
© Alan Burns and Andy Wellings, 2001

MESSAGE-BASED
SYNCHRONISATION AND

COMMUNICATION

Goals
n   To understand the requirements for communication and
synchronisation based on message passing
n   To understand:

–  the Ada extended rendezvous
–  selective waiting
–  POSIX message queues
–  Remote procedure calls



© Alan Burns and Andy Wellings, 2001

Message-Based Communication and Synchronisation

n Use of a single construct for both synchronisation and
communication

n Three issues:
– the model of synchronisation
– the method of process naming
– the message structure

Process P1 Process P2

send message
receive message

time time



© Alan Burns and Andy Wellings, 2001

Process Synchronisation

n Variations in the process synchronisation model arise
from the semantics of the send operation

n Asynchronous (or no-wait) (e.g. POSIX)
– Requires buffer space. What happens when the buffer is full?

Process P1 Process P2

send message

receive message

message

time time



© Alan Burns and Andy Wellings, 2001

Process Synchronisation

n Synchronous (e.g. CSP, occam2)
– No buffer space required
– Known as a rendezvous

Process P1 Process P2

send message

receive message

time time

blocked M



© Alan Burns and Andy Wellings, 2001

Process Synchronisation
n Remote invocation (e.g. Ada)

– Known as an extended rendezvous

n Analogy:
– The posting of a letter is an asynchronous send
– A telephone is a better analogy for synchronous communication

Process P1 Process P2

send message

receive message

time time

blocked

M

reply



© Alan Burns and Andy Wellings, 2001

Asynchronous and Synchronous Sends

n Asynchronous communication can implement
synchronous communication:

          P1          P2
  asyn_send (M)       wait (M)
     wait (ack)  asyn_send (ack)
n Two synchronous communications can be used to

construct a remote invocation:
          P1           P2
syn_send (message)                     wait (message)
    wait (reply)            ...

construct reply
           ...

                       syn_send (reply)



© Alan Burns and Andy Wellings, 2001

Disadvantages of Asynchronous Send

n Potentially infinite buffers are needed to store unread
messages

n Asynchronous communication is out-of-date; most sends
are programmed to expect an acknowledgement

n More communications are needed with the asynchronous
model, hence programs are more complex

n It is more difficult to prove the correctness of the complete
system

n Where asynchronous communication is desired with
synchronised message passing then buffer processes can
easily be constructed; however, this is not without cost



© Alan Burns and Andy Wellings, 2001

Process Naming

n Two distinct sub-issues
– direction versus indirection
– symmetry

n With direct naming, the sender explicitly names the receiver:
  send <message> to <process-name>
n With indirect naming, the sender names an intermediate

entity (e.g. a channel, mailbox, link or pipe):
send <message> to <mailbox>

n With a mailbox, message passing can still be synchronous
n Direct naming has the advantage of simplicity, whilst indirect

naming aids the decomposition of the software; a mailbox
can be seen as an interface between parts of the program



© Alan Burns and Andy Wellings, 2001

Process Naming

n A naming scheme is symmetric if both sender and
receiver name each other (directly or indirectly)
send <message> to <process-name>
wait <message> from <process-name>

send <message> to <mailbox>
wait <message> from <mailbox>

n It is asymmetric if the receiver names no specific source
but accepts messages from any process (or mailbox)
wait <message>

n Asymmetric naming fits the client-server paradigm
n With indirect the intermediary could have:

– a many-to-one structure    –  a many-to-many structure
– a one-to-one structure       –  a one-to-many



© Alan Burns and Andy Wellings, 2001

Message Structure

n A language usually allows any data object of any
defined type (predefined or user) to be transmitted in a
message

n Need to convert to a standard format for transmission
across a network in a heterogeneous environment

n  OS allow only arrays of bytes to be sent



© Alan Burns and Andy Wellings, 2001

The Ada Model

n Ada supports a form of message-passing between tasks
n Based on a client/server model of interaction
n The server declares a set of services that it is prepared

to offer other tasks (its clients)
n It does this by declaring one or more public entries in its

task specification
n Each entry identifies the name of the service, the

parameters that are required with the request, and the
results that will be returned



© Alan Burns and Andy Wellings, 2001

Entries

entry_declaration ::=
  entry defining_identifier[(discrete_subtype_definition)]
    parameter_profile;

entry Syn;

entry Send(V : Value_Type);

entry Get(V : out Value_Type);

entry Update(V : in out Value_Type);

entry Mixed(A : Integer; B : out Float);

entry Family(Boolean)(V : Value_Type);



© Alan Burns and Andy Wellings, 2001

Example

task type Telephone_Operator is
  entry Directory_Enquiry(
    Person : in Name;
    Addr : Address;
    Num : out Number);
  -- other services possible
end Telephone_Operator;

An_Op : Telephone_Operator;

-- client task executes
An_Op.Directory_Enquiry ("Stuart_Jones",
                         "11 Main, Street, York"
                         Stuarts_Number);



© Alan Burns and Andy Wellings, 2001

Accept Statement

accept_statement ::=
  accept entry_direct_name[(entry_index)]
    parameter_profile [do
      handled_sequence_of_statements
  end [entry_identifier]];

accept Family(True)(V : Value_Type) do

  -- sequence of statements

exception

  -- handlers

end Family;



© Alan Burns and Andy Wellings, 2001

Server Task

task body Telephone_Operator is
begin
  ...
  loop
    --prepare to accept next call
    accept Directory_Enquiry (...) do
      -- look up telephone number
    exception
      when Illegal_Number =>
        -- propagate error to client
    end Directory_Enquiry;
    -- undertake housekeeping
  end loop;
  ...
end Telephone_Operator;



© Alan Burns and Andy Wellings, 2001

Client Task

task type Subscriber;
task body Subscriber is
begin
  ...
  loop
    ...
    An_Op.Directory_Enquiry(...);
    ...
  end loop;
  ...
end Subscriber;



© Alan Burns and Andy Wellings, 2001

Protocol

T.E(A,B)

accept E(X : int; Y: out int) do

  -- use X

  -- undertake computation

  -- produce Y

  -- complete computation

end E;

task T is ...

A

B



© Alan Burns and Andy Wellings, 2001

Synchronisation

n Both tasks must be prepared to enter into the
communication

n If one is ready and the other is not, then the ready one
waits for the other

n Once both are ready, the client's parameters are passed
to the server

n The server then executes the code inside the accept
statement

n At the end of the accept, the results are returned to the
client

n Both tasks are then free to continue independently



© Alan Burns and Andy Wellings, 2001

Bus Driver Example

task type Bus_Driver (Num : Natural) is
  entry Get_Ticket (R: in Request, M: in Money; 
                    G : out Ticket) ;
  -- money given with request, no change given!
end Bus_Driver;

task body Bus_Driver is
begin
  loop
    accept Get_Ticket (R: Request, 
                       M: Money; G : out Ticket) do
      -- take money
      G := Next_Ticket(R);
    end Get_Ticket;
  end loop;
end Bus_Driver;



© Alan Burns and Andy Wellings, 2001

type Bus_T (N : Natural) is 
  record
    ....
    Driver : Bus_Driver(N);
  end record;

Number31 : Bus_T(31);
Number60 : Bus_T(60);
Number70 : Bus_T(70);

Bus



© Alan Burns and Andy Wellings, 2001

Shop Keeper Example
task Shopkeeper is
  entry Serve(X : Request; A: out Goods);
  entry Get_Money(M : Money; Change : out Money);
end Shopkeeper;

task body Shopkeeper is
begin
  loop
    accept Serve(X : Request; A: out Goods) do
      A := Get_Goods;
    end Serve;
    accept Get_Money(M : Money; Change : out Money) do
      -- take money return change
    end Get_Money;
  end loop;
end Shopkeeper;

What is wrong with this algorithm?



© Alan Burns and Andy Wellings, 2001

Customer

task Customer;
task body Customer is
begin
  -- go to shop
  Shopkeeper.Serve(Weekly_Shoping, Trolley);
  -- leave shop in a hurry!
end Customer;



© Alan Burns and Andy Wellings, 2001

Rider
task type Rider;
task body Rider is
begin
  ...
  -- go to bus stop and wait for bus
  while Bus /= Number31 loop
    -- moan about bus service
  end loop;
  Bus.Bus_Driver.Get_Ticket(Heslington, Fiftyp, Ticket); 
     -- get in line
  -- board bus, notice three more number 31 buses
  ...
end Rider;



© Alan Burns and Andy Wellings, 2001

Other Facilities

n 'Count gives number of tasks queued on an entry
n Entry families allow the programmer to declare, in effect,

a single dimension array of entries
n Nested accept statements allow more than two tasks to

communicate and synchronise
n A task executing inside an accept statement can also

execute an entry call
n Exceptions not handled in a rendezvous are propagated

to both the caller and the called tasks
n An accept statement can have exception handlers



© Alan Burns and Andy Wellings, 2001

Restrictions

n Accept statements can only be placed in the body of a
task

n Nested accept statements for the same entry are not
allowed

n The 'Count attribute can only be accessed from within
the task that owns the entry

n Parameters to entries cannot be access parameters but
can be parameters of an access type



© Alan Burns and Andy Wellings, 2001

Families

task Multiplexer is
  entry Channel(1..3)(X : Data);
end Multiplexer;

task body Multiplexer is
begin
  loop
    for I in 1..3 loop
      accept Channel(I)(X : Data) do
      -- consume input data on channel I
      end Channel;
    end loop;
  end loop;
end Multiplexer;

A family
declaration



© Alan Burns and Andy Wellings, 2001

Tesco
type Counter is (Meat, Cheese, Wine);
task Tesco_Server is
  entry Serve(Counter)(Request: . . .);
end Tesco_Server;

task body Tesco_Server is
begin
  loop
    accept Serve(Meat)(. . .) do . . . end Serve;
    accept Serve(Cheese)(. . .) do . . . end Serve;
    accept Serve(Wine)(. . .) do . . . end Serve;
  end loop
end Tesco_Server;

n What happens if all queues are full?
n What happens if the Meat queue is empty?



© Alan Burns and Andy Wellings, 2001

Nested Accepts

  task body Controller is
  begin
    loop
      accept Doio (I : out Integer) do
        accept Start;
        accept Completed (K : Integer) do
          I := K;
        end Completed;
      end Doio;
    end loop;
  end Controller;



© Alan Burns and Andy Wellings, 2001

Shopkeeper Example
task Shopkeeper is
  entry Serve_Groceries(. . .);
  entry Serve_Tobacco( . . .);
  entry Serve_Alcohol(. . .);
end Shopkeeper;

task body Shopkeeper is
begin
  . . .
  accept Serve_Groceries (. . .) do
    -- no change for a £10 note
    accept Serve_ Alcohol(. . .) do
      -- serve another Customer, 
      -- get more change
    end Serve_ Alcohol
  end Serve_Groceries
  . . .
end Shopkeeper; 

Can not have
accept Serve_Groceries (. . .) do
  accept Serve_Groceries(. . .) do
    . . .
  end Serve_Groceries
end Serve_Groceries



© Alan Burns and Andy Wellings, 2001

Entry Call within Accept Statement

task Car_Spares_Server is
   entry Serve_Car_Part(Number: Part_ID; . . .);
end Car_Spares_Server ;

task body Car_Spares_Server is
begin
  . . .
  accept Serve_Car_Part(Number: Part_ID; . . .) do
    -- part not is stock
    Dealer.Phone_Order(. . .);
  end Serve_Car_Part;
  . . .
end Car_Spares_Server;



© Alan Burns and Andy Wellings, 2001

Exceptions

accept Get(R : out Rec; Valid_Read : out Boolean) do
  loop
    begin
      Put("VALUE OF I?"); Get(R.I);
      Put("VALUE OF F?"); Get(R.F);
      Put("VALUE OF S?"); Get(R.S);
      Valid_Read := True;
      return;
    exception
      when Ada.Text_IO.Data_Error =>
        Put("INVALID INPUT: START AGAIN");
    end;
  end loop;
exception
  when Ada.Text_IO.Mode_Error =>
    Valid_Read := False;
end Get;

return
from
accept

exception raised

If not handled anywhere
exception raised in calling
task and the ‘accept’ task

could be handled here

or here



© Alan Burns and Andy Wellings, 2001

Private Entries

n Public entries are visible to all tasks which have visibility
to the owning task's declaration

n Private entries are only visible to the owning task
– if the task has several tasks declared internally; these tasks

have access to the private entry
– if the entry is to be used internally by the task for requeuing

purposes
– if the entry is an interrupt entry,  and the programmer does not

wish any software task to call this entry



© Alan Burns and Andy Wellings, 2001

Private Entries II

task type Telephone_Operator is
  entry Report_Fault(N : Number);
private
  entry Allocate_Repair_Worker(N : out Number);
end Telephone_Operator;
task body Telephone_Operator is
  Failed : Number;
  task type Repair_Worker;
  Work_Force:array (1.. Num_Workers) of Repair_Worker;
  task body Repair_Worker is
    Job : Number:
  begin
    ...
    Telephone_Operator.Allocate_Repair_Worker(Job);
    ...
  end Repair_Worker;

private entry

internal task



© Alan Burns and Andy Wellings, 2001

Private Entries III

begin
  loop
    accept Report_Fault(N : Number) do
      Failed := N;
    end Report_Fault;
    -- log faulty line

    if New_Fault(Failed) then -- new fault

      accept Allocate_Repair_Worker(N : out Number) do
        N := Failed;
      end Allocate_Repair_Worker;
    end if;
  end loop;
end Telephone_Operator;



© Alan Burns and Andy Wellings, 2001

Selective Waiting

n So far, the receiver of a message must wait until the
specified process, or mailbox, delivers the
communication

n A receiver process may actually wish to wait for any one
of a number of processes to call it

n Server processes receive request messages from a
number of clients; the order in which the clients call
being unknown to the servers

n To facilitate this common program structure, receiver
processes are allowed to wait selectively for a number
of possible messages

n Based on Dijkstra’s guarded commands



© Alan Burns and Andy Wellings, 2001

select_statement ::=
          selective_accept |
          conditional_entry_call |
          timed_entry_call |
          asynchronous_select

Forms of Select Statement

The select statement comes in four forms:



© Alan Burns and Andy Wellings, 2001

Selective Accept

The selective accept allows the server to:

n wait for more than a single rendezvous at any one time
n time-out if no rendezvous is forthcoming within a

specified time
n withdraw its offer to communicate if no rendezvous is

available immediately
n terminate if no clients can possibly call its entries



© Alan Burns and Andy Wellings, 2001

Syntax Definition

selective_accept ::=
  select
    [guard]
     selective_accept_alternative
{ or
    [guard]
    selective_accept_alternative
[ else
    sequence_of_statements ]
  end select;

guard ::= when <condition> =>



© Alan Burns and Andy Wellings, 2001

Syntax Definition II

selective_accept_alternative ::=
  accept_alternative |
  delay_alternative  |
  terminate_alternative

accept_alternative ::=
   accept_statement [ sequence_of_statements ]

delay_alternative ::=
   delay_statement [ sequence_of_statements ]

terminate_alternative ::=
   terminate;



© Alan Burns and Andy Wellings, 2001

Overview Example
task Server is
  entry S1(...);
  entry S2(...);
end Server;

task body Server is
  ...
begin
  loop
    select
      accept S1(...) do
        -- code for this service
      end S1;
    or
      accept S2(...) do
        -- code for this service
      end S2;
    end select;
  end loop;
end Server;

Simple select with 
two possible actions



© Alan Burns and Andy Wellings, 2001

Example
task type Telephone_Operator is

  entry Directory_Enquiry (P : Name; A : Address;

                           N : out Number);

  entry Directory_Enquiry (P : Name; PC : Postal_Code;

                           N : out Number);

  entry Report_Fault(N : Number);

private

  entry Allocate_Repair_Worker (N : out Number);

end Telephone_Operator;



© Alan Burns and Andy Wellings, 2001

Example II

task body Telephone_Operator is
  Failed : Number;
  task type Repair_Worker;
  Work_Force : array(1.. Num_Workers) of
               Repair_Worker;

  task body Repair_Worker is separate;



© Alan Burns and Andy Wellings, 2001

Example III
begin
  loop
    select
      accept Directory_Enquiry( ... ; A: Address...) do
        -- look up number based on address
      end Directory_Enquiry;
    or
      accept Directory_Enquiry( ... ;
                               PC: Postal_Code...) do
        -- look up number based on ZIP
      end Directory_Enquiry;
    or



© Alan Burns and Andy Wellings, 2001

Example IV

    or
      accept Report_Fault(N : Number) do
        ...
      end Report_Fault;
      if New_Fault(Failed) then
        accept Allocate_Repair_Worker (N : out
               Number) do
          N := Failed;
        end Allocate_Repair_Worker;
      end if;
    end select;
  end loop;
end Telephone_Operator;



© Alan Burns and Andy Wellings, 2001

Note

n If no rendezvous are available, the select statement
waits for one to become available

n If one is available, it is chosen immediately
n If more than one is available, the one chosen is

implementation dependent (RT Annex allows order to
be defined)

n More than one task can be queued on the same entry;
default queuing policy is FIFO (RT Annex allows priority
order to be defined)



© Alan Burns and Andy Wellings, 2001

Tesco
type Counter is (Meat, Cheese, Wine);
task Tesco_Server is
  entry Serve(Counter)(Request: . . .);
end Tesco_Server;
task body Tesco_Server is
begin
  loop
    select
      accept Serve(Meat)(. . .) do . . . end Serve;
    or
      accept Serve(Cheese)(. . .) do . . . end Serve;
    or
      accept Serve(Wine)(. . .) do . . . end Serve;
    end select
  end loop
end Tesco_Server;

n What happens if all queues are full?
n What happens if the Meat queue is empty?



© Alan Burns and Andy Wellings, 2001

What is the difference between

and

select
  accept A;
  B;
or
  accept C;
end select

select
  accept A do
    B;
  end A;
or
  accept C;
end select



© Alan Burns and Andy Wellings, 2001

Guarded Alternatives

n Each select accept  alternative can have an associated
guard

n The guard is a boolean expression which is evaluated
when the select statement is executed

n If the guard evaluates to true, the alternative is eligible
for selection

n If it is false, the alternative is not eligible for selection
during this execution of the select statement (even if
client tasks are waiting on the associated entry)



© Alan Burns and Andy Wellings, 2001

Example Usage

select
  when Boolean_Expression =>
    accept S1(...) do
      -- code for service
    end S1;
    -- sequence of statements
or
  ...
end select;



© Alan Burns and Andy Wellings, 2001

Example of Guard

task body Telephone_Operator is

begin
  ...
  select
    accept Directory_Enquiry (...) do ... end;
  or
    accept Directory_Enquiry (...) do ... end;
  or
    when Workers_Available =>
      accept Report_Fault (...) do ... end;
  end select;

end Telephone_Operator;

guard



© Alan Burns and Andy Wellings, 2001

Corner Shop
type Counter is (Tobacco, Alcohol, Groceries);
task Shopkeeper is
  entry Serve(Counter)(Request: . . .);
end Shopkeeper;
task body Shopkeeper is
begin
  loop
    select
      when After_7pm =>
        accept Serve(Alcohol)(. . .) do . . . end Serve;
    or
      when Customers_Age > 16 => 
        accept Serve(Tobacco)(. . .) do . . . end Serve;
    or
      accept Serve(Groceries)(. . .) do . . . end Serve;
    end select
  end loop
end Shopkeeper;

n Are these guards OK?



© Alan Burns and Andy Wellings, 2001

Delay Alternative

n The delay alternative of the select statement allows the
server to time-out if an entry call is not received within a
certain period

n The timeout is expressed using a delay statement, and
therefore can be relative or absolute

n If the relative time is negative, or the absolute time has
passed, the delay alternative becomes equivalent to the
else alternative

n More than one delay is allowed



© Alan Burns and Andy Wellings, 2001

Example: Periodic Execution

n Consider a task which reads a sensors every 10
seconds, however, it may be required to change its
periods during certain modes of operation

task Sensor_Monitor is
  entry New_Period(P : Duration);
end Sensor_Monitor;



© Alan Burns and Andy Wellings, 2001

Periodic Execution II
task body Sensor_Monitor is
  Current_Period : Duration := 10.0;
  Next_Cycle : Time := Clock + Current_Period;
begin
  loop
    -- read sensor value etc.
    select
      accept New_Period(P : Duration) do
        Current_Period := P;
      end New_Period;
      Next_Cycle := Clock + Current_Period;
    or
      delay until Next_Cycle;
      Next_Cycle := Next_Cycle + Current_Period;
    end select;
  end loop;
end Sensor_Monitor;

delay alternative



© Alan Burns and Andy Wellings, 2001

Delay Alternative: Error Detection

n Used to program timeouts

task type Watchdog is
  entry All_Is_Well;
end Watchdog;



© Alan Burns and Andy Wellings, 2001

Watchdog

task body Watchdog is
  Client_Failed : Boolean := False;
begin
  loop
    select
      accept All_Is_Well;
    or
      delay 10.0;
      -- signal alarm
      Client_Failed := True;
    end select;
    exit when Client_Failed;
  end loop;
end Watchdog;



© Alan Burns and Andy Wellings, 2001

The Else Part
task body Sensor_Monitor is
  Current_Period : Duration := 10.0;
  Next_Cycle : Time := Clock + Current_Period;
begin
  loop
    -- read sensor value etc.
    select
      accept New_Period(P : Duration) do
        Current_Period := P;
      end New_Period;
    else -- cannot be guarded
      null;
    end select;
    Next_Cycle := Clock + Current_Period;
    delay until Next_Cycle;
  end loop;
end Sensor_Monitor;

else part



© Alan Burns and Andy Wellings, 2001

The Delay and the Else Part

n Cannot mix else part and delay in the same select
statement.

n The following are equivalent
select
  accept A;
or
  accept B;
else
  C;
end select;

select
  accept A;
or
  accept B;
or
  delay 0.0;
  C;
end select;



© Alan Burns and Andy Wellings, 2001

select

  accept A;

or

  delay 10.0;
end select;

select

  accept A;

else

  delay 10.0;
end select;

More on Delay

n What is the difference?

select

  accept A;

or

  delay 5.0;

  delay 5.0;
end select;



© Alan Burns and Andy Wellings, 2001

The Terminate Alternative

n In general a server task only needs to exist when there
are clients to serve

n The very nature of the client server model is that the
server does not know the identity of its clients

n The terminate alternative in the select statement allows
a server to indicate its willingness to terminate if there
are no clients that could possibly request its service

n The server terminates when a master of the server is
completed and all its dependants are either already
terminated or are blocked at a select with an open
terminate alternative



© Alan Burns and Andy Wellings, 2001

Primes by Sieve

Odd 3571113

Odd

57



© Alan Burns and Andy Wellings, 2001

Primes by Sieve II
procedure Primes_By_Sieve is
  task type Sieve is
    entry Pass_On(Int : Integer);
  end Sieve;

  task Odd;

  type Sieve_Ptr is access Sieve;

  function Get_New_Sieve return Sieve_Ptr is
  begin
    return new Sieve;
  end Get_New_Sieve;

  task body Odd is ...
  task body Sieve is ...

begin null; end Primes_By_Sieve;

function needed, as a task
type cannot contain a ‘new’
for its own type



© Alan Burns and Andy Wellings, 2001

Primes by Sieve III

  task body Odd is
    Limit : constant Positive := ...;
    Num : Positive;
    S : Sieve_Ptr := new Sieve;
  begin
    Num := 3;
    while Num < Limit loop
      S.Pass_On(Num);
      Num := Num + 2;
    end loop;
  end Odd;



© Alan Burns and Andy Wellings, 2001

Primes by Sieve IV
  task body Sieve is
    New_Sieve : Sieve_Ptr;
    Prime, Num : Positive;
  begin
    accept Pass_On(Int : Integer) do
      Prime := Int;
    end Pass_On;
    -- Prime is a prime number, could output
    loop
      select
        accept Pass_On(Int : Integer) do
          Num := Int;
        end Pass_On;
      or
        terminate;
      end select;
      exit when Num rem Prime /= 0;
    end loop;



© Alan Burns and Andy Wellings, 2001

Primes by Sieve V

    New_Sieve := Get_New_Sieve;
    New_Sieve.Pass_On(Num);
    loop
      select
        accept Pass_On(Int : Integer) do
          Num := Int;
        end Pass_On;
      or
        terminate;
      end select;
      if Num rem Prime /= 0 then
        New_Sieve.Pass_On(Num);
      end if;
    end loop;
  end Sieve;



© Alan Burns and Andy Wellings, 2001

Last Wishes

n Last Wishes can be programmed using controlled types

n Example: count the number of times two entries are
called

with Ada.Finalization; use Ada;
package Counter is
 type Task_Last_Wishes is new
          Finalization.Limited_Controlled
    with record
      Count1, Count2 : Natural := 0;
    end record;
  procedure Finalize(Tlw : in out Task_Last_Wishes);
end Counter;



© Alan Burns and Andy Wellings, 2001

Last Wishes II

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Text_IO; use Ada.Text_IO;
package body Counter is
  procedure Finalize(Tlw : in out Task_Last_Wishes) is
  begin
    Put("Calls on Service1:");
    Put(Tlw.Count1);
    Put(" Calls on Service2:");
    Put(Tlw.Count2);
    New_Line;
  end Finalize;
end Counter;



© Alan Burns and Andy Wellings, 2001

Last Wishes III
task body Server is
  Last_Wishes :  Counter.Task_Last_Wishes;
begin
  -- initial housekeeping
  loop
    select
      accept Service1(...) do
        ...
      end Service1;
      Last_Wishes.Count1 :=  Last_Wishes.Count1 + 1;
    or
      accept Service2(...) do
        ...
      end Service2;
      Last_Wishes.Count2 :=  Last_Wishes.Count2 + 1;
    or
      terminate;
    end select;
    -- housekeeping
  end loop;
end Server;

As the task terminates the
finalize procedure is executed



© Alan Burns and Andy Wellings, 2001

Program Error

n If all the accept alternatives have guards then there is
the possibility in certain circumstances that all the
guards will be closed

n If the select statement does not contain an else clause
then it becomes impossible for the statement to be
executed

n The exception Program_Error is raised at the point of
the select statement if no alternatives are open



© Alan Burns and Andy Wellings, 2001

Sample Exam Question

n A server task has the following Ada specification.
task Server is
  entry Service_A;
  entry Service_B;
  entry Service_C;
end Server;

n Write the body of the Server task so that
– If client tasks are waiting on all the entries, the Server should service

the clients in a cyclic order, that is accept first a Service_A entry,
and then a Service_B entry, and then a Service_C, so on

– If not all entries have a client task waiting, the Server should service
the other entries in a cyclic order. The Server tasks should not be
blocked if there are clients still waiting for a service

– If the Server task has no waiting clients then it should NOT busy-wait; it
should block waiting for a client's request to be made

– If all the possible clients have terminated, the Server should terminate

n Assume that client tasks are not aborted and issue simple entry calls only

See answer to Exercise 9.11



© Alan Burns and Andy Wellings, 2001

The Selective Accept : Summary

n A selective accept must contain at least one accept
alternative (each possibly guarded)

n A selective accept may contain one and only one of the
following :
– a terminate alternative (possibly guarded), or
– one or more delay alternatives (each possibly guarded), or
– an else part



© Alan Burns and Andy Wellings, 2001

The Selective Accept : Summary II

n A select alternative is 'open' if it does not contain a
guard or if the boolean condition associated with the
guard evaluates to true; otherwise the alternative is
'closed'

n On execution: all guards, open delay expressions, and
open entry family expressions are evaluated

n A choice is made from the open alternatives



© Alan Burns and Andy Wellings, 2001

Non-determinism and Selective Waiting

n Concurrent languages make few assumptions about the
execution order of processes

n A scheduler is assumed to schedule processes non-
deterministically

n Consider a process P that will execute a selective wait
construct upon which processes S and T could call



© Alan Burns and Andy Wellings, 2001

Non-determinism and Selective Waiting

n P runs first; it is blocked on the select. S (or T) then runs
and rendezvous with P

n S (or T) runs, blocks on the call to P; P runs and executes
the select; a rendezvous takes place with S (or T)

n S (or T) runs first and blocks on the call to P; T (or S) now
runs and is also blocked on P. Finally P runs and executes
the select on which T and S are waiting

n The three possible interleavings lead to P having none,
one or two calls outstanding on the selective wait

n If P, S and T can execute in any order then, in latter case,
P should be able to choose to rendezvous with S or T —  it
will not affect the programs correctness



© Alan Burns and Andy Wellings, 2001

Non-determinism and Selective Waiting

n A similar argument applies to any queue that a
synchronisation primitive defines

n Non-deterministic scheduling implies all queues should
release processes in a non-deterministic order

n Semaphore queues are often defined in this way; entry
queues and monitor queues are specified to be FIFO

n The rationale here is that FIFO queues prohibit
starvation but if the scheduler is non-deterministic then
starvation can occur anyway!



© Alan Burns and Andy Wellings, 2001

Timed Entry Calls

n A timed entry call issues an entry call which is cancelled
if the call is not accepted within the specified period
(relative or absolute)

n Note that only one delay alternative and one entry call
can be specified.

task type Subscriber;



© Alan Burns and Andy Wellings, 2001

Timed Entry Calls II
task body Subscriber is
  Stuarts_Number : Number;
begin
  loop
    ...
    select
      An_Op.Directory_Enquiry("Stuart Jones",
         "10 Main Street, York", Stuarts_Number);
      -- log the cost of a directory enquiry call
    or
      delay 10.0;
      -- phone up Stuart's parents and ask them;
      -- log the cost of a long distance call
    end select;
    ...
   end loop;
end Subscriber;



© Alan Burns and Andy Wellings, 2001

Timed Entry Calls III
task body Telephone_Operator is
  ...
begin
  loop
    -- prepare to accept next request
    select
      accept Directory_Enquiry(Person : Name;
         Addr   : Address; Num  : out Number) do
         delay 3600.0; -- take a lunch break
      end Directory_Enquiry; or
      ...
    end select;
    ...
   end loop;
end Telephone_Operator;

Time-out is on the start of the
rendezvous not the finish



© Alan Burns and Andy Wellings, 2001

Shopper
task type Shopper;
task body Shopper is
begin
  . . .
  -- enter shop
  select
    shopkeeper.Serve_Groceries(. . .)
  or
    delay10.0;
    -- moan about queues;
  end select;
  -- leave shop
  . . .
end Shopper; WARNING

accept Serve_Groceries(. . .) do
  -- go to lunch
end Serve_Grovceries;



© Alan Burns and Andy Wellings, 2001

Conditional Entry Call

n The conditional entry call allows the client to withdraw
the offer to communicate if the server task is not
prepared to accept the call immediately

n It has the same meaning as a timed entry call where the
expiry time is immediate

select
  Security_Op.Turn_Lights_On;
else
  null; -- assume they are on already
end select;



© Alan Burns and Andy Wellings, 2001

Conditional Entry Call II

n A conditional entry call should only be used when the
task can genuinely do other productive work, if the call
is not accepted

n Care should be taken not to program polling, or busy-
wait, solutions unless they are explicitly required

n Note, the conditional entry call uses an else, the timed
entry call an or



© Alan Burns and Andy Wellings, 2001

Conditional Entry Call III

n They cannot be mixed, nor can two entry call statements
be included

n A client task can not therefore wait for more than one
entry call to be serviced

n The asynchronous select statement allows some of
these restrictions to be overcome



© Alan Burns and Andy Wellings, 2001

Dining Philosophers

procedure Dining_Philosophers is
  package Activities is
    procedure Think;
    procedure Eat;
  end Activities;

  N : constant := 5;  -- number of philosophers
  type Philosophers_Range is range 0..N-1;

  task type Phil(P : Philosophers_Range);
  type Philosopher is access Phil;

  task type Chopstick_Control is
    entry Pick_Up;
    entry Put_Down;
  end Chopstick_Control;



© Alan Burns and Andy Wellings, 2001

Dining Philosophers II
 task Deadlock_Prevention is
    entry Enters;
    entry Leaves;
  end Deadlock_Prevention;

  Chopsticks : array(Philosophers_Range) of Chopstick_Control;
  Philosophers : array(Philosophers_Range) of Philosopher;

  package body Activities is separate;
  task body Phil is separate;
  task body Chopstick_Control is separate;
  task body Deadlock_Prevention is separate;

begin
  for P in Philosophers_Range loop
    Philosophers(P) := new Phil(P);
  end loop;
end Dining_Philosophers;



© Alan Burns and Andy Wellings, 2001

Dining Philosophers III

separate (Dining_Philosophers)
task body Chopstick_Control is
begin
  loop
    accept Pick_Up;
    accept Put_Down;
  end loop;
end Chopstick_Control;



© Alan Burns and Andy Wellings, 2001

Dining Philosophers IV

separate (Dining_Philosophers)
task body Deadlock_Prevention is
  Max : constant Integer := N - 1;
  People_Eating : Integer range 0..Max := 0;
begin
  loop
    select
      when People_Eating < Max =>
        accept Enters;
        People_Eating := People_Eating + 1;
    or
      accept Leaves;
      People_Eating := People_Eating - 1;
    end select;
  end loop;
end Deadlock_Prevention;



© Alan Burns and Andy Wellings, 2001

Dining Philosophers V

separate (Dining_Philosophers)
task body Phil is
  Chop_Stick1, Chop_Stick2 : Philosophers_Range;
begin
  Chop_Stick1 := P;
  Chop_Stick2 := (Chop_Stick1 + 1) mod N;
  loop
    Think;
    Deadlock_Prevention.Enters;
    Chopsticks(Chop_Stick1).Pick_Up;
    Chopsticks(Chop_Stick2).Pick_Up;
    Eat;
    Chopsticks(Chop_Stick1).Put_Down;
    Chopsticks(Chop_Stick2).Put_Down;
    Deadlock_Prevention.Leaves;
  end loop;
end Philosopher;



© Alan Burns and Andy Wellings, 2001

Exercises

n Modify the code so that the program terminates after
each philosopher has taken 32 meals

n Make your solution resilient to a task failing
n Replace the control tasks with protected objects



© Alan Burns and Andy Wellings, 2001

Task States

created

non-existing

finalising

activating

executing

completed

non-existing

terminated

delayed

waiting child activation waiting dep. termination

waiting on 
an entry call

waiting on 
an accept

waiting for the end 
of a rendezvous waiting on select



© Alan Burns and Andy Wellings, 2001

POSIX Message Queues

n POSIX supports asynchronous, indirect message
passing through the notion of message queues

n A message queue can have many readers and many
writers

n Priority may be associated with the queue
n Intended for communication between processes (not

threads)
n Message queues have attributes which indicate their

maximum size, the size of each message, the number of
messages currently queued etc.

n An attribute object is used to set the queue attributes
when the queue is created



© Alan Burns and Andy Wellings, 2001

POSIX Message Queues

n Message queues are given a name when they are created
n To gain access to the queue, requires an mq_open name
n mq_open is used to both create and open an already

existing queue (also mq_close and mq_unlink)
n Sending and receiving messages is done via mq_send

and  mq_receive
n Data is read/written from/to a character buffer.
n If the buffer is full or empty, the sending/receiving process

is blocked unless the attribute O_NONBLOCK has been
set for the queue (in which case an error return is given)

n If senders and receivers are waiting when a message
queue becomes unblocked, it is not specified which one is
woken up unless the priority scheduling option is specified



© Alan Burns and Andy Wellings, 2001

POSIX Message Queues

n A process can also indicate that a signal should be sent to it
when an empty queue receives a message and there are no
waiting receivers

n In this way, a process can continue executing whilst waiting
for messages to arrive or one or more message queues

n It is also possible for a process to wait for a signal to arrive;
this allows the equivalent of selective waiting to be
implemented

n If the process is multi-threaded, each thread is considered to
be a potential sender/receiver in its own right



© Alan Burns and Andy Wellings, 2001

Robot Arm Example

typedef enum {xplane, yplane, zplane} dimension;

void move_arm(int D, int P);

#define DEFAULT_NBYTES 4 
int nbytes = DEFAULT_NBYTES;

#define MQ_XPLANE  "/mq_xplane" -- message queue name 
#define MQ_YPLANE  "/mq_yplane" -- message queue name 
#define MQ_ZPLANE  "/mq_zplane" -- message queue name
#define MODE . . . /* mode info for mq_open */ 
/* names of message queues */



© Alan Burns and Andy Wellings, 2001

Robot Arm Example
void controller(dimension dim) {
  int position, setting;
  mqd_t my_queue; /* message queue */
  struct mq_attr ma;  /*attributes */
  char buf[DEFAULT_NBYTES];
  ssiz_t len;

  position = 0;    
  switch(dim)  { /* open appropriate message queue */
    case xplane:  
      my_queue = MQ_OPEN(MQ_XPLANE,O_RDONLY,MODE,&ma);
      break;
    case yplane:  my_queue = MQ_OPEN(MQ_YPLANE,...); break;
    case zplane:  my_queue = MQ_OPEN(MQ_ZPLANE,...); break;
    default:
      return;
  };



© Alan Burns and Andy Wellings, 2001

Robot Arm Example

  while (1) {
    /* read message */
    len = mq_receive(my_queue, &buf[0], nbytes, 

null);
    setting = *((int *)(&buf[0]));
    position = position + setting;
    move_arm(dim, position);
  };
}

n Now the main program which creates the controller processes
and passes the appropriate coordinates to them:



© Alan Burns and Andy Wellings, 2001

Robot Arm Example

void (*C)(dimension dim) = &controller;

int main(int argc, char **argv) {
  mqd_t mq_xplane, mq_yplane, mq_zplane; 
  struct mq_attr ma; /* queue attributes */
  int xpid, ypid, zpid;
  char buf[DEFAULT_NBYTES];

  /* set message queues attributes*/
  ma.mq_flags = 0;    /* No special behaviour */
  ma.mq_maxmsg = 1;
  ma.mq_msgsize = nbytes;

  mq_xplane = MQ_OPEN(MQ_XPLANE, 
    O_CREAT|O_EXCL, MODE, &ma);

  mq_yplane = ...;
  mq_zplane = ...;    



  /* Duplicate the process to get three controllers */
  switch (xpid = FORK()) {
    case 0: controller(xplane); exit(0); /* child */
    default:    /* parent */
   switch (ypid = FORK()) {
        case 0: controller(yplane); exit(0);
        default:    /* parent */
       switch (zpid = FORK()) {
            case 0: controller(zplane); exit(0);
            default:    /* parent */
              break;
          }
      }
  }
  while (1) {
    /* set up buffer to transmit each co-ordinate
       to the controllers, for example */
    MQ_SEND(mq_xplane, &buf[0], nbytes, 0); 
  }
}



© Alan Burns and Andy Wellings, 2001

Summary

n The semantics of message-based communication are
defined by three issues:
– the model of synchronisation
– the method of process naming
– the message structure

n Variations in the process synchronisation model arise from
the semantics of the send operation.
– asynchronous, synchronous or remote invocation
– Remote invocation can be made to appear syntactically similar to a

procedure call

n Process naming involves two distinct issues; direct or
indirect, and symmetry



© Alan Burns and Andy Wellings, 2001

Summary

n Ada has remote invocation with direct asymmetric naming
n Communication in Ada requires one task to define an

entry and then, within its body, accept any incoming call. A
rendezvous occurs when one task calls an entry in
another

n Selective waiting allows a process to wait for more than
one message to arrive.

n Ada’s select statement has two extra facilities: an else part
and a terminate alternative

n POSIX message queues allow asynchronous, many to
many communication


