proceed;
private
 Release : Boolean := False;
end Blocker;

protected body Blocker is
 entry Proceed when
 Proceed’Count = 5 or
 Release is
 begin
 if Proceed’Count = 0 then
 Release := False;
 else
 Release := True;
 end if;
 end Proceed;
end Blocker;

© Alan Burns and Andy Wellings, 2001

Broadcast

protected type Broadcast is
 entry Receive(M : out message);
 procedure Send(M : message);
private
 New_Message : Message;
 Message_Arrived : Boolean := False;
end Broadcast;

Everyone queued on Receive should receive the message
when send is called

Answer is in RTSPL
book chapter 8

© Alan Burns and Andy Wellings, 2001

Semaphores
package Semaphore_Package is
 type Semaphore(Initial : Natural :=1)
 is limited private;
 procedure Wait (S : in out Semaphore);
 procedure Signal (S : in out Semaphore);
private
 protected type Semaphore(Initial : Natural :=1) is
 entry Wait_Imp;
 procedure Signal_Imp;
 private
 Value : Natural := Initial;
 end Semaphore;
end Semaphore_Package;

How would you implement this package?
Answer is in RTSPL
book chapter 8

© Alan Burns and Andy Wellings, 2001

Private Entries and Entry Families

n As with tasks, protected types can have private entries

and entry families

n A protected type's private entries may be used during

requeue operations

n A family can be declared by placing a discrete subtype

definition in the specification of the entry

n The barrier associated with the entry can use the index

of the family (usually to index into an array of booleans)

© Alan Burns and Andy Wellings, 2001

type Group is range 1 .. 10;

type Group_Data_Arrived is array(Group) of Boolean;

protected type Group_Controller is

 procedure Send(To_Group : Group; Data : Data_Item);

 entry Receive(Group) (Data : out Data_Item);
private

 Arrived : Group_Data_Arrived := (others => False);

 The_Data : Data_Item;
end Group_Controller;

My_Controller : Group_Controller;

An Example of an Entry Family

© Alan Burns and Andy Wellings, 2001

protected body Group_Controller is
 procedure Send(To_Group : Group; Data : Data_Item) is
 begin
 if Receive(To_Group)'Count > 0 then
 Arrived(To_Group) := True;
 The_Data := Data;
 end if;
 end Send;
 entry Receive(for From in Group) (Data : out Data_Item)
 when Arrived(From) is
 begin
 if Receive(From)'Count = 0 then
 Arrived(From) := False;
 end if;
 Data := The_Data;
 end Receive;
end Group_Controller;

Fa
m

ily
 o

f e
nt

rie
s

can’t use this
syntax for task
entries

last one out closes
the door!

Entry Families Continued

© Alan Burns and Andy Wellings, 2001

Restrictions on Protected Objects

n Code inside a PO should be as short as possible
n ARM disallows potentially blocking operations

– an entry call statement
– a delay statement
– task creation or activation
– a call to a subprogram which contains a potentially blocking

operation
– a select statement
– an accept statement

n Program_Error is raised if a blocking operation is
called

n A call to an external protected procedure/function is not
considered potentially blocking

© Alan Burns and Andy Wellings, 2001

protected type Broadcast is
 procedure Send (This_Altitude : Altitude);
 entry Receive (An_Altitude : out Altitude);
private
 Altitude_Arrived : Boolean := False;
 The_Altitude : Altitude;
end Broadcast;

type Prt_Broadcast is access all Broadcast;

a pointer to an object on the heap or
a statically aliased object

Access Variables

© Alan Burns and Andy Wellings, 2001

 procedure Register (G: Ptr_Broadcast; Name : String);

function Find (G: String) return Ptr_Broadcast;
...

task body Barometric_Pressure_Reader is

 My_Group : Ptr_Broadcast := new Broadcast;

begin

 Register(My_Group, "Barometric_Pressure");

 ...
 My_Group.Send(Altitude_Reading);
 ...
end Barometric_Pressure_Reader;

-- My_Group : aliased Broadcast;

-- Register(My_Group’Access, "Barometric_Pressure");

Broadcast Example

© Alan Burns and Andy Wellings, 2001

task Auto_Pilot;
task body Auto_Pilot is
 Bp_Reader : Ptr_Broadcast;

 Current_Altitude : Altitude;
begin
 Bp_Reader := Find("Barometric_Pressure");
 ...
 select
 Bp_Reader.Receive(Current_Altitude);
 or
 delay 0.1;
 end;
 ...
end Auto_Pilot;

Broadcast Example II

© Alan Burns and Andy Wellings, 2001

Access to Protected Subprograms

n As well as declaring access types for protected types,
Ada also allows the programmer to declare an access
type to a protected subprogram

access_to_subprogram_definition ::=
 access [protected] procedure parameter_profile |
 access [protected] function parameter_and_result_profile

An example of this will be given later

Note, there is no access to a protected entry. Why?

© Alan Burns and Andy Wellings, 2001

Elaboration and Finalisation

n A protected object is elaborated when it comes into
scope in the usual way

n Finalisation of a protected object requires that any tasks
left on entry queues have the exception
Program_Error raised. Generally they are two
situations where this can happen:
– a protected object is unchecked deallocated via an access

pointer to it
– a task calls an entry in another task which requeues the first

task on a protected object which then goes out of scope

© Alan Burns and Andy Wellings, 2001

Example of Program_Error

task Client;
task body Client is
begin
 ...
 Server.Service;
 ...
end Client;

task Server is
 entry Service;
end Server;

© Alan Burns and Andy Wellings, 2001

task body Server is
 protected Local is
 entry Queue1;
 entry Queue2;
 end Local;
 protected body Local is separate;

 -- body not important here

begin
 ...
 accept Service do
 requeue Local.Queue1;

 end Service;
 ...
end Server;

It is possible for
the Server task to
terminate with a
Client queued on the
Local protected

Example of Program_Error II

© Alan Burns and Andy Wellings, 2001

Exceptions and Protected Objects

n Program_Error is raised when a protected action
issues a potentially blocking operation (if detected)

n Any exception raised during the evaluation of a barrier,
results in Program_Error being raised in all tasks
currently waiting on the entry queues

n Any exception raised and not handled whilst executing a
protected subprogram or entry, is propagated to the task
that issued the protected call

n A task queued on a protected entry whose protected
object is subsequently finalised has Program_Error
raised

© Alan Burns and Andy Wellings, 2001

The Readers and Writers Problem

n Consider a file which needs mutual exclusion between
writers and reader but not between multiple readers

n Protected objects can implement the readers/writers
algorithm if the read operation is encoded as a function
and the write as a procedure; however:
– The programmer cannot easily control the order of access to the

protected object; specifically, it is not possible to give preference
to write operations over reads

– If the read or write operations are potentially blocking, then they
cannot be made from within a protected object

n To overcome these difficulties the PO must be used to
implement an access control protocol for the read and
write operations (rather than encapsulate them)

© Alan Burns and Andy Wellings, 2001

Readers/Writers

with Data_Items; use Data_Items;
package Readers_Writers is
 -- for some type Item
 procedure Read (I : out Item);
 procedure Write (I : Item);
end Readers_Writers;

© Alan Burns and Andy Wellings, 2001

Readers/Writers II
package body Readers_Writers is

 procedure Read_File(I : out Item) is separate;
 procedure Write_File(I : Item) is separate;

 protected Control is
 entry Start_Read;
 procedure Stop_Read;
 entry Request_Write;
 entry Start_Write;
 procedure Stop_Write;
 private
 Readers : Natural := 0; -- no. of current readers
 Writers : Boolean := False; -- Writers present
 end Control;

© Alan Burns and Andy Wellings, 2001

Readers/Writers III

 procedure Read (I : out Item) is
 begin
 Control.Start_Read;
 Read_File(I);
 Control.Stop_Read;
 end Read;

 procedure Write (I : Item) is
 begin
 Control.Request_Write; -- indicate writer present
 Control.Start_Write;
 Write_File(I);
 Control.Stop_Write;
 end Write;

© Alan Burns and Andy Wellings, 2001

 protected body Control is

 end Control;
end Readers_Writers;

Readers/Writers IV

requeue allows a more
robust solution

 entry Start_Read when not Writers and
 Request_Write'Count = 0 is
 begin Readers := Readers + 1; end Start_Read;

 procedure Stop_Read is
 begin Readers := Readers - 1; end Stop_Read;
 entry Request_Write when not Writers is
 begin Writers := True; end Request_Write;

 entry Start_Write when Readers = 0 is
 begin null; end Start_Write;

 procedure Stop_Write is
 begin
 Writers := False;
 end Stop_Write;

© Alan Burns and Andy Wellings, 2001

Synchronized Methods

n Java provides a mechanism by which monitors can be
implemented in the context of classes and objects

n There is a lock associated with each object which cannot
be accessed directly by the application but is affected by
– the method modifier synchronized
– block synchronization.

n When a method is labeled with the synchronized
modifier, access to the method can only proceed once the
lock associated with the object has been obtained

n Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, if that data
is only accessed by other synchronized methods

n Non-synchronized methods do not require the lock and,
therefore, can be called at any time

© Alan Burns and Andy Wellings, 2001

Example of Synchronized Methods
class SharedInteger
{
 private int theData;

 public SharedInteger(int initialValue)
 {
 theData = initialValue;
 }

 public synchronized int read()
 {
 return theData;
 };

 public synchronized void write(int newValue)
 {
 theData = newValue;
 };

 public synchronized void incrementBy(int by)
 {
 theData = theData + by;
 };
}

SharedInteger myData = new SharedInteger(42);

© Alan Burns and Andy Wellings, 2001

Block Synchronization

n Provides a mechanism whereby a block can be labeled as
synchronized

n The synchronized keyword takes as a parameter an object
whose lock it needs to obtain before it can continue

n Hence synchronized methods are effectively
implementable as
 public int read()
 {
 synchronized(this) {
 return theData;
 }
 }

n Where this is the Java mechanism for obtaining the
current object

© Alan Burns and Andy Wellings, 2001

Warning

n Used in its full generality, the synchronized block can
undermine one of the advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints associate with an object into a single place
in the program

n This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.

n However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed

© Alan Burns and Andy Wellings, 2001

Static Data

n Static data is shared between all objects created from
the class

n To obtain mutually exclusive access to this data
requires all objects to be locked

n In Java, classes themselves are also objects and
therefore there is a lock associated with the class

n This lock may be accessed by either labeling a static
method with the synchronized modifier or by identifying
the class's object in a synchronized block statement

n The latter can be obtained from the Object class
associated with the object

n Note, however, that this class-wide lock is not obtained
when synchronizing on the object

© Alan Burns and Andy Wellings, 2001

Static Data
class StaticSharedVariable
{
 private static int shared;
 ...

 public synchronized int Read()
 {
 synchronized(this.getClass())
 {
 return shared;
 };
 }

 public static void Write(int I)
 {
 synchronized(this.getClass())
 {
 shared = I;
 };
 };
}

Could have used:
public static synchronized void Write(int I)

© Alan Burns and Andy Wellings, 2001

Waiting and Notifying

n To obtain conditional synchronization requires the methods
provided in the predefined object class
public void wait();
 // throws IllegalMonitorStateException
public void notify();
 // throws IllegalMonitorStateException
public void notifyAll();
 // throws IllegalMonitorStateException

n These methods should be used only from within methods
which hold the object lock

n If called without the lock, the exception IllegalMonitor-
StateException is thrown

© Alan Burns and Andy Wellings, 2001

Waiting and Notifying

n The wait method always blocks the calling thread and
releases the lock associated with the object

n A wait within a nested monitor releases only the inner lock
n The notify method wakes up one waiting thread; the one

woken is not defined by the Java language
n Notify does not release the lock; hence the woken thread

must wait until it can obtain the lock before proceeding
n To wake up all waiting threads requires use of the
notifyAll method

n If no thread is waiting, then notify and notifyAll have
no effect

© Alan Burns and Andy Wellings, 2001

Thread Interruption

n A waiting thread can also be awoken if it is interrupted
by another thread

n In this case the InterruptedException is thrown (see later
in the course)

© Alan Burns and Andy Wellings, 2001

Condition Variables

n There are no explicit condition variables. An awoken thread
should usually evaluate the condition on which it is waiting (if
more than one exits and they are not mutually exclusive)

public class BoundedBuffer {
 private int buffer[];
 private int first;
 private int last;
 private int numberInBuffer = 0;
 private int size;

 public BoundedBuffer(int length) {
 size = length;
 buffer = new int[size];
 last = 0;
 first = 0;
 };

 public synchronized void put(int item)
 throws InterruptedException
 {
 if (numberInBuffer == size) {
 wait();
 };
 last = (last + 1) % size ; // % is modulus
 numberInBuffer++;
 buffer[last] = item;
 notify();
 };

 public synchronized int get() throws InterruptedException
 {
 if (numberInBuffer == 0) {
 wait();
 };
 first = (first + 1) % size ; // % is modulus
 numberInBuffer--;
 notify();
 return buffer[first];
 };
} Mutually exclusive waiting

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem

n Standard solution in monitors is to have two condition
variables: OkToRead and OkToWrite

n This cannot be directly expressed using a single class

public class ReadersWriters // first solution
{

 private int readers = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem
 public synchronized void StartWrite()
 throws InterruptedException
 {
 while(readers > 0 || writing)
 {
 waitingWriters++;
 wait();
 waitingWriters--;
 }
 writing = true;
 }

 public synchronized void StopWrite()
 {
 writing = false;
 notifyAll();
 }

loop to re-test
the condition

Wakeup everyone

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem

 public synchronized void StartRead()
 throws InterruptedException
 {
 while(writing || waitingWriters > 0) wait();
 readers++;
 }

 public synchronized void StopRead()
 {
 readers--;
 if(readers == 0) notifyAll();
 }

}

Arguably, this is inefficient as all threads are woken

© Alan Burns and Andy Wellings, 2001

Implementing Condition Variables

n Approach: use another class and block synchronization
n Get lock on condition variable on which you might want

to sleep or notify, then get monitor lock

public class ConditionVariable {
 public boolean wantToSleep = false;
}

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem: Solution 2
public class ReadersWriters
{

 private int readers = 0;
 private int waitingReaders = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

 ConditionVariable OkToRead = new ConditionVariable();
 ConditionVariable OkToWrite = new ConditionVariable();

 public void StartWrite() throws InterruptedException
 {
 synchronized(OkToWrite) // get condition variable lock
 {
 synchronized(this) // get monitor lock
 {
 if(writing | readers > 0) {
 waitingWriters++;
 OkToWrite.wantToSleep = true;
 } else {
 writing = true;
 OkToWrite.wantToSleep = false;
 }
 } //give up monitor lock
 if(OkToWrite.wantToSleep) OkToWrite.wait();
 }
 }

Note order of synchronized statements

 public void StopWrite()
 {
 synchronized(OkToRead)
 {
 synchronized(OkToWrite)
 {
 synchronized(this)
 {
 if(waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify(); // wakeup one writer
 } else {
 writing = false;
 OkToRead.notifyAll(); // wakeup all readers
 readers = waitingReaders;
 waitingReaders = 0;
 }
 }
 }
 }
 }

Important for all methods to use the same
order otherwise deadlock will occur

 public void StartRead()
 throws InterruptedException
 {
 synchronized(OkToRead) {
 synchronized(this)
 {
 if(writing | waitingWriters > 0) {
 waitingReaders++;
 OkToRead.wantToSleep = true;
 } else {
 readers++;
 OkToRead.wantToSleep = false;
 }
 }
 if(OkToRead.wantToSleep) OkToRead.wait();
 }
 }

 public void StopRead()
 {
 synchronized(OkToWrite)
 {
 synchronized(this)
 {
 readers--;
 if(readers == 0 & waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify();
 }
 }
 }
 }
}

© Alan Burns and Andy Wellings, 2001

Summary

n critical section — code that must be executed under
mutual exclusion

n producer-consumer system — two or more processes
exchanging data via a finite buffer

n busy waiting — a process continually checking a
condition to see if it is now able to proceed

n livelock — an error condition in which one or more
processes are prohibited from progressing whilst using
up processing cycles

n deadlock — a collection of suspended processes that
cannot proceed

n indefinite postponement — a process being unable to
proceed as resources are not made available

© Alan Burns and Andy Wellings, 2001

Summary

n semaphore — a non-negative integer that can only be
acted upon by WAIT and SIGNAL atomic procedures

n Two more structured primitives are: condition critical
regions and monitors

n Suspension in a monitor is achieved using condition
variable

n POSIX mutexes and condition variables give monitors
with a procedural interface

n Ada’s protected objects give structured mutual exclusion
and high-level synchronization via barriers

n Java’s synchronized methods provide monitors within
an object-oriented framework

