Shared Variable-Based
Synchronization and
Communication

m To understand the requirements for communication and
synchronisation based on shared variables

m To briefly review semaphores, monitors and conditional
critical regions

m To understand Ada 95 protected objects, POSIX
mutexes and Java synchronized methods

© Alan Burnsand Andy Wellings, 2001

Prerequisites

m Understanding the issues of busy-waiting and
semaphores from an Operating System Course.

m However:
— Course book give full details on busy-waiting, semaphores,

conditional critical regions, monitors etc.

© Alan Burnsand Andy Wellings, 2001

Synchronisation and Communication

m The correct behaviour of a concurrent program depends
on synchronisation and communication between its
processes

m Synchronisation: the satisfaction of constraints on the
Interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)

m Communication: the passing of information from one
process to another

— Concepts are linked since communication requires
synchronisation, and synchronisation can be considered as
contentless communication.

— Data communication is usually based upon either shared
variables or message passing.

© Alan Burnsand Andy Wellings, 2001

Shared Varlabl - Communl catl on

Examples: busy waiting, semaphores and monitors

Unrestricted use of shared variables is unreliable and
unsafe due to multiple update problems

Consider two processes updating a shared variable, X,
with the assignment: X:= X+1

— load the value of X into some register

— Increment the value in the register by 1 and

— store the value in the register back to X

As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect
result

© Alan Burnsand Andy Wellings, 2001

Shared Resource Communication

type Coordinates is

record
X : Integer;
Y : Integer;

end record;
Shar ed_Cor di nat e:

Coor di nat es;

task body Helicopter is
Next : Coor di nat es;
begi n
| oop
Conput e_New_Cor di nat es(Next) ;
Shared Cordi nates := Next;
end | oop

end;

task body Police_Car is
begi n
| oop
Pl ot (Shar ed_Cor di nat es) ;
end | oop;

end;

Y=4
4
5.
. 11
2,2 2,2
3,3 .
4,4 33
5,5 4,4
6, 6 45
Villain's Escape Police Car’'s
Pursuit Route

Route

(seen by helicopter)

Avolding I nterference

m The parts of a process that access shared variables
must be executed indivisibly with respect to each other

m These parts are called critical sections
m The required protection is called mutual exclusion

© Alan Burnsand Andy Wellings, 2001

Mutual Exclusion

A sequence of statements that must appear to be
executed indivisibly is called a critical section

The synchronisation required to protect a critical section
IS known as mutual exclusion

Atomicity Iis assumed to be present at the memory level.
If one process Is executing X:= 5, simultaneously with
another executing X:= 6, the result will be either 5 or 6
(not some other value)

If two processes are updating a structured object, this
atomicity will only apply at the single word element level

© Alan Burnsand Andy Wellings, 2001

Condition Synchronisatio

m Condition synchronisation is needed when a process
wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state

m E.g. a bounded buffer has 2 condition synchronisation:

— the producer processes must not attempt to deposit data onto

the buffer if the buffer is full
— the consumer processes cannot be allowed to extract objects

from the buffer if the buffer is empty

|s mutual

exclusion

necessary?

T © Alan Burnsand Andy Wellings, 2001

head tail

Busy Waiting

One way to implement synchronisation is to have
processes set and check shared variables that are
acting as flags

This approach works well for condition synchronisation
but no simple method for mutual exclusion exists

Busy walit algorithms are in general inefficient; they
Involve processes using up processing cycles when
they cannot perform useful work

Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)

© Alan Burnsand Andy Wellings, 2001

Semaphores

A semaphore Is a non-negative integer variable that
apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)

WAIT(S) If the value of S > 0 then decrement its value
by one; otherwise delay the process until S >0 (and
then decrement its value).

SIGNAL(S) Increment the value of S by one.

WAIT and SIGNAL are atomic (indivisible). Two
processes both executing WAIT operations on the same
semaphore cannot interfere with each other and cannot
fail during the execution of a semaphore operation

© Alan Burnsand Andy Wellings, 2001

N Condition synchronisation

var consyn : semaphore (* init 0 *)

process P1; process P2;
(* waiting process *) (* signalling proc *)
statenent X st atenent A
wai t (consyn) signal (consyn)
statenent Y; st at enent B;

end P1,; end P2,

|n what order will the statements execute?

© Alan Burnsand Andy Wellings, 2001

Mutual Exclusion

(* nmutual exclusion *)
var nutex : semaphore; (* initially 1 *)

process P1; process P2;
statenent X stat ement A
wai t (nmutex); wait (nmutex);
statenment Y st at enent B;
si gnal (nutex); si gnal (nutex);
statenent Z statenent C,
end P1; end P2;

|n what order will the statements execute?

© Alan Burnsand Andy Wellings, 2001

Process States

—{N on-existi ngT [N on-existing |
_ A

Initializing }{ Terminated]

: !

E/Vajting Chilﬂ‘

Initialization

P{ Executable Waiting Pep_endentj
Termination

© Alan Burnsand Andy Wellings, 2001

Deadlock

m Two processes are deadlocked if each is holding a
resource while waiting for a resource held by the other

type Semis ...;
X: Sem:=1; Y

Sem : = 1;

task A t ask B;

task body Ais
begi n

véit(X);
Vit (Y);

end A;

task body B is
begi n

i/\;Sli.t(Y);
Wai t (X) ;

end B;

© A

lan Burns and Andy Wellings, 2001

L1velock -

m Two processes are livelocked if each is executing but

neither is able to make progress.
type Flag is (Up, Down);
Flagl : Flag := Up;

task A t ask B;
task body Ais task body B is
begi n begi n

while Flagl = Up | oop while Flagl = Up | oop

nul | ; nul | ;
end | oop; end | oop;
end A end A
© Alan Burnsand Andy Wellings, 2001

Binary and quantity

aphores

m A general semaphore is a non-negative integer; its
value can rise to any supported positive number

m A binary semaphore only takes the value 0 and 1; the
signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1

m A general semaphore can be implemented by two
binary semaphores and an integer. Try it!

m With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, 1)

© Alan Burnsand Andy Wellings, 2001

Examplesem phore programs in Ada

package Senmaphore_ Package is
type Semaphore(lnitial : Natural) is limted private;

procedure Wait (S : Senmaphore);
procedure signal (S : Semaphore);
private
type Senmaphore ...
end Semaphor e Package;

m Ada does not directly support semaphores; the wait and
signal procedures can, however, be constructed from

the Ada synchronisation primitives

m The essence of abstract data types is that they can be
used without knowledge of their implementation!

© Alan Burnsand Andy Wellings, 2001

unded Buffer

_|
| c?

package Buffer is
procedure Append (I : Integer);
procedure Take (I : out Integer);

end Buffer;

package body Buffer is
Size . constant Natural := 32;
type Buffer Range is nod Size;
Buf : array (Buffer_ Range) of |nteger;
Top, Base : Buffer Range := 0;
Mut ex : Semaphore(1);
| tem Avail abl e : Semaphore(0);
Space_Avail able : Semaphore(Si ze);
procedure Append (I : Integer) is separate;
procedure Take (I : out Integer) is separate;
end Buffer;

© Alan Burnsand Andy Wellings, 2001

The Bounded Bufer

procedure Append(|
begi n
Wai t (Space_Avai | abl e);
Wai t (Mut ex;
Buf (Top)
Top := Top+l
Si gnal (Mut ex;
Signal (I1tem Avail abl e) ;
end Append,;

| nt eger)

| S

procedure Take(l out S
begi n
Wait (I tem Avail abl e);
Vi t (Mut ex) ;
BUF(base) ;
Base : = Base+1;
Si gnal (Mut ex) ;
Si gnal (Space_Avai | abl e) ;

end Take:

| nt eger)

© Alan Burnsand Andy Wellings, 2001

Criticisms of semaphores

Semaphore are an elegant low-level synchronisation
primitive, however, their use Is error-prone

If a semaphore is omitted or misplaced, the entire
program to collapse. Mutual exclusion may not be
assured and deadlock may appear just when the
software Is dealing with a rare but critical event

A more structured synchronisation primitive is required

No high-level concurrent programming language relies
entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain

© Alan Burnsand Andy Wellings, 2001

Conditional Critical Regions (CCR)

A critical region is a section of code that is guaranteed
to be executed in mutual exclusion

Shared variables are grouped together into named
regions and are tagged as being resources

Processes are prohibited from entering a region in
which another process is already active

Condition synchronisation is provided by guards. When
a process wishes to enter a critical region it evaluates
the guard (under mutual exclusion); if the guard
evaluates true it may enter, but if it is false the process
Is delayed

As with semaphores, no access order can be assumed

© Alan Burnsand Andy Wellings, 2001

The Bounded Buffer

program buffer egqg;
type buffer t is record

slots . array(l..N) of character;
Si ze . integer range 0O..N;
head, tail : integer range 1..N;

end record;
buffer : buffer _t;
resource buf : buffer:

process producer | s separate,;

process consuner | s separate,;
end.

© Alan Burnsand Andy Wellings, 2001

The Bounded Buffer

process producer;
| oop
regi on buf when buffer.size < N do
-- place char in buffer etc
end regi on
end | oop;
end producer

process consuner;
| oop
regi on buf when buffer.size > 0 do
-- take char frombuffer etc
end regi on
end | oop;
end consuner © Alan Bursand Andy Wellings, 2001

Problem

m One problem with CCRs is that processes must re-
evaluate their guards every time a CCR naming that
resource Is left. A suspended process must become
executable again in order to test the guard; if it is still
false it must return to the suspended state

m A version of CCRs has been implemented in Edison, a
language intended for embedded applications,
Implemented on multiprocessor systems. Each
processor only executes a single process so it may
continually evaluate its guards If necessary

© Alan Burnsand Andy Wellings, 2001

Monitors

A problem with CCRs is that they can be dispersed
throughout the program

Monitors provide encapsulation, and efficient condition
synchronisation

The critical regions are written as procedures and are
encapsulated together into a single module

All variables that must be accessed under mutual
exclusion are hidden; all procedure calls into the module
are guaranteed to be mutually exclusive

Only the operations are visible outside the monitor

© Alan Burnsand Andy Wellings, 2001

The Bounded Buffer

noni t or buffer;
export append, take;

var (*decl are necessary vars*)

procedure append (I : integer);
end;

procedure take (var | : integer);
end;

. How do we get condition
begi n

(* initialisation *) wnChroniﬂion?
end,

© Alan Burnsand Andy Wellings, 2001

Condition Variables

m Different semantics exist

m |In Hoare’s monitors: a condition variable is acted upon

by two semaphore-like operators WAIT and SIGNAL

m A process issuing a WAIT is blocked (suspended) and
placed on a queue associated with the condition
variable (cf semaphores: a wait on a condition variable
always blocks unlike a wait on a semaphore)

m A blocked process releases its hold on the monitor,

allowing another process to enter
m A SIGNAL releases one blocked process. If no process

IS blocked then the signal has no effect (cf semaphores)

© Alan Burnsand Andy Wellings, 2001

The Bounded Buffer

noni t or buffer;
export append, t

var BUF : array]

ake:

] of integer;

top, base : 0..size-1; NunberlnBuffer

spaceavai | abl e,

| nt eger ;

| tenmavail l able : condition;:

procedure append (I : integer);

begi n

I T Nunber| nBuffer = size then
wai t (spaceavai |l abl e) ;

end i1 f;

BUF[top] = I|;
Nunber | nBuf f er
top := (top+l)

: = Nunber | nBuf f er +1;
nod Si ze;

signal (i temavail abl e)

end append,;

© Alan Burnsand Andy Wellings, 2001

The Bounded Buffer

procedure take (var | : integer);
begi n e If aprocesscalls take
| f Nunmber I nBuffer = 0 then when there is nothing in
wai t (i temavail abl e); the buffer then it will
end if; become suspended on
| = BUF[base]; Itemavailable.
base := (base+l) nod size;

Nunber | nBuf fer := Nunber| nBuffer-1;
si gnal (spaceavai | abl e);
end t ake; » A process appending an
begin (* initialisation *) 'tem will, however, signal
o this suspended process
Nunmber | nBuffer := 0; when an item does become
top := 0; base :=0 available.
end;

© Alan Burnsand Andy Wellings, 2001

The semantl CSC of SI GNAL

m What happens to the signalling process and the process
that is restarted? Both must not be active in the monitor

m There are various semantics for SIGNAL

© Alan Burnsand Andy Wellings, 2001

The Semantics of SIGNAL

A signal is allowed only as the last action of a process
before it leaves the monitor

A signal operation has the side-effect of executing a
return statement, i.e. the process is forced to leave

A signal operation which unblocks another process has
the effect of blocking itself; this process will only execute
again when the monitor is free

A signal operation which unblocks a process does not
block the caller. The unblocked process must gain
access to the monitor again

© Alan Burnsand Andy Wellings, 2001

"
N

proguce

produce

N EEE
«— 3

signal NotEmpty

g

wait NotFull

consu

=
™

i

signal NotFull

v

produce leaye i
v L* leave
time ﬁ

POSI X Mutexes and Condltlon Varlabl

m Provide the equivalent of a monitor for communication and
synchronisation between threads

m Mutexes and condition variables have associated attribute
objects; we will use default attributes only

m Example attributes:
— set the semantics for a thread trying to lock a mutex it already has

locked
— allow sharing of mutexes and condition variables between processes

— set/get priority ceiling
— set/get the clock used for timeouts

typedef ... pthread nutex t;
typedef ... pthread nutexattr t;
typedef ... pthread cond t;

typedef ... pthread condattr t; © Alan Burnsand Andy Wellings, 2001

Int pthread mutex init(pthread mutex t *nutex,
const pthread nutexattr_ t *attr);
/[* initialises a nutex with certain attributes */

I nt pthread nmutex destroy(pthread nutex t *nutex),;
/* destroys a nmutex */
/* undefined behaviour if the nutex is |ocked */

i nt pthread cond init(pthread cond t *cond,
const pthread condattr t *attr);
/[* initialises a condition variable wwth certain attributes */

I nt pthread cond destroy(pthread cond t *cond);
/* destroys a condition variable */
/[* undefined, if threads are waiting on the cond. variable */

I nt pthread mutex | ock(pthread mutex t *nutex);
/* lock the nutex; if |ocked already suspend calling thread */
/* the owner of the nutex is the thread which | ocked it */

I nt pthread mutex trylock(pthread nutex t *nutex),;
/* as | ock but gives an error if nmutex is already | ocked */

I nt pthread nmutex tinedl ock(pthread nutex t *nmutex,
const struct tinmespec *abstine);
/[* as | ock but gives an error if nmutex cannot be obtained */
/[* by the tinmeout */

I nt pthread nmutex unlock(pthread nutex t *nutex),;
/* unl ocks the mutex if called by the owning thread */
/[* undefined behaviour if calling thread is not the owner */
/* undefi ned behaviour if the nutex is not | ocked } */
/* when successful, a blocked thread is rel eased */

i nt pthread cond wait(pthread cond t *cond,
pt hread nutex t *nutex);
/* called by thread which owns a | ocked nutex */
/* undefined behaviour if the mutex is not |ocked */
/* atomcally blocks the caller on the cond variable and */
/* releases the lock on nutex */
/* a successful return indicates the nmutex has been | ocked */

I nt pthread cond tinedwait(pthread cond t *cond,
pthread nmutex t *mutex, const struct tinespec *abstine);
/* the sane as pthread cond wait, except that a error is */
/* returned Iif the tineout expires */

I nt pthread cond signal (pthread cond t *cond);
[* unbl ocks at | east one bl ocked thread */
[* no effect 1 f no threads are bl ocked */

I nt pthread cond broadcast (pthread cond t *cond);
[* unbl ocks all bl ocked threads */
[* no effect 1 f no threads are bl ocked */

/[*all unbl ocked threads automatically contend for */
/* the associated nutex */

All functionsreturn O if successful

In POSI

Bounded Buff

#def i ne BUFF_SI ZE 10

t ypedef struct {
pt hread nmutex t nutex;
pthread cond t buffer _not full;
pthread cond t buffer not enpty;
first, last;

| nt count,
| nt buf [BUFF_SI ZE] ;

} buffer;
I nt append(int item buffer *B) {

PTHREAD MUTEX LOCK(&B- >mut ex) ;

whi | e(B->count == BUFF_SI ZE) {
&B- >mut ex) ; }
*/

PTHREAD COND WAI T(&B- >buffer not full,
/* put data in the buffer and update count and | ast

PTHREAD MUTEX UNLOCK(&B- >nut ex) ;
PTHREAD COND S| GNAL(&B- >buffer _not _enpty);
© Alan Burnsand Andy Wellings, 2001

return O;

Int take(int *item buffer *B) {
PTHREAD MUTEX LOCK(&B- >nut ex) ;
whi | e(B->count == 0) {
PTHREAD COND WAI T(&B- >buffer _not _enpty, &B->nmutex);
}
/* get data fromthe buffer and update count and first */
PTHREAD MUTEX UNLOCK(&B- >nut ex) ;
PTHREAD COND SI GNAL(&B- >buffer not full);
return O;

}

int initialize(buffer *B) {
/[* set the attribute objects and initialize the */
/* nmutexes and condition variable */

Readers/Writers Problem

Block of Data

A A A A

How can monitors be used to
allow many concurrent readers
or asingle writer but not both?

reader reader writer writer

© Alan Burnsand Andy Wellings, 2001

L

Y ou will need to have an entry and exit protocol

Reader: Writer:
sart read start write

stop read stop write

© Alan Burnsand Andy Wellings, 2001

Nested Monitor Calls

What should be done if a process having made a nested
monitor call is suspended in another monitor?

The mutual exclusion in the last monitor call will be
relinquished by the process, due to the semantics of the
walt operation

However, mutual exclusion will not be relinquished by
processes in monitors from which the nested calls have
been made; processes that attempt to invoke procedures
In these monitors will become blocked

Maintain the lock: e.g. POSIX
Prohibit nested procedure calls altogether: e.g. Modula-1

Provide constructs which specify that certain monitor
procedures may release their mutual exclusion lock during
remote calls T

Criticisms of Monitors

m The monitor gives a structured and elegant solution to
mutual exclusion problems such as the bounded buffer

m It does not, however, deal well with condition
synchronization — requiring low-level condition
variables

m All the criticisms surrounding the use of semaphores
apply equally to condition variables

© Alan Burnsand Andy Wellings, 2001

Protected Objects

m Combines the advantages of monitors with the
advantages of conditional critical regions

m Data and operations are encapsulated
m Operations have automatic mutual exclusion

m Guards can be placed on operations for condition
synchronization

© Alan Burnsand Andy Wellings, 2001

A Protected Obj ect

m Encapsulates data items and allows access to them
only via protected actions — protected subprograms or

protected entries

m The language guarantees that the data will only be
updated under mutual exclusion, and that all data read

will be internally consistent

m A protected unit may be declared as a type or as a
single instance

© Alan Burnsand Andy Wellings, 2001

oyntax_

protected type Name (Discrimnant) is

function Fnane(Par ans)

~
return Type_Nane;
procedure Pnane(Parans); > Only sul_oprograms
and entries

entry E1 Nane(Parans);
private 2

entry E2 Nane(Parans); Only Sjbpr()grama

O Name : T_Nane; > | entries and object
end Name: declarations

_

No type declarations

© Alan Burnsand Andy Wellings, 2001

Protected Types and Mutual Exclusion

protected type Shared Data(lnitial : Data Item 1is
function Read return Data Item
procedure Wite (New Value : Iin Data Item;
private
The Data : Data Item:= Initial;
end Shared Data Item

© Alan Burnsand Andy Wellings, 2001

TheP Protected Unit Body

protected body Shared Data Itemis

function Read return Data Itemis
begi n

return The_ Dat a;
end Read,;

procedure Wite (New Value : in Data Item 1is
begi n

The Data : = New Val ue;
end Wite,;

end Shared Data |tem

© Alan Burnsand Andy Wellings, 2001

N Protected Procedures and Functions

m A protected procedure provides mutually exclusive
read/write access to the data encapsulated

m Concurrent calls to Wi t e will be executed one at a
time

m Protected functions provide concurrent read only access
to the encapsulated data

m Concurrent calls to Read may be executed
simultaneously

m Procedure and function calls are mutually exclusive

m The core language does not define which calls take
priority

© Alan Burnsand Andy Wellings, 2001

Protected Entries and Synchronisation

m A protected entry is similar to a protected procedure In
that calls are executed in mutual exclusion and have
read/write access to the data

m A protected entry can be guarded by a boolean
expression (called a barrier)

— if this barrier evaluates to false when the entry call is made, the
calling task is suspended and remains suspended while the
barrier evaluates to false, or there are other tasks currently
active inside the protected unit

m Hence protected entry calls can be used to implement
condition synchronisation

© Alan Burnsand Andy Wellings, 2001

Condltlo n Synchronisation Example

-- a bounded buffer

Buffer Size : constant Integer :=10;

type Index is nod Buffer Size;

subtype Count is Natural range O .. Buffer_ Size;
type Buffer is array (I ndex) of Data |tem

protected type Bounded Buffer is
entry Get (ltem: out Data_ltem;
entry Put (Item: in Data_ltem;

private
First : Index := Index' First;
Last : I ndex := I ndex' Last;
Num : Count := O;
Buf : Buffer:;

end Bounded Buffer;

© Alan Burnsand Andy Wellings, 2001

ded Buffer

pr ot ect ed body Bounded_Buf fer
entry Get (ltem:

S

begi n
ltem .= Buf (First);
First := First + 1;
Num : = Num - 1;

end Get;

entry Put (Item: 1in Data |tem when

Last : =

Buf (Last) := Item

Num : = Num + 1;
end Put;

end Bounded Buffer;
My Buffer : Bounded Buffer;

Num /= Buffer _Size is
begi n \
Last + 1; \

out Data Item when Num/= 0 is

barriers

© Alan Burnsand Andy Wellings, 2001

Subprogram Calls, Entry Callsand Barriers

m To call a protected object, simply name the object and

the subprogram or entry:
My_Buf f er. Put (Sone_Dat a) ;

m As with task entry calls, the caller can use the select
statement to issue timed or conditional protected entry

calls
sel ect sel ect
My Buffer. Put(Some Dat a); My Buffer. Put(Some Dat a);
or el se
del ay 10. O; -- do sonething el se
end sel ect;

- do sonething el se
end sel ect;

© Alan Burnsand Andy Wellings, 2001

Barrier Evaluation

m At any instance in time, a barrier is either open or
closed; it is open Iif the boolean expression evaluates to
true, otherwise it is closed

m Barriers are evaluated when:

1. a task calls one of its protected entries and the associated
barrier references a variable or an attribute which might have
changed since the barrier was last evaluated

2. a task executes and leaves a protected procedure or entry, and
there are tasks queued on entries whose barriers reference
variables or attributes which might have changed since the
barriers were last evaluated

Why are barriers not evaluated after a function call?

© Alan Burnsand Andy Wellings, 2001

Write Access to a Protected Object

B

task requesting read/write access

task requesting read access
task executing with read/write access

task executing with read access © Alan Burns and Ay Wallngs, 2001

@ON

Read Access to a Protected Object

@ON

task requesting read/write access

task requesting read access
task executing with read/write access

task executing with read access © Alan Burns and Ay Wallngs, 2001

~ Resource Control Example

protected Resource Control 1Is
entry All ocate;
procedure Deal |l ocat e;
private
Free : Bool ean := True;
end Resource Control;

Assuming a single resource,
what is the body of this

protected object? Answer isin RTSPL
book chapter 8

© Alan Burnsand Andy Wellings, 2001

The Count Attr bute

on an entry
m |ts evaluation requires the read/write lock

protected Bl ocker is
entry Proceed,

private
Rel ease :

end Bl ocker

Bool ean :

Fal se;

m The Count attribute defines the number of tasks queued

protected body Bl ocker is

entry Proceed when
Proceed’ Count = 5 or

Rel ease iIs
begi n
| f Proceed Count = 0 then
Rel ease : = Fal se;
el se
Rel ease : = True;
end if;

end Proceed:
end Bl ocker

© Alan Burnsand Andy Wellings, 2001

Broadcast

protected type Broadcast is
entry Receive(M: out nessage);
procedure Send(M : nessage);

private
New Message : Message;
Message Arrived : Bool ean : = Fal se;

end Broadcast ;

Everyone queued on Recealve should receive the message
when send is called

Answer isin RTSPL
DOOK Chapter. S« wsins o

Semaphores

package Semaphore Package is

type Semaphore(lnitial

Nat ural :=1)

Is [imted private;

procedure Wait (S :
procedure Signal (S :

private

protected type Semaphore(lniti al

entry Wait | np;

I n out Semaphore);
I n out Semaphore);

Natural :=1) iIs

procedure Signal | np;

private
Val ue : Nat ur al

end Semaphor e;
end Semaphor e Package;

How would you implement this package?

Initial;

Answer isin RTSPL
DOOK Chapter. 8 . waing o

m As with tasks, protected types can have private entries

and entry families

m A protected type's private entries may be used during

regueue operations

m A family can be declared by placing a discrete subtype
definition in the specification of the entry

m The barrier associated with the entry can use the index

of the family (usually to index into an array of booleans)

© Alan Burnsand Andy Wellings, 2001

An Example of a ry Famlly

type Goup is range 1 .. 10;
type Goup Data Arrived is array(Goup) of Bool ean

protected type G oup _Controller is

procedure Send(To G oup : Goup; Data :
entry Receive(Goup) (Data : out Data Item;

Data Item;

private
Arrived : Goup_Data Arrived := (others => Fal se);

The Data : Data Item
end G oup _Controller;
My Controller G oup_Controller;

© Alan Burnsand Andy Wellings, 2001

Entry Families Continued

pr ot ect ed body Goup Controller is
procedure Send(To Goup : Goup; Data : Data Item is
begi n , :
| f Receive(To _Goup)' Count > 0 then can't usethis
Arrived(To_Group) := True; synt_ax for task
The Data := Dat a; entries

end if;
end Send;

entry Receive(for Fromin Goup) (Data : out Data Iten) A

|last one out closes
the door!

when Arrived(Fronm is 8

begi n =
| f Receive(From' Count = 0_then O
Arrived(From := Fal se; ©

end if; =
g

Data : = The_ Dat a;
end Recei ve;
end Group_Controller;

v

© Alan Burnsand Andy Wellings, 2001

Restrlctlons on | Protected Obj ects

m Code inside a PO should be as short as possible
m ARM disallows potentially blocking operations

an entry call statement
a delay statement
task creation or activation

a call to a subprogram which contains a potentially blocking
operation

a select statement
an accept statement

m Program Error israised if a blocking operation is
called

m A call to an external protected procedure/function is not
considered potentially blocking

© Alan Burnsand Andy Wellings, 2001

Access Variables

protected type Broadcast is
procedure Send (This Altitude : Altitude);
entry Receive (An_Altitude : out Altitude);
private
Al titude Arrived : Bool ean : = Fal se;
The Altitude : Altitude;
end Broadcast;

type Prt _Broadcast is access all Broadcast;

N J
Y

a pointer to an object on the heap or
a datically aliased object

© Alan Burnsand Andy Wellings, 2001

roadcast Example

procedure Register (G Ptr_Broadcast; Nanme : String);

function Find (G String) return Ptr_Broadcast;

task body Baronetric Pressure Reader is
My Goup : Ptr_Broadcast := new Broadcast;

-- My_Goup : aliased Broadcast;
begi n

Regi ster (My_Group, "Baronetric_Pressure");

-- Register(My_Goup’ Access, "Baronetric Pressure");

My Group. Send(Al titude_Readi ng);

end Baronetric_Pressure_ Reader;

© Alan Burnsand Andy Wellings, 2001

Broadcast Example Il

task Auto Pil ot;
task body Auto Pilot is
Bp Reader Pt r Broadcast;

Al titude;

Current Altitude
Fi nd("Baronetric_Pressure");

begi n
Bp Reader

sel ect
Bp_Reader. Receive(Current Altitude);
or
del ay 0. 1;
end;

© Alan Burns and Ay Wallings, 2001

end Auto Pil ot;

Access to Protected Subprograms

m As well as declaring access types for protected types,
Ada also allows the programmer to declare an access
type to a protected subprogram

access to _subprogramdefinition ::=
access [protected] procedure paraneter_profile |
access [protected] function paraneter _and result _profile

An example of thiswill be given later

Note, there is no access to a protected entry. Why?

© Alan Burnsand Andy Wellings, 2001

Elaboratlon and Flnallsatlon

m A protected object is elaborated when it comes Iinto
scope in the usual way

m Finalisation of a protected object requires that any tasks
left on entry queues have the exception
Program Error raised. Generally they are two
situations where this can happen:

— a protected object is unchecked deallocated via an access
pointer to it

— atask calls an entry in another task which requeues the first
task on a protected object which then goes out of scope

© Alan Burnsand Andy Wellings, 2001

N Example of Program Error

task Cient;
task body Cient is task Server is

begi n entry Service;

coe end Server;
Server. Servi ce;

end C1ent;

© Alan Burnsand Andy Wellings, 2001

Example of Program Error Il

task body Server is
protected Local is
entry Queuel;
entry Queuez;
end Local;

It Is possible for
the Server task to
termnate with a
Client queued on the
Local protected

protected body Local is separate;

-- body not i1 nportant here
begi n

accept Service do
requeue Local . Queuel,;
end Servi ce;

end Server;

© Alan Burnsand Andy Wellings, 2001

Exceptions and Protected Objects

m Program Error israised when a protected action
Issues a potentially blocking operation (if detected)

m Any exception raised during the evaluation of a batrrier,
results in Progr am Er r or being raised in all tasks
currently waiting on the entry queues

m Any exception raised and not handled whilst executing a

protected subprogram or entry, is propagated to the task
that issued the protected call

m A task queued on a protected entry whose protected
object Is subsequently finalised has Pr ogr am Err or

raised

© Alan Burnsand Andy Wellings, 2001

The Readers and erters Problem

m Consider a file which needs mutual exclusion between
writers and reader but not between multiple readers

m Protected objects can implement the readers/writers
algorithm if the read operation is encoded as a function
and the write as a procedure; however:

— The programmer cannot easily control the order of access to the
protected object; specifically, it is not possible to give preference
to write operations over reads

— If the read or write operations are potentially blocking, then they
cannot be made from within a protected object
m To overcome these difficulties the PO must be used to
Implement an access control protocol for the read and
write operations (rather than encapsulate them)

© Alan Burnsand Andy Wellings, 2001

Readers/erters

wth Data Itens; use Data Itens;
package Readers Witers is
-- for sone type Item
procedure Read (I : out Item;
procedure Wite (I : Item;
end Readers Witers;

© Alan Burnsand Andy Wellings, 2001

Readers/erters I |

package body Readers_VViters S
procedure Read File(l : out Item

| S separ at e;

procedure Wite File(l : Item) iIs separate;

protected Control is
entry Start_ Read,
procedure Stop Read;
entry Request Wite;
entry Start Wite;
procedure Stop Wite;

private
Readers : Natural := 0; -- no.
Witers : Bool ean := Fal se; --

end Control:

of current readers
Witers present

© Alan Burnsand Andy Wellings, 2001

Readers/Writers |||

procedure Read (I : out Item 1is
begi n

Control. Start Read,;

Read File(l);

Control . St op_Read;
end Read;
procedure Wite (I : Item 1is
begi n

Control . Request Wite; -- indicate witer present

Control . Start _Wite;
Wite File(l);
Control.Stop Wite;

end Wite,;

© Alan Burnsand Andy Wellings, 2001

Readers/Writers |V

- I

protected body Control 1Is
entry Start Read when not Witers and

Request Wite Count = 0 is
begin Readers := Readers + 1; end Start_ Read,;

procedure Stop Read is
begi n Readers : = Readers - 1; end Stop_ Read,;

entry Request Wite when not Witers is
begin Witers := True; end Request Wite;

entry Start_ Wite when Readers = 0 is
begin null; end Start Wite;

procedure Stop Wite is

begi n
Witers := Fal se;
end Stop Wite; requeue allows a more
end Control; robust solution

end Readers Witers;

© Alan Burnsand Andy Wellings, 2001

Synchronized Methods

Java provides a mechanism by which monitors can be
Implemented in the context of classes and objects

There Is a lock associated with each object which cannot
be accessed directly by the application but is affected by
— the method modifier synchr oni zed

— block synchronization.

When a method is labeled with the synchr oni zed

modifier, access to the method can only proceed once the
lock associated with the object has been obtained

Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, Iif that data
IS only accessed by other synchronized methods

Non-synchronized methods do not require the lock and,
therefore, Can be Ca”ed at any time © Alan Burnsand Andy Wellings, 2001

Example of Synchronized Method

cl ass Shar edl nt eger

private i nt theDat a;

Fublic Sharedl nteger(int initial Val ue)
theData = initial Val ue;

ublic synchronized int read()
‘return theDat a;

ublic synchroni zed void wite(l
~theData = newval ue;

nt newval ue)

Fublic synchroni zed void i ncrenentBy(i nt by)
‘theData = theData + by;

}

Shar edl nt eger myData = new Shar edl nt eger (42) ; °reomeimmdime=s

Block Synchronlzatlon

m Provides a mechanism whereby a block can be labeled as

synchronized
m The synchronized keyword takes as a parameter an object
whose lock it needs to obtain before it can continue

m Hence synchronized methods are effectively

Implementable as

public int read()
{
synchronized(this) {
return theData;

}

}
m Where t hi s Is the Java mechanism for obtaining the

Cu rre nt ObjeCt © Alan Burnsand Andy Wellings, 2001

Warning

m Used in its full generality, the synchronized block can
undermine one of the advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints associate with an object into a single place
In the program

m This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.

m However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed

© Alan Burnsand Andy Wellings, 2001

Static Data

Static data is shared between all objects created from
the class

To obtain mutually exclusive access to this data
requires all objects to be locked

In Java, classes themselves are also objects and
therefore there is a lock associated with the class

This lock may be accessed by either labeling a static
method with the synchronized modifier or by identifying
the class's object in a synchronized block statement

The latter can be obtained from the Obj ect class
associated with the object

Note, however, that this class-wide lock is not obtained
when synchronizing on the object

© Alan Burnsand Andy Wellings, 2001

o Static Data

cl ass St ati cSharedVari abl e

{

private static int shared,;

public synchroni zed int Read()

synchroni zed(t hi s. get Cl ass())

{

return
}s
}

shar ed;

public static void Wite(int [)

{

synchroni zed(t hi s. get Cl ass())

{
shar ed

b

Could have used:
public static synchronized void Wite(int 1)

© Alan Burns and Andy Wellings

001

Waiting and Notifying

m To obtain conditional synchronization requires the methods

provided in the predefined object class
public void wait();

Il throws |11l egal MonitorStateException
public void notify();

Il throws |11l egal MonitorStateException
public void notifyAll();

[l throws ||| egal Monitor StateException

m These methods should be used only from within methods
which hold the object lock

m [f called without the lock, the exception 111 egal Moni t or -
St at eExcepti on IS thrown

© Alan Burnsand Andy Wellings, 2001

Waiting and Notifying -

The wai t method always blocks the calling thread and
releases the lock associated with the object

A wal t within a nested monitor releases only the inner lock

The not | fy method wakes up one waiting thread; the one
woken is not defined by the Java language

Not | f y does not release the lock; hence the woken thread
must wait until it can obtain the lock before proceeding

To wake up all waiting threads requires use of the
noti fyAl | method

If no thread is waiting, then not i fy and noti f yAl | have
no effect

© Alan Burnsand Andy Wellings, 2001

m A waiting thread can also be awoken if it is interrupted

by another thread
m In this case the InterruptedException is thrown (see later

In the course)

© Alan Burnsand Andy Wellings, 2001

Condition Variables

m There are no explicit condition variables. An awoken thread
should usually evaluate the condition on which it is waiting (if
more than one exits and they are not mutually exclusive)

public class BoundedBuffer {
private int buffer[];
private int first;
private int |ast;
private i nt nunberlnBuffer = O
private int size;

publ i ¢ BoundedBuffer(int length) {

size = |l ength;

buffer = new int[size];
| ast = O;

first = 0O;

i

© Alan Burnsand Andy Wellings, 2001

public synchroni zed void put(int itemn
throws I nterruptedException

{
I f (nunberl nBuffer == size) {
wali t () ;
}
last = (last + 1) %size ; // %is nodulus
nunber | nBuf f er ++;
buffer[last] = item
notify();
}

public synchronized int get() throws |InterruptedException

I f (nunberl nBuffer == 0) {
wal t () ;
¥
first = (first + 1) %size ; // %is nodulus
nunber | nBuf fer - -
notify();
return buffer[first];

b Mutually exclusve waiting

Readers—erters Problem B

m Standard solution in monitors Is to have two condition

variables: OkToRead and OkToWrite
m This cannot be directly expressed using a single class

public class ReadersWiters // first solution

{

private int readers = 0;
private int waitingWiters = 0O;
private boolean witing = fal se;

© Alan Burnsand Andy Wellings, 2001

____ReadersWiters Problem

public synchroni zed void StartWite()
throws | nterruptedException

{
while(readers > 0 || witing) —
{
wai ti ngWiters++; loop to re-test
wait(): — .
wai tingWiters--: the condition
} _
writing = true;
}
public synchroni zed void StopWite()
{
witing = fal se;
noti fyAll (); <ummmmmmmm \Vakeup everyone
}

© Alan Burnsand Andy Wellings, 2001

Readers-Writers Problem

public synchroni zed void Start Read()
throws | nterruptedException
{
while(witing || waitingWiters > 0) wait();
reader s++;

}

public synchroni zed void StopRead()
{

r eader s- -;
| f(readers == 0) notifyAl();
}

Arguably, thisisinefficient asall threads are woken

© Alan Burnsand Andy Wellings, 2001

m Approach: use another class and block synchronization

m Get lock on condition variable on which you might want
to sleep or notify, then get monitor lock

public class ConditionVariable {
publ i ¢ bool ean want ToSl eep = fal se;

}

© Alan Burnsand Andy Wellings, 2001

Readers—erters Problem Solutlon 2

publlc cl ass ReadersWiters

{

private int readers = 0;
private int waitingReaders = O;
private int waitingWiters = O;
private boolean witing = fal se;

Condi ti onVari abl e CkToRead = new Condi tionVari abl e();
Condi tionVari able CkToWite = new ConditionVari abl e();

© Alan Burnsand Andy Wellings, 2001

public void StartWite() throws InterruptedException
{

synchroni zed(OkToWite) // get condition variable |ock

{

synchroni zed(this) // get nonitor |ock
{
If(witing | readers > 0) {
wai ti ngWiters++;
CkToWite.want ToSl eep = true;
} else {
witing = true;
CkToWi te. want ToS| eep
}
} //give up nonitor |ock
| f(OkToWite.want ToSI eep) CkToWite.wait();

}
}

fal se:

Note order of synchronized statements

public void StopWite()

{
synchroni zed(CkToRead)

{
synchroni zed(CkToWi te)

{

synchroni zed(t hi s)
{
If(waitingWiters > 0) {
waitingWiters--;
CkToWite.notify(); // wakeup one witer
} else {
witing = fal se;
CkToRead. noti fyAl I (); // wakeup all readers
readers = waiti ngReaders;
wai t i ngReaders = O;

} |mportant for all methods to use the same
} order otherwise deadlock will occur

public void StartRead()
throws InterruptedException
{

synchroni zed(CkToRead) {
synchroni zed(t hi s)

{
1f(witing | waitingWiters > 0) {
wai t i ngReader s++;
CkToRead. want ToSl eep = true;
} else {
reader s++;
CkToRead. want ToSl eep = fal se;
}
}

| f (OkToRead. want ToSl eep) OkToRead. wai t () ;

}
}

public void StopRead()

{
synchroni zed(CkToWi te)

{

synchroni zed(t hi s)
{
readers--;
|f(readers == 0 & waitingWiters > 0) {
waitingWiters--;
kToWite.notify();

Summary

critical section — code that must be executed under
mutual exclusion

producer-consumer system — two or more processes
exchanging data via a finite buffer

busy waiting — a process continually checking a
condition to see If it is now able to proceed

livelock — an error condition in which one or more
processes are prohibited from progressing whilst using
up processing cycles

deadlock — a collection of suspended processes that
cannot proceed

iIndefinite postponement — a process being unable to
proceed as resources are not made available

© Alan Burnsand Andy Wellings, 2001

Summary

m semaphore — a non-negative integer that can only be
acted upon by WAIT and SIGNAL atomic procedures

m Two more structured primitives are: condition critical
regions and monitors

B Suspension in a monitor is achieved using condition
variable

m POSIX mutexes and condition variables give monitors
with a procedural interface

m Ada’s protected objects give structured mutual exclusion
and high-level synchronization via barriers

m Java’s synchronized methods provide monitors within
an object-oriented framework

© Alan Burnsand Andy Wellings, 2001

