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Shared Variable-Based
Synchronization and

Communication

n  To understand the requirements for communication and
synchronisation based on shared variables
n  To briefly review semaphores, monitors and conditional
critical regions
n  To understand Ada 95 protected objects, POSIX
mutexes and Java synchronized methods
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Prerequisites

n Understanding the issues of busy-waiting and
semaphores from an Operating System Course.

n However:
– Course book give full details on busy-waiting, semaphores,

conditional critical regions, monitors etc.
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Synchronisation and Communication

n The correct behaviour of a concurrent program depends
on synchronisation and communication between its
processes

n Synchronisation: the satisfaction of constraints on the
interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)

n Communication: the passing of information from one
process to another
– Concepts are linked since communication requires

synchronisation, and synchronisation can be considered as
contentless communication.

– Data communication is usually based upon either shared
variables or message passing.
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Shared Variable Communication

n Examples: busy waiting, semaphores and monitors
n Unrestricted use of shared variables is unreliable and

unsafe due to multiple update problems
n Consider two processes updating a shared variable, X,

with the assignment: X:= X+1
– load the value of X into some register
– increment the value in the register by 1 and
– store the value in the register back to X

n As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect
result



Shared Resource Communication

task body Helicopter is

  Next: Coordinates;

begin

  loop

   Compute_New_Cordinates(Next);

   Shared_Cordinates := Next;

  end loop

end;

task body Helicopter is

  Next: Coordinates;

begin

  loop

   Compute_New_Cordinates(Next);

   Shared_Cordinates := Next;

  end loop

end;

task body Police_Car is

begin

  loop

    Plot(Shared_Cordinates);

  end loop;

end;

task body Police_Car is

begin

  loop

    Plot(Shared_Cordinates);

  end loop;

end;

type Coordinates is

  record

    X : Integer;

    Y : Integer;

  end record;

Shared_Cordinate: Coordinates;

type Coordinates is

  record

    X : Integer;

    Y : Integer;

  end record;

Shared_Cordinate: Coordinates;

 Shared_Cordinates := Next;

Plot(Shared_Cordinates);
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Avoiding Interference

n The parts of a process that access shared variables
must be executed indivisibly with respect to each other

n These parts are called critical sections
n The required protection is called mutual exclusion
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Mutual Exclusion

n A sequence of statements that must appear to be
executed indivisibly is called a critical section

n The synchronisation required to protect a critical section
is known as mutual exclusion

n Atomicity is assumed to be present at the memory level.
If one process is executing X:= 5, simultaneously with
another executing X:= 6, the result will be either 5 or 6
(not some other value)

n If two processes are updating a structured object, this
atomicity will only apply at the single word element level
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Condition Synchronisation

n Condition synchronisation is needed when a process
wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state

n E.g. a bounded buffer has 2 condition synchronisation:
– the producer processes must not attempt to deposit data onto

the buffer if the buffer is full
– the consumer processes cannot be allowed to extract objects

from the buffer if the buffer is empty

head tail

Is mutual
exclusion
necessary?
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Busy Waiting

n One way to implement synchronisation is to have
processes set and check shared variables that are
acting as flags

n This approach works well for condition synchronisation
but no simple method for mutual exclusion exists

n Busy wait algorithms are in general inefficient; they
involve processes using up processing cycles when
they cannot perform useful work

n  Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)
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Semaphores

n A semaphore is a non-negative integer variable that
apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)

n WAIT(S)     If the value of S > 0 then decrement its value
by one; otherwise delay the process until S > 0  (and
then decrement its value).

n SIGNAL(S)   Increment the value of  S by one.
n WAIT and SIGNAL are atomic (indivisible). Two

processes both executing WAIT operations on the same
semaphore cannot interfere with each other and cannot
fail during the execution of a semaphore operation
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process P1; 
  (* waiting process *)
  statement X;
  wait (consyn)
  statement Y;  
end P1;

process P2; 
  (* signalling proc *)
  statement A;
  signal (consyn)
  statement B;  
end  P2; 

var consyn : semaphore (* init 0 *) 

In what order will the statements execute?

Condition synchronisation
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Mutual Exclusion

process P2;
  statement A;
  wait (mutex);
     statement B;
  signal (mutex);
  statement C;
end P2;

process P1;
  statement X
  wait (mutex);
    statement Y
  signal (mutex);
  statement Z
end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?
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Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Child
Initialization

Waiting Dependent
Termination

Suspended
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type Sem is ...;
X : Sem := 1; Y : Sem := 1;

task B; 
task body B is
begin

...
Wait(Y);
Wait(X);
...

end B;

task A; 
task body A is
begin

...
Wait(X);
Wait(Y); 
...

end A;

Deadlock

n Two processes are deadlocked if each is holding a
resource while waiting for a resource held by the other
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Livelock

n Two processes are livelocked if each is executing but
neither is able to make progress.

type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin
  ...
  while Flag1 = Up loop
    null;
  end loop;
  ...
end A; 

task A;
task body A is
begin
  ...
  while Flag1 = Up loop
    null;
  end loop;
  ...
end A; 
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Binary and quantity semaphores

n A general semaphore is a non-negative integer; its
value can rise to any supported positive number

n A binary semaphore only takes the value 0 and 1; the
signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1

n A general semaphore can be implemented by two
binary semaphores and an integer. Try it!

n With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, i)
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package Semaphore_Package is
  type Semaphore(Initial : Natural) is limited private;
  procedure Wait (S : Semaphore);
  procedure signal (S : Semaphore);
private
  type Semaphore ...  
end Semaphore_Package;

Example semaphore programs in Ada

n Ada does not directly support semaphores; the wait and
signal procedures can, however, be constructed from
the Ada synchronisation primitives

n The essence of abstract data types is that they can be
used without knowledge of their implementation!
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The Bounded Buffer

package Buffer is
  procedure Append (I : Integer);
  procedure Take (I : out Integer);
end Buffer; 

package body Buffer is
  Size : constant Natural := 32;
  type Buffer_Range is mod Size;
  Buf : array (Buffer_Range) of Integer;
  Top, Base : Buffer_Range := 0;
  Mutex : Semaphore(1);
  Item_Available : Semaphore(0);
  Space_Available : Semaphore(Size);
  procedure Append (I : Integer) is separate;
  procedure Take (I : out Integer) is separate;
end Buffer; 
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procedure Append(I : Integer) is
begin
  Wait(Space_Available);
  Wait(Mutex;
    Buf(Top) := I;
    Top := Top+1
  Signal(Mutex;
  Signal(Item_Available);
end Append;

procedure Take(I : out Integer) is
begin
  Wait(Item_Available);
  Wait(Mutex);
    I := BUF(base);
    Base := Base+1;
  Signal(Mutex);
  Signal(Space_Available);
end Take;

The Bounded Buffer
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Criticisms of semaphores

n Semaphore are an elegant low-level synchronisation
primitive, however, their use is error-prone

n If a semaphore is omitted or misplaced, the entire
program to collapse. Mutual exclusion may not be
assured and deadlock may appear just when the
software is dealing with a rare but critical event

n A more structured synchronisation primitive is required
n No high-level concurrent programming language relies

entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain
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Conditional Critical Regions (CCR)

n A critical region is a section of code that is guaranteed
to be executed in mutual exclusion

n Shared variables are grouped together into named
regions and are tagged as being resources

n Processes are prohibited from entering a region in
which another process is already active

n Condition synchronisation is provided by guards. When
a process wishes to enter a critical region it evaluates
the guard (under mutual exclusion); if the guard
evaluates true it may enter, but if it is false the process
is delayed

n As with semaphores, no access order can be assumed
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The Bounded Buffer

program buffer_eg;
  type buffer_t is record
    slots      : array(1..N) of character;
    size       : integer range 0..N;
    head, tail : integer range 1..N;
  end record;
  buffer : buffer_t;
  resource buf : buffer;

  process producer is separate;
  process consumer is separate;
end.
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The Bounded Buffer

  process producer;
    loop
      region buf when buffer.size < N do
        -- place char in buffer etc
      end region
    end loop;
  end producer

  process consumer;
    loop
      region buf when buffer.size > 0 do
        -- take char from buffer etc
      end region
    end loop;
  end consumer
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Problem

n One problem with CCRs is that processes must re-
evaluate their guards every time a CCR naming that
resource is left. A suspended process must become
executable again in order to test the guard; if it is still
false it must return to the suspended state

n A version of CCRs has been implemented in Edison, a
language intended for embedded applications,
implemented on multiprocessor systems. Each
processor only executes a single process so it may
continually evaluate its guards if necessary
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Monitors

n A problem with CCRs is that they can be dispersed
throughout the program

n Monitors provide encapsulation, and efficient condition
synchronisation

n The critical regions are written as procedures and are
encapsulated together into a single module

n All variables that must be accessed under mutual
exclusion are hidden; all procedure calls into the module
are guaranteed to be mutually exclusive

n Only the operations are visible outside the monitor
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The Bounded Buffer

  monitor buffer;

    export append, take;

    var (*declare necessary vars*)

    procedure append (I : integer);
      ...
    end;

    procedure take (var I : integer);
      ...
    end;
begin
  (* initialisation *) 

  end;

How do we get condition 
synchronisation?
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Condition Variables

n Different semantics exist
n In Hoare’s monitors: a condition variable is acted upon

by two semaphore-like operators WAIT and SIGNAL
n A process issuing a WAIT is blocked (suspended) and

placed on a queue associated with the condition
variable (cf semaphores: a wait on a condition variable
always blocks unlike a wait on a semaphore)

n A blocked process releases its hold on the monitor,
allowing another process to enter

n A SIGNAL releases one blocked process. If no process
is blocked then the signal has no effect (cf semaphores)
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The Bounded Buffer

 monitor buffer;
   export append, take;

   var BUF : array[ . . . ] of integer;
   top, base : 0..size-1;  NumberInBuffer : integer;

   spaceavailable, itemavailable : condition;

   procedure append (I : integer);
   begin
     if NumberInBuffer = size then
       wait(spaceavailable);
     end if;
     BUF[top] := I;
     NumberInBuffer := NumberInBuffer+1;
     top := (top+1) mod size;
     signal(itemavailable)
   end append;
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  procedure take (var I : integer);
  begin
    if NumberInBuffer = 0 then
      wait(itemavailable);
    end if;
    I := BUF[base];
    base := (base+1) mod size;
    NumberInBuffer := NumberInBuffer-1;
    signal(spaceavailable);
  end take;

begin (* initialisation *)
  NumberInBuffer := 0;
  top := 0; base := 0 
end;

The Bounded Buffer

• A process appending an
item will, however, signal
this suspended process
when an item does become
available.

• If a process calls  take
when there is nothing in
the buffer then it will
become suspended on
itemavailable.
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The semantics of SIGNAL

n What happens to the signalling process and the process
that is restarted? Both must not be active in the monitor

n There are various semantics for SIGNAL
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The Semantics of SIGNAL

n A signal is allowed only as the last action of a process
before it leaves the monitor

n A signal operation has the side-effect of executing a
return statement, i.e. the process is forced to leave

n A signal operation which unblocks another process has
the effect of blocking itself; this process will only execute
again when the monitor is free

n A signal operation which unblocks a process does not
block the caller. The unblocked process must gain
access to the monitor again



P1 P2 P3

produce

leave

signal NotEmpty

produce

produce

consume

time

wait NotFull

leave

signal NotFull

leave
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POSIX Mutexes and Condition Variables

n Provide the equivalent of a monitor for communication and
synchronisation between threads

n Mutexes and condition variables have associated attribute
objects; we will use default attributes only

n Example attributes:
– set the semantics for a thread trying to lock a mutex it already has

locked
– allow sharing of mutexes and condition variables between processes
– set/get priority ceiling
– set/get the clock used for timeouts

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;



int pthread_mutex_init(pthread_mutex_t *mutex,
                       const pthread_mutexattr_t *attr);
  /* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
  /* destroys a mutex */
  /* undefined  behaviour if the mutex is locked  */ 

int pthread_cond_init(pthread_cond_t *cond,
                       const pthread_condattr_t *attr);
  /* initialises a condition variable with certain attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
  /* destroys a condition variable */
  /* undefined, if threads are waiting on the cond.  variable  */



int pthread_mutex_lock(pthread_mutex_t *mutex);
  /* lock the mutex; if locked already suspend calling thread */
  /* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
  /* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
                            const struct timespec *abstime);
  /* as lock but gives an error if mutex cannot be obtained */
  /* by the timeout  */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
  /* unlocks the mutex if called by the owning thread */
  /* undefined behaviour if calling thread is not the owner  */
  /* undefined behaviour if the mutex is not locked } */
  /* when successful, a blocked thread is released */



int pthread_cond_wait(pthread_cond_t *cond,
                      pthread_mutex_t *mutex);
  /* called by thread which owns a locked mutex */
  /* undefined behaviour if the mutex is not locked */
  /* atomically blocks the caller on the cond variable and */
  /* releases the lock on mutex */
  /* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond, 
       pthread_mutex_t *mutex, const struct timespec *abstime);
  /* the same as pthread_cond_wait, except that a error is */
 /* returned if the timeout expires */



int pthread_cond_signal(pthread_cond_t *cond);
  /* unblocks at least one blocked thread */
  /* no effect if no threads are blocked */
  

int pthread_cond_broadcast(pthread_cond_t *cond);
  /* unblocks all blocked threads */
  /* no effect if no threads are blocked */

  /*all  unblocked threads automatically contend for */
  /* the associated mutex */

All functions return 0 if successful
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Bounded Buffer in POSIX
#define BUFF_SIZE 10

typedef struct {
  pthread_mutex_t mutex;
  pthread_cond_t buffer_not_full;
  pthread_cond_t buffer_not_empty;
  int count, first, last;
  int buf[BUFF_SIZE];
  } buffer;

int append(int item, buffer *B ) {
  PTHREAD_MUTEX_LOCK(&B->mutex);
  while(B->count == BUFF_SIZE) { 
    PTHREAD_COND_WAIT(&B->buffer_not_full, &B->mutex); }
  /* put data in the buffer and update count and last */
  PTHREAD_MUTEX_UNLOCK(&B->mutex);
  PTHREAD_COND_SIGNAL(&B->buffer_not_empty);
  return 0;
}



int take(int *item, buffer *B ) {
  PTHREAD_MUTEX_LOCK(&B->mutex);
  while(B->count == 0) {
    PTHREAD_COND_WAIT(&B->buffer_not_empty, &B->mutex);
  }
  /* get data from the buffer and update count and first */
  PTHREAD_MUTEX_UNLOCK(&B->mutex);
  PTHREAD_COND_SIGNAL(&B->buffer_not_full);
 return 0;
}

int initialize(buffer *B) {
  /* set the attribute objects and initialize the */
  /* mutexes and condition variable */
}
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Readers/Writers Problem

Block of Data

reader reader writer writer

How can monitors be used to
allow many concurrent readers
or a single writer but not both?
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Hint

You will need to have an entry and exit protocol

Reader:
start_read
. . .
stop_read

Writer:
start_write
. . .
stop_write
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Nested Monitor Calls

n What should be done if a process having made a nested
monitor call is suspended in another monitor?

n The mutual exclusion in the last monitor call will be
relinquished by the process, due to the semantics of the
wait operation

n However, mutual exclusion will not be relinquished by
processes in monitors from which the nested calls have
been made; processes that attempt to invoke procedures
in these monitors will become blocked

n Maintain the lock: e.g. POSIX
n Prohibit nested procedure calls altogether: e.g. Modula-1
n Provide constructs which specify that certain monitor

procedures may release their mutual exclusion lock during
remote calls
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Criticisms of Monitors

n The monitor gives a structured and elegant solution to
mutual exclusion problems such as the bounded buffer

n It does not, however, deal well with condition
synchronization —  requiring low-level condition
variables

n All the criticisms surrounding the use of semaphores
apply equally  to condition variables
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Protected Objects

n Combines the advantages of monitors with the
advantages of conditional critical regions

n Data and operations are encapsulated
n Operations have automatic mutual exclusion
n Guards can be placed on operations for condition

synchronization
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A Protected Object

n Encapsulates data items and allows access to them
only via protected actions —  protected subprograms or
protected entries

n The language guarantees that the data will only be
updated under mutual exclusion, and that all data read
will be internally consistent

n A protected unit may be declared as a type or as a
single instance
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protected type Name (Discriminant) is

  function Fname(Params) 

           return Type_Name;

  procedure Pname(Params);

  entry E1_Name(Params);

private

  entry E2_Name(Params);

  O_Name : T_Name;

end Name;

Syntax

Only subprograms, 
entries and object 
declarations

Only subprograms 
and entries

No type declarations
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Protected Types and Mutual Exclusion

protected type Shared_Data(Initial : Data_Item) is 
  function Read return Data_Item;
  procedure Write (New_Value : in Data_Item);
private
  The_Data : Data_Item := Initial;
end Shared_Data_Item;
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The Protected Unit Body

protected body Shared_Data_Item is

  function Read return Data_Item is
  begin
    return The_Data;
  end Read;

  procedure Write (New_Value : in Data_Item) is
  begin
    The_Data := New_Value;
  end Write;

end Shared_Data_Item;
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Protected Procedures and Functions

n A protected procedure provides mutually exclusive
read/write access to the data encapsulated

n Concurrent calls to Write will be executed one at a
time

n Protected functions provide concurrent read only access
to the encapsulated data

n Concurrent calls to Read may be executed
simultaneously

n Procedure and function calls are mutually exclusive
n The core language does not define which calls take

priority
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Protected Entries and Synchronisation

n A protected entry is similar to a protected procedure in
that calls are executed in mutual exclusion and have
read/write access to the data

n A protected entry can be guarded by a boolean
expression (called a barrier)
– if this barrier evaluates to false when the entry call is made, the

calling task is suspended and remains suspended while the
barrier evaluates to false, or there are other tasks currently
active inside the protected unit

n Hence protected entry calls can be used to implement
condition synchronisation
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Condition Synchronisation Example

-- a bounded buffer
Buffer_Size : constant Integer :=10;
type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer is array (Index) of Data_Item;

protected type Bounded_Buffer is
  entry Get (Item : out Data_Item);
  entry Put (Item : in Data_Item);
private
  First : Index := Index'First;
  Last : Index := Index'Last;
  Num : Count := 0;
  Buf : Buffer;
end Bounded_Buffer;
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barriers

Bounded Buffer
protected body Bounded_Buffer is
  entry Get (Item : out Data_Item) when Num /= 0 is
  begin
    Item := Buf(First);
    First := First + 1;
    Num := Num - 1;
  end Get;

  entry Put (Item : in Data_Item) when 
        Num /= Buffer_Size is
  begin
    Last := Last + 1;
    Buf(Last) := Item
    Num := Num + 1;
  end Put;
end Bounded_Buffer;
My_Buffer : Bounded_Buffer;
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Subprogram Calls, Entry Calls and Barriers

n To call a protected object,  simply name the object and
the subprogram or entry:

My_Buffer.Put(Some_Data);

n As with task entry calls, the caller can use the select
statement  to issue timed or conditional protected entry
calls

select      select
  My_Buffer.Put(Some_Data);  My_Buffer.Put(Some_Data);
or      else
  delay 10.0;  -- do something else
  -- do something else      end select;
end select;
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Barrier Evaluation

n At any instance in time, a barrier is either open or
closed; it is open if the boolean expression evaluates to
true, otherwise it is closed

n Barriers are evaluated when:
1. a task calls one of its protected entries and the associated

barrier references a variable or an attribute which might have
changed since the barrier was last evaluated

2. a task executes and leaves a protected procedure or entry, and
there are tasks queued on entries whose barriers reference
variables or attributes which might have changed since the
barriers were last evaluated

Why are barriers not evaluated after a function call?
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Write Access to a Protected Object

task executing with read access

task requesting read access

task executing with read/write access

task requesting read/write access

protected object

Barrier queue
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Read Access to a Protected Object

task executing with read access

task requesting read access

task executing with read/write access

task requesting read/write access

protected object

Barrier queue
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Resource Control Example

protected Resource_Control is
  entry Allocate;
  procedure Deallocate;
private
  Free : Boolean := True;
end Resource_Control;

Assuming a single resource,
what is the body of this
protected object? Answer is in RTSPL

book chapter 8
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The Count Attribute

n The Count attribute defines the number of tasks queued
on an entry

n Its evaluation requires the read/write lock

protected Blocker is
  entry Proceed;
private
  Release : Boolean := False;
end Blocker;

protected body Blocker is
  entry Proceed when 
        Proceed’Count = 5 or 
        Release is
  begin
    if Proceed’Count = 0 then
      Release := False;
    else
       Release := True;
    end if;
  end Proceed;
end Blocker;
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Broadcast

protected type Broadcast is
  entry Receive(M : out message);
  procedure Send(M : message);
private
  New_Message : Message;
  Message_Arrived : Boolean := False;
end Broadcast;

Everyone queued on Receive should receive the message
when send is called

Answer is in RTSPL
book chapter 8
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Semaphores
package Semaphore_Package is
  type Semaphore(Initial : Natural :=1) 
          is limited private;
  procedure Wait (S : in out Semaphore);
  procedure Signal (S : in out Semaphore);
private
  protected type Semaphore(Initial : Natural :=1) is
    entry Wait_Imp;
    procedure Signal_Imp;
  private
    Value : Natural := Initial;
  end Semaphore;
end Semaphore_Package;

How would you implement this package?
Answer is in RTSPL
book chapter 8
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Private Entries and Entry Families

n As with tasks, protected types can have private entries

and entry families

n A protected type's private entries may be used during

requeue operations

n A family can be declared by placing a discrete subtype

definition in the specification of the entry

n The barrier associated with the entry can use the index

of the family (usually to index into an array of booleans)
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type Group is range 1 .. 10;

type Group_Data_Arrived is array(Group) of Boolean;

protected type Group_Controller is

  procedure Send(To_Group : Group; Data : Data_Item);

  entry Receive(Group) (Data : out Data_Item);
private

  Arrived : Group_Data_Arrived := (others => False);

  The_Data : Data_Item;
end Group_Controller;

My_Controller : Group_Controller;

An Example of an Entry Family
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protected body Group_Controller is
  procedure Send(To_Group : Group; Data : Data_Item) is
  begin
    if Receive(To_Group)'Count > 0 then
      Arrived(To_Group) := True;
      The_Data := Data;
    end if;
  end Send;
  entry Receive(for From in Group) (Data : out Data_Item)
           when Arrived(From) is
  begin
    if Receive(From)'Count = 0 then
      Arrived(From) := False;
    end if;
    Data := The_Data;
  end Receive;
end Group_Controller;

Fa
m

ily
 o

f e
nt

rie
s

can’t use this
syntax for task
entries

last one out closes
the door!

Entry Families Continued
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Restrictions on Protected Objects

n Code inside a PO should be as short as possible
n ARM disallows potentially blocking operations

– an entry call statement
– a delay statement
– task creation or activation
– a call to a subprogram which contains a potentially blocking

operation
– a select statement
– an accept statement

n Program_Error is raised if a blocking operation is
called

n A call to an external protected procedure/function is not
considered potentially blocking
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protected type Broadcast is
  procedure Send (This_Altitude : Altitude);
  entry Receive (An_Altitude : out Altitude);
private
  Altitude_Arrived : Boolean := False;
  The_Altitude : Altitude;
end Broadcast;

type Prt_Broadcast is access all Broadcast;

a pointer to an object on the heap or
a statically aliased object

Access Variables
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 procedure Register (G: Ptr_Broadcast; Name : String);

function Find (G: String) return Ptr_Broadcast;
...

task body Barometric_Pressure_Reader is

  My_Group : Ptr_Broadcast := new Broadcast;

begin

  Register(My_Group, "Barometric_Pressure");

  ...
  My_Group.Send(Altitude_Reading);
  ...
end Barometric_Pressure_Reader;

-- My_Group : aliased Broadcast;

-- Register(My_Group’Access, "Barometric_Pressure");

Broadcast Example
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task Auto_Pilot;
task body Auto_Pilot is
  Bp_Reader : Ptr_Broadcast;

  Current_Altitude : Altitude;
begin
  Bp_Reader := Find("Barometric_Pressure");
  ...
  select
    Bp_Reader.Receive(Current_Altitude);
  or
    delay 0.1;
  end;
  ...
end Auto_Pilot;

Broadcast Example II
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Access to Protected Subprograms

n As well as declaring access types for protected types,
Ada also allows the programmer to declare an access
type to a protected subprogram

access_to_subprogram_definition ::=
 access [protected] procedure parameter_profile |
 access [protected] function parameter_and_result_profile

An example of this will be given later

Note, there is no access to a protected entry. Why?
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Elaboration and Finalisation

n A protected object is elaborated when it comes into
scope in the usual way

n Finalisation of a protected object requires that any tasks
left on entry queues have the exception
Program_Error raised. Generally they are two
situations where this can happen:
– a protected object is unchecked deallocated via an access

pointer to it
– a task calls an entry in another task which requeues the first

task on a protected object which then goes out of scope
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Example of Program_Error

task Client;
task body Client is
begin
  ...
  Server.Service;
  ...
end Client;

task Server is
  entry Service;
end Server;
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task body Server is
  protected Local is
    entry Queue1;
    entry Queue2;
  end Local;
  protected body Local is separate; 

  -- body not important here

begin
  ...
  accept Service do
    requeue Local.Queue1;

  end Service;
  ...
end Server;

It is possible for
the Server task to
terminate with a
Client queued on the
Local protected

Example of Program_Error II



© Alan Burns and Andy Wellings, 2001

Exceptions and Protected Objects

n Program_Error is raised when a protected action
issues a potentially blocking operation (if detected)

n Any exception raised during the evaluation of a barrier,
results in Program_Error being raised in all tasks
currently waiting on the entry queues

n Any exception raised and not handled whilst executing a
protected subprogram or entry, is propagated to the task
that issued the protected call

n A task queued on a protected entry whose protected
object  is subsequently finalised has Program_Error
raised
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The Readers and Writers Problem

n Consider a file which needs mutual exclusion between
writers and reader but not between multiple readers

n Protected objects can implement the readers/writers
algorithm if the read operation is encoded as a function
and the write as a procedure; however:
– The programmer cannot easily control the order of access to the

protected object; specifically, it is not possible to give preference
to write operations over reads

– If the read or write operations are potentially blocking, then they
cannot be made from within a protected object

n To overcome these difficulties the PO must be used to
implement an access control protocol for the read and
write operations (rather than encapsulate them)
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Readers/Writers

with Data_Items; use Data_Items;
package Readers_Writers is
  -- for some type Item
  procedure Read (I : out Item); 
  procedure Write (I : Item);
end Readers_Writers;
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Readers/Writers II
package body Readers_Writers is

  procedure Read_File(I : out Item) is separate;
  procedure Write_File(I : Item) is separate;

  protected Control is
    entry Start_Read;
    procedure Stop_Read;
    entry Request_Write;
    entry Start_Write;
    procedure Stop_Write;
  private
    Readers : Natural := 0; -- no. of current readers
    Writers : Boolean := False; -- Writers present
  end Control;
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Readers/Writers III

  procedure Read (I : out Item) is
  begin
    Control.Start_Read;
      Read_File(I);
    Control.Stop_Read;
  end Read;
   
  procedure Write (I : Item) is
  begin
    Control.Request_Write; -- indicate writer present
    Control.Start_Write;
      Write_File(I);
    Control.Stop_Write;
  end Write;
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  protected body Control is

  end Control;
end Readers_Writers;

Readers/Writers IV

requeue allows a more
robust solution

    entry Start_Read when not Writers and 
              Request_Write'Count = 0 is
    begin Readers := Readers + 1; end Start_Read;

    procedure Stop_Read is
    begin Readers := Readers - 1; end Stop_Read;
    entry Request_Write when not Writers is
    begin Writers := True; end Request_Write;

    entry Start_Write when Readers = 0 is
    begin null; end Start_Write;

    procedure Stop_Write is
    begin
      Writers := False;
    end Stop_Write;
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Synchronized Methods

n Java provides a mechanism by which monitors can be
implemented in the context of classes and objects

n There is a lock associated with each object which cannot
be accessed directly by the application but is affected by
– the method modifier synchronized
– block synchronization.

n When a method is labeled with the synchronized
modifier, access to the method can only proceed once the
lock associated with the object has been obtained

n Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, if that data
is only accessed by other synchronized methods

n  Non-synchronized methods do not require the lock and,
therefore, can be called at any time
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Example of Synchronized Methods
class SharedInteger 
{
  private int theData;
  
  public SharedInteger(int initialValue) 
  {
    theData = initialValue;
  }
  
  public synchronized int read() 
  {
    return theData;
  };
  
  public synchronized void write(int newValue) 
  {
    theData = newValue;
  };

  public synchronized void incrementBy(int by) 
  { 
    theData = theData + by;
  };
}

SharedInteger myData = new SharedInteger(42);
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Block Synchronization

n Provides a mechanism whereby a block can be labeled as
synchronized

n The synchronized keyword takes as a parameter an object
whose lock it needs to obtain  before it can continue

n Hence synchronized methods are effectively
implementable as
  public int read()
  {
    synchronized(this) {
      return theData;
    }
  }

n Where this is the Java mechanism for obtaining the
current object
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Warning

n Used in its full generality, the synchronized block can
undermine one of the  advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints  associate with an object into a single place
in the program

n This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.

n However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed
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Static Data

n Static data is shared between all objects created from
the class

n To obtain mutually exclusive access to this data
requires all objects to be locked

n In Java, classes themselves are also objects and
therefore there is a lock associated with the class

n This lock may be accessed by either labeling a static
method with the synchronized modifier or by identifying
the class's object in a synchronized block statement

n The latter can be obtained from the Object class
associated with the object

n Note, however, that this class-wide lock is not obtained
when synchronizing on the object
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Static Data
class StaticSharedVariable 
{
  private static int shared;
  ...
  
  public synchronized int Read() 
  {
    synchronized(this.getClass()) 
    {
      return shared;
    };
  }

  public static void Write(int I) 
  {
    synchronized(this.getClass()) 
    {
      shared = I;
    };
  };
}

Could have used:
public static synchronized void Write(int I)
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Waiting and Notifying

n To obtain conditional  synchronization requires the methods
provided in the predefined object class
public void wait();
           // throws IllegalMonitorStateException
public void notify();
           // throws IllegalMonitorStateException
public void notifyAll();
          // throws IllegalMonitorStateException

n These methods should be used only from within methods
which hold the object lock

n  If called without the lock, the exception IllegalMonitor-
StateException is thrown
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Waiting and Notifying

n The wait method always blocks the calling thread and
releases the lock associated with the object

n A wait within a nested monitor releases only  the inner lock
n The notify method wakes up one waiting thread; the one

woken is not defined by the Java language
n Notify does not release the lock; hence the woken thread

must wait until it can obtain the lock before proceeding
n To wake up all waiting threads requires use of the
notifyAll method

n If no thread is waiting, then notify and notifyAll have
no effect
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Thread Interruption

n A waiting thread can also be awoken if it is interrupted
by another thread

n In this case the InterruptedException is thrown (see later
in the course)
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Condition Variables

n There are no explicit condition variables. An awoken thread
should usually evaluate the condition on which it is waiting (if
more than one exits and they are not mutually exclusive)

public class BoundedBuffer  {
  private int buffer[];
  private int first;
  private int last;
  private int numberInBuffer = 0;
  private int size;

  public BoundedBuffer(int length) {
    size = length;
    buffer = new int[size];
    last = 0;
    first = 0;
  };



  public synchronized void put(int item) 
         throws InterruptedException
  {
      if (numberInBuffer == size) {
        wait();
      };
      last = (last + 1) % size ; // % is modulus
      numberInBuffer++;
      buffer[last] = item;
      notify();
  };
     
  public synchronized int get() throws InterruptedException
  {
      if (numberInBuffer == 0) {
        wait();
      };
      first = (first + 1) % size ; // % is modulus
      numberInBuffer--;
      notify();
      return buffer[first];
  };
} Mutually exclusive waiting
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Readers-Writers Problem

n Standard solution in monitors is to have two condition
variables: OkToRead and OkToWrite

n This cannot be directly expressed using a single class

public class ReadersWriters // first solution
{

  private int readers = 0;
  private int waitingWriters = 0;
  private boolean writing = false;
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Readers-Writers Problem
  public synchronized void StartWrite() 
         throws InterruptedException
  {
    while(readers > 0 || writing) 
    {
      waitingWriters++;
      wait();
      waitingWriters--;
    }
    writing = true;
  }
  
  public synchronized void StopWrite() 
  {
    writing = false;
    notifyAll();
  }
  

loop to re-test 
the condition

Wakeup everyone
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Readers-Writers Problem

  public synchronized void StartRead() 
         throws InterruptedException
  {
    while(writing || waitingWriters > 0) wait();
    readers++;
  }
  
  public synchronized void StopRead()
  {
    readers--;
    if(readers == 0) notifyAll();
  }
  
}

Arguably, this is inefficient as all threads are woken
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Implementing Condition Variables

n Approach: use another class and block synchronization
n Get lock on condition variable on which you might want

to sleep or notify, then get monitor lock

public class ConditionVariable {
  public boolean wantToSleep = false;
}
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Readers-Writers Problem: Solution 2
public class ReadersWriters
{

  private int readers = 0;
  private int waitingReaders = 0;
  private int waitingWriters = 0;
  private boolean writing = false;
  
  ConditionVariable OkToRead = new ConditionVariable();
  ConditionVariable OkToWrite = new ConditionVariable();
  



  public void StartWrite() throws InterruptedException
  {
    synchronized(OkToWrite) // get condition variable lock
    {
      synchronized(this) // get monitor lock
      {
        if(writing | readers > 0) {
          waitingWriters++;
          OkToWrite.wantToSleep = true;
        } else  {
          writing = true;
          OkToWrite.wantToSleep = false;
        }
      } //give up monitor lock
      if(OkToWrite.wantToSleep) OkToWrite.wait();
    }
  }

Note order of synchronized statements



  public void StopWrite()
  {
    synchronized(OkToRead)
    {
      synchronized(OkToWrite)
      {
        synchronized(this) 
        {
          if(waitingWriters > 0) {
            waitingWriters--;
            OkToWrite.notify(); // wakeup one writer
          } else {
            writing = false;
            OkToRead.notifyAll(); // wakeup all readers
            readers = waitingReaders;
            waitingReaders = 0;
          }
        }
      }
    }      
  }
  

Important for all methods to use the same
order otherwise deadlock will occur



  public void StartRead() 
         throws InterruptedException
  {
    synchronized(OkToRead) {
      synchronized(this)
      {
        if(writing | waitingWriters > 0) {
          waitingReaders++;
          OkToRead.wantToSleep = true;
        } else {
          readers++;
          OkToRead.wantToSleep = false;
        } 
      }
      if(OkToRead.wantToSleep) OkToRead.wait();  
    }       
  }
  



  public void StopRead()
  {
    synchronized(OkToWrite)
    {
      synchronized(this) 
      {
        readers--;
        if(readers == 0 & waitingWriters > 0) {
          waitingWriters--;
          OkToWrite.notify();
        }
      }
    }
  }  
}
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Summary

n critical section —  code that must be executed under
mutual exclusion

n producer-consumer system —  two or more processes
exchanging data via a finite buffer

n busy waiting —  a process continually checking a
condition to see if it is now able to proceed

n livelock —  an error condition in which one or more
processes are prohibited from progressing whilst using
up processing cycles

n deadlock —  a collection of suspended processes that
cannot proceed

n indefinite postponement —  a process being unable to
proceed as resources are not made available
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Summary

n semaphore —  a non-negative integer that can only be
acted upon by WAIT and SIGNAL atomic procedures

n Two more structured primitives are: condition critical
regions and monitors

n Suspension in a monitor is achieved using condition
variable

n POSIX mutexes and condition variables give monitors
with a procedural interface

n Ada’s protected objects give structured mutual exclusion
and high-level synchronization via barriers

n Java’s synchronized methods provide monitors within
an object-oriented framework


