MESSAGE-BASED
SYNCHRONISATION AND
COMMUNICATION

H'ERN mm

m To understand the requirements for communication and
synchronisation based on message passing

m To understand:
— the Ada extended rendezvous
— selective waiting
— POSIX message queues
— Remote procedure calls

Goals

© Alan Burnsand Andy Wellings, 2001

Message-Based Communication and Synchronisation

m Use of a single construct for both synchronisation and
communication

m Three issues:
— the model of synchronisation

— the method of process naming
— the message structure

Process P1 Process P2
v recelve message

send message

l © Alan Burnsand Andy Wellings, 2001

time time

m Variations in the process synchronisation model arise
from the semantics of the send operation

m Asynchronous (or no-wait) (e.g. POSIX)
— Requires buffer space. What happens when the buffer is full?

Process P1 Process P2
send message
\‘{ message
\A v

recelve message

: I

time time

© Alan Burnsand Andy Wellings, 2001

Process Synchronisation

m Synchronous (e.g. CSP, occam?2)
— No buffer space required
— Known as a rendezvous

Process P1 Process P2
send message
blocked M v
) receive message

! I

time time

© Alan Burnsand Andy Wellings, 2001

Process Synchronisation

m Remote invocation (e.g. Ada)
— Known as an extended rendezvous

m Analogy:
— The posting of a letter is an asynchronous send
— A telephone is a better analogy for synchronous communication

Process P1 Process P2

send message l
) recelve message

l4 rTIy

time time

blocked

© Alan Burnsand Andy Wellings, 2001

Asynchronous and Synchronous Sends

m Asynchronous communication can implement
synchronous communication:

P1 P2
asyn_send (M) wait (M)
wait (ack) asyn_send (ack)

m Two synchronous communications can be used to
construct a remote invocation:

P1 P2
syn_send (message) wait (message)
wait (reply)

construct reply

syn_send (reply)

© Alan Burnsand Andy Wellings, 2001

Disadvantages of Asynchronous Send

m Potentially infinite buffers are needed to store unread
messages

m Asynchronous communication is out-of-date; most sends
are programmed to expect an acknowledgement

m More communications are needed with the asynchronous
model, hence programs are more complex

m |t is more difficult to prove the correctness of the complete
system

m Where asynchronous communication is desired with
synchronised message passing then buffer processes can
easlily be constructed; however, this is not without cost

© Alan Burnsand Andy Wellings, 2001

Process Naming

m Two distinct sub-issues
— direction versus indirection
— symmetry

m With direct naming, the sender explicitly names the receiver:
send <message> to <process-name>

m With indirect naming, the sender names an intermediate
entity (e.g. a channel, mailbox, link or pipe):

send <message> to <mailbox>
m With a mailbox, message passing can still be synchronous

m Direct naming has the advantage of simplicity, whilst indirect
naming aids the decomposition of the software; a mailbox
can be seen as an interface between parts of the program

© Alan Burnsand Andy Wellings, 2001

Process Naml ng

m A naming scheme is symmetric if both sender and
receiver name each other (directly or indirectly)

send <message> to <process-name>
wait <message> from <process-name>

send <message> to <mailbox>
wait <message> from <mailbox>
m It is asymmetric if the receiver names no specific source

but accepts messages from any process (or mailbox)

wait <message>
m Asymmetric naming fits the client-server paradigm

m With indirect the intermediary could have:
— a many-to-many structure

— a many-to-one structure
— a one-to-many
© Alan Burnsand Andy Wellings, 2001

— a one-to-one structure

Message Structure

m A language usually allows any data object of any
defined type (predefined or user) to be transmitted in a

message
m Need to convert to a standard format for transmission
across a network in a heterogeneous environment

m OS allow only arrays of bytes to be sent

© Alan Burnsand Andy Wellings, 2001

he Ada Modél -

T

m Ada supports a form of message-passing between tasks

m Based on a client/server model of interaction
m The server declares a set of services that it is prepared

to offer other tasks (its clients)
m |t does this by declaring one or more public entries in its

task specification
m Each entry identifies the name of the service, the
parameters that are required with the request, and the

results that will be returned

© Alan Burnsand Andy Wellings, 2001

Entri

entry declaration
entry defining identifier[(discrete subtype definition)]

paranmeter _profile;

entry Syn;

entry Send(V : Val ue_Type);

entry Get(V : out Value_Type);

entry Update(V : in out Value Type);
entry Mxed(A : Integer; B : out Float);
entry Fam | y(Bool ean)(V : Val ue_Type);

© Alan Burnsand Andy Wellings, 2001

Exampl e

task type Tel ephone Operator is

entry Directory Enquiry(

Person : 1 n Nane;
Addr : Address;
Num : out Nunber);

-- other services possible
end Tel ephone_Qper at or;

An_(p : Tel ephone_Operator;

-- client task executes

An_Op.Directory Enquiry ("Stuart _Jones",
"11 Main, Street, York"

Stuarts_Nunber);

© Alan Burnsand Andy Wellings, 2001

Accept Statement -

accept _st at enent
accept entry direct_nane[(entry_i ndex)]

paranmeter profile [do
handl ed_sequence_of statenents

end [entry_identifier]];

accept Fam|ly(True)(V : Value Type) do

-- Seqguence of statenents

exception
-- handl ers

end Fam ly;

© Alan Burnsand Andy Wellings, 2001

Server Task

| S

t ask body Tel ephone_Operat or

begi n
| oop
--prepare to accept next call
L)

accept Directory Enquiry (.
| ook up tel ephone nunber

exception
when |11 egal Nunber =>

end Directory Enquiry;
-- undert ake housekeepi ng

end | oop;

end Tel ephone_Qper at or;

propagate error to client

© Alan Burnsand Andy Wellings, 2001

_ UlentTas<

task type Subscri ber;
t ask body Subscriber is
begi n
| oop
An_Op.Directory Enquiry(...);

end | oop;

end Subscri ber:

© Alan Burnsand Andy Wellings, 2001

v

T. E(A B)

o

Protocol .

task Tis ...

|

accept E(X : int; Y: out int) do
-- use X
-- undertake conputation

-- produce Y

-- conpl ete conputation
end E;

© Alan Burnsand Andy Wellings, 2001

nchronisation

Sy

m Both tasks must be prepared to enter into the

communication
m If one is ready and the other is not, then the ready one
waits for the other
m Once both are ready, the client's parameters are passed
to the server
m The server then executes the code inside the accept

statement
m At the end of the accept, the results are returned to the

client
© Alan Burnsand Andy Wellings, 2001

m Both tasks are then free to continue independently

Bus Driver Exampl

task type Bus Driver (Num: Natural) is
I N Request, M in Mney,

entry Get Ticket (R
G : out Ticket) ;

noney given wth request, no change given!

end Bus_Driver;

task body Bus Driver is
begi n
| oop
accept Get Ticket (R Request,
M Money; G : out Ticket) do

-- take noney
G := Next Ticket(R);
end Get Ticket;
end | oop;

end Bus_Driver;

Bu

type Bus_T (N : Natural) is
record

Driver : Bus Driver(N);
end record;

Nunber 31 : Bus_T(31);
Nunber 60 : Bus_T(60);
Nunber 70 : Bus_T(70);

© Alan Burnsand Andy Wellings, 2001

Shop Keeper Example -

t ask Shopkeeper is
entry Serve(X : Request; A out Goods);
out Mbney);

entry Get Mney(M: Mney; Change :
end Shopkeeper;

t ask body Shopkeeper is
begi n
| oop
accept Serve(X : Request; A: out Goods) do

A = Get _(Goods;

end Serve;
accept Get Mney(M: Mney; Change :
-- take noney return change

end Get Money;

end | oop;
end Shopkeeper;

What iswrong with this algorithm?

out Mboney) do

© Alan Burnsand Andy Wellings, 2001

Customer

task Custoner;

task body Custoner is

begi n
-- go to shop
Shopkeeper. Serve(Wekl y _Shopi ng, Trolley);
-- |l eave shop in a hurry!

end Cust oner;

© Alan Burnsand Andy Wellings, 2001

28
Q
@

task type Rider;
task body R der is
begi n

-- go to bus stop and wait for bus
whil e Bus /= Nunber31 | oop
-- noan about bus service
end | oop;
Bus. Bus Driver. Get _Ticket(Heslington, Fiftyp, Ticket);
-- get in line
-- board bus, notice three nore nunber 31 buses

end R der;

© Alan Burnsand Andy Wellings, 2001

Other Facilities

" Count gives number of tasks queued on an entry

m Entry families allow the programmer to declare, in effect,

a single dimension array of entries

Nested accept statements allow more than two tasks to
communicate and synchronise

A task executing inside an accept statement can also
execute an entry call

Exceptions not handled in a rendezvous are propagated
to both the caller and the called tasks

An accept statement can have exception handlers

© Alan Burnsand Andy Wellings, 2001

Restrictions

Accept statements can only be placed in the body of a

task
Nested accept statements for the same entry are not

allowed
The ' Count attribute can only be accessed from within

O
the task that owns the entry
Parameters to entries cannot be access parameters but

can be parameters of an access type

© Alan Burnsand Andy Wellings, 2001

Families

task Multiplexer is
Dat a) ;

entry Channel (1..3) (X :
end Multipl exer; ‘\\\\\\\\
r AfanHy

task body Multi pl exe
declaration

begi n
| oop K/////
| in 1..3 loop

for
accept Channel (1)(X : Data) do
-- consune i nput data on channel
end Channel ;
end | oop;
end | oop;
end Multi pl exer;

© Alan Burnsand Andy Wellings, 2001

Tesco

type Counter is (Meat, Cheese, Wne),;
task Tesco_Server is
entry Serve(Counter)(Request: . . .);
end Tesco_Server;
task body Tesco Server iIs
begi n
| oop
accept Serve(Meat)(. . .) do . . . end Serve;
accept Serve(Cheese) (. .) do . . end Serve;
.) do . end Serve;

accept Serve(Wne) (.

end | oop
end Tesco_Server;

m What happens if all gueues are full?
m What happens if the Meat queue Iis empty?

\ested Accepts

task body Controller is
begi n
| oop
accept Doio (I : out Integer) do
accept Start;
accept Conpleted (K : Integer) do
| = K;
end Conpl et ed;
end Doi o;
end | oop;
end Controll er;

© Alan Burnsand Andy Wellings, 2001

t ask Shopkeeper is
entry Serve Goceries(. . .);
entry Serve_Tobacco(. . .);
entry Serve_Al cohol (. . .);
end Shopkeeper;

t ask body Shopkeeper is
begi n

accept Serve Goceries (. . .) do
-- no change for a £10 note

accept Serve Alcohol (. . .) do
-- serve anot her Custoner,

Shopkeeper Exampl e

-- get nore change| canot have

end Serve_ Al cohol accept Serve Groceries (.

.) do

end Serve Groceries accept Serve Goceries(. . .) do

end Shopkeeper;

end Serve G oceries
end Serve Groceries

© Alan Burnsand Andy Wellin

gs, 2001

~ Entry Call within Accept Statemen

task Car _Spares_Server 1s
entry Serve Car Part(Nunber: Part ID, . . .);
end Car _Spares_Server ;

task body Car Spares _Server iIs

begi n
accept Serve Car Part(Nunber: Part ID;, . . .) do
- part not is stock
Deal er. Phone _Order(. . .);

end Serve Car Part;

end Car_ Spares_Server,

© Alan Burnsand Andy Wellings, 2001

Exceptions

accept Get(R : out Rec; Valid Read : out Bool ean) do

| oop
begi n
Put ("VALUE OF I ?"); Get(R I); : :
et
][rol,f:,n Put ("VALUE OF F?"): Get (R F); <4 | &xceptionraised
accept \ Put ("VALUE OF S?"); Get(R S);
Valid Read := True;
return;
except i on o could be handled here

when Ada. Text 1O Data_Error =>
Put ("1 NVALI D | NPUT: START AGAI N');

end;
end | oop;
except | onp o Or here If not handle_d an_ywher_e
__ | exception raised in calling
when Ada. Text |1 O Mdde Error => task and the ‘ accent’ task

Val id Read := Fal se;
end Cet;

© Alan Burnsand Andy Wellings, 2001

Private Entries

m Public entries are visible to all tasks which have visibility
to the owning task's declaration

m Private entries are only visible to the owning task

— If the task has several tasks declared internally; these tasks
have access to the private entry

— if the entry is to be used internally by the task for requeuing
purposes

— if the entry is an interrupt entry, and the programmer does not
wish any software task to call this entry

© Alan Burnsand Andy Wellings, 2001

Priv te Entrlesll

task type Tel ephone Operator is
entry Report Fault(N : Nunber); .
private entry

private
entry Allocate_Repair_Wrker(N : out Nunber);

end Tel ephone_Qper at or;
task body Tel ephone Operator is

Fai l ed : Nunber;

task type Repair_ \Worker;

Work Force:array (1.. Num Wrkers) of Repair_ Wrker;

\

task body Repair Wrker is
Job : Nunber:
begi n
Internal task

Tel ephone_QOperator. Al l ocat e _Repai r _Wr ker (Job)

end Repair \Worker;
© Alan Burnsand Andy Wellings, 2001

Priv te Entrleslll

begi n
| oop
accept Report Fault(N : Nunber) do
Failed := N
end Report Fault;
-- log faulty line
new fault

| f New Fault(Failed) then --

accept Allocate Repair Wrker(N : out Nunber) do

N : = Fail ed;
end Al |l ocate Repair_ Wrker;
end if;
end | oop;

end Tel ephone_Qper at or;

© Alan Burnsand Andy Wellings, 2001

Selective Waiting

So far, the receiver of a message must wait until the
specified process, or mailbox, delivers the
communication

A receiver process may actually wish to wait for any one
of a number of processes to call it

Server processes receive request messages from a
number of clients: the order in which the clients call
being unknown to the servers

To facilitate this common program structure, receiver
processes are allowed to wait selectively for a number
of possible messages

Based on Dijkstra’s guarded commands

© Alan Burnsand Andy Wellings, 2001

B Forms of Select Statement

The select statement comes in four forms:

sel ect _statenent ::=
sel ecti ve_accept
conditional _entry
tined entry call

cal |

asynchr onous_sel ect

© Alan Burnsand Andy Wellings, 2001

Sel ective Accept

The selective accept allows the server to:

m wait for more than a single rendezvous at any one time
m time-out if no rendezvous is forthcoming within a
specified time

m withdraw its offer to communicate if no rendezvous Is
available immediately

m terminate If no clients can possibly call its entries

© Alan Burnsand Andy Wellings, 2001

Syntax Definition

sel ective_accept
sel ect
[guar d]
sel ective_accept _alternative
{ or
[guar d]
sel ective_accept _alternative
[el se
sequence_of statenents]
end sel ect;

guard ::= when <condition> =>

© Alan Burnsand Andy Wellings, 2001

Syntax Definition |11 -

sel ective accept _alternative :

accept _alternative |
delay alternative |
termnate _alternative

accept _alternative ::
accept _statenent [sequence of statenents]

delay alternative ::
del ay statenent [sequence_of statenments]

termnate alternative ::
term nat e;

© Alan Burnsand Andy Wellings, 2001

Overview Example

task Server is
entry S1(...);
entry S2(...);
end Server;

task body Server is

begi n Simple select with
| oop two possible actions
sel ect

accept S1(...) do
-- code for this service
end S1;
or
accept S2(...) do
-- code for this service
end S2;:
end sel ect;
end | oop;
end Ser Ver: © Alan Burns and Andy Wellings, 2001

Example

task type Tel ephone Operator is

entry Directory Enquiry (P : Nane; A : Address;
N : out Nunber);

entry Directory Enquiry (P : Nane; PC : Postal Code;
N : out Nunber);

entry Report_Faul t (N : Nunber);

private
entry Allocate_Repair_Wrker (N : out Nunber);

end Tel ephone_Qper at or;

© Alan Burnsand Andy Wellings, 2001

Example |

task body Tel ephone Operator is

Fail ed : Nunber:

task type Repair_ Wrker;
Wrk Force : array(l.. Num Wrkers) of

Repai r _Wbr ker

task body Repair_ Wrker is separate,;

© Alan Burnsand Andy Wellings, 2001

Exampl

begi n
| oop

sel ect
accept Directory Enquiry(

-- l ook up nunber based
end Directory Enquiry;

or
accept Directory Enquiry(

-- ook up nunber
end Directory Enquiry;

or

A. Address...) do

on addr ess

PC. Postal Code...) do

based on ZI P

© Alan Burnsand Andy Wellings, 2001

Example |V

or
accept Report Fault(N : Nunber) do

end Report Fault;
I f New Fault(Failed) then

accept All ocate Repair Wrker (N : out
Nunber) do
N := Fail ed;
end Al |l ocate Repair Wrker;
end if;
end sel ect;
end | oop;

end Tel ephone_Qper at or;

© Alan Burnsand Andy Wellings, 2001

Note

If Nno rendezvous are available, the select statement
walits for one to become available

If one Is avallable, it is chosen immediately

If more than one is available, the one chosen is
Implementation dependent (RT Annex allows order to
be defined)

More than one task can be queued on the same entry;
default queuing policy is FIFO (RT Annex allows priority
order to be defined)

© Alan Burnsand Andy Wellings, 2001

Tesc

type Counter is (Meat, Cheese, Wne),;
task Tesco_Server is
entry Serve(Counter)(Request: . . .);
end Tesco_Server;
task body Tesco Server iIs
begi n
| oop
sel ect
accept Serve(Meat)(. . .) do . . . end Serve;
or
accept Serve(Cheese) (. .) do . end Serve,;
or
accept Serve(Wne) (. .) do . end Serve,;
end sel ect
end | oop

end Tesco_Server;

m What happens if all qgueues are full?
m What happens if the Meat queue Iis empty?

© Alan Burnsand Andy Wellings, 2001

Whatlsth differen ebetween

sel ect
accept A
B;

or
accept C

end sel ect

and

sel ect
accept A do
B;
end A
or
accept C
end sel ect

© Alan Burnsand Andy Wellings, 2001

Guarded Alternatlves

Each select accept alternative can have an associated

guard

when the select statement is executed

The guard is a boolean expression which is evaluated
If the guard evaluates to true, the alternative is eligible

O
for selection
If it IS false, the alternative is not eligible for selection
during this execution of the select statement (even Iif

client tasks are waiting on the associated entry)

© Alan Burnsand Andy Wellings, 2001

Example Usage
I — S —— W— S —
sel ect
when Bool ean_Expressi on =>
accept S1(...) do
-- code for service
end Sl1;
-- sequence of statenents
or

end sel ect;

© Alan Burnsand Andy Wellings, 2001

of Guard

M
X
QD
3

=2
D
| C

task body Tel ephone Operator iIs

begi n
sel ect
accept Directory Enquiry (...) do ... end,
or
accept Directory Enquiry (...) do ... end,
or
when Workers Avail able => ‘//—guanj

accept Report Fault (...) do ... end;
end sel ect;

end Tel ephone_Qper at or;

© Alan Burnsand Andy Wellings, 2001

Corner Shop

type Counter is (Tobacco, Al cohol, Giocerles);

t ask Shopkeeper is
entry Serve(Counter)(Request: . . .);

end Shopkeeper;
t ask body Shopkeeper is

begi n
| oop
sel ect
when After 7pm =>
accept Serve(Al cohol)(. . .) do . . . end Serve;
or
when Custoners Age > 16 =>
accept Serve(Tobacco)(. . .) do . . . end Serve;
or
accept Serve(Goceries)(. . .) do . . . end Serve;
end sel ect
end | oop

end Shopkeeper;

m Are these guards OK?

© Alan Burnsand Andy Wellings, 2001

ay Alternative

Delay A

The delay alternative of the select statement allows the
server to time-out if an entry call is not received within a

certain period
The timeout Is expressed using a delay statement, and
therefore can be relative or absolute
If the relative time is negative, or the absolute time has
passed, the delay alternative becomes equivalent to the

else alternative
More than one delay is allowed

© Alan Burnsand Andy Wellings, 2001

~ Example: Periodic Executlon

m Consider a task which reads a sensors every 10
seconds, however, it may be required to change its
periods during certain modes of operation

task Sensor Monitor is
entry New Period(P :
end Sensor Monitor;

Dur ati on);

© Alan Burnsand Andy Wellings, 2001

Periodic Executlon | |

task body Sensor _

Monitor is
Current Period : Duration := 10.0;
= Cock + Current Peri od,

Next Cycle : Tinme : =

begi n

| oop

sel ect
accept New Period(P : Duration) do
Current Period := P

end New Peri od;
Next Cycle := Cock + Current Peri od;

read sensor val ue etc.

or .
del ay until Next Cycle; 4« delay alternative
Next _Cycle := Next_Cycle + Current_Peri od;

end sel ect;

end | oop;

end Sensor Monitor;
© Alan Burnsand Andy Wellings, 2001

DeI ay Alternative: Error Detection

m Used to program timeouts

task type Watchdog i s
entry Al Is Wll;
end WAt chdog;

© Alan Burnsand Andy Wellings, 2001

Watch dog B

task body Watchdog is
Client _Failed : Boolean := Fal se;
begi n
| oop
sel ect
accept Al Is Wll;
or
del ay 10. O;
-- signal alarm
Client Failed := True;
end sel ect;
exit when Cient Fail ed,
end | oop;
© Alan Burnsand Ancy Wellings, 2001

end Wat chdog;

The Else Part

task body Sensor Monitor is
Current Period : Duration := 10.0;
Next Cycle : Time := Cock + Current_Peri od,
begi n
| oop
read sensor val ue etc.

sel ect
accept New Period(P : Duration) do
Current Period := P

end New Peri od;
cannot be guarded <«—— elsepart

el se --
nul | ;
end sel ect;
Next Cycle := Cock + Current Peri od;
del ay until|l Next Cycl e;
end | oop;
© Alan Burms and Ancy Wellings, 2001

end Sensor Monit or;

The Delay and tt theEIse Part

m Cannot mix else part and delay in the same select
statement.

m The following are equivalent

sel ect sel ect

accept A accept A
or or

accept B; accept B;
el se or

G del ay 0. O;
end sel ect; C

end sel ect;

© Alan Burnsand Andy Wellings, 2001

More on Delay

— — — —
sel ect sel ect sel ect
accept A accept A accept A
or el se or
del ay 10. 0O; del ay 10. 0O; del ay 5. 0;
end sel ect; end sel ect; del ay 5. 0:

m What is the difference?

end sel ect;

© Alan Burnsand Andy Wellings, 2001

The Terminate Alternativ

In general a server task only needs to exist when there
are clients to serve

The very nature of the client server model is that the
server does not know the identity of its clients

The terminate alternative in the select statement allows
a server to indicate its willingness to terminate if there
are no clients that could possibly request its service

The server terminates when a master of the server is
completed and all its dependants are either already
terminated or are blocked at a select with an open
terminate alternative

© Alan Burnsand Andy Wellings, 2001

Primes by Sieve

“

© Alan Burnsand Andy Wellings, 2001

procedure Prines By Sieve is

task type Sieve is
entry Pass On(Int : Integer);
end Si eve;

task Odd;
type Sieve Ptr is access Sieve;

function Get _New Sieve return Sieve Ptr is

begi n
return new Si eve: function needed, as atask
end Get New Si eve; type cannot contain a ‘ new’
- for its own type

task body Odd is ...
task body Sieve is ...

begin null; endPrinmes By Sieve; © Alan Burns and Andy Wlings, 2001

Primes by Sieve |1

task body Odd is
Limt : constant Positive := ...:
Num : Positive;

S: Sieve Ptr := new Sieve;
begi n
Num : = 3;

while Num< Limt | oop
S. Pass_On(Num ;
Num : = Num + 2;
end | oop;
end (dd;

© Alan Burnsand Andy Wellings, 2001

@)

rimes yS|eveIV

| 5

task body Sieve is
New Sieve : Sieve Ptr;
Prime, Num : Positive;
begi n
accept Pass On(Int : Integer) do
Prinme := Int;
end Pass_ On;
-- Prime is a prine nunber, could out put

| oop
sel ect
accept Pass On(Int : Integer) do
Num : = | nt;
end Pass_ On;
or
term nat e;
end sel ect;
exit when NumremPrine /= O;

end | oop;

© Alan Burnsand Andy Wellings, 2001

Primes by Sieve V

New Si eve := Get New Si eve;
New Si eve. Pass_ On(Num ;

| oop

sel ect

accept Pass On(Int : Integer) do
Num : = | nt;

end Pass_ On;

or
term nat e;

end sel ect;

If NumremPrine /= 0 then
New Si eve. Pass_ On(Num ;
end i1f;
end | oop;
end Si eve;

© Alan Burnsand Andy Wellings, 2001

L ast Wishes

m Last Wishes can be programmed using controlled types

m Example: count the number of times two entries are

called
use Ada;

wth Ada. Finalization;
package Counter is
type Task Last Wshes IS new
Finalization.Limted Controll ed
1= 0;

wth record
Count 1, Count2 : Natural
end record;
procedure Finalize(Tlw : in out Task Last Wshes);
end Counter;

Last Wishes ||

wth Ada.Integer Text IO use Ada.lnteger Text |10
wth Ada. Text |1 QG use Ada. Text 1O
package body Counter is
procedure Finalize(Tlw : in out Task Last Wshes) iIs
begi n
Put("Calls on Servicel:");
Put (Tl w. Count 1) ;
Put (" Calls on Service2:");
Put (Tl w. Count 2) ;
New Li ne;
end Finalize;
end Counter;

© Alan Burnsand Andy Wellings, 2001

ast Wishes| ||

| —
‘
|
I
|
|
|

task body Server is
Last Wshes : Counter.Task Last W shes;

begi n
-- initial housekeeping
| oop
sel ect

accept Servicel(...) do

end Servicel;
Last Wshes. Countl := Last Wshes. Countl + 1,

or
accept Service2(...) do

endléervicez;
Last Wshes. Count2 : = Last _Wshes. Count2 + 1,

or
term nat e;

end sel ect;
- - housekeepi ng Asthetask terminates the

end | oop; finalize procedure is executed
end Server:;
© Alan Burnsand Andy Wellings, 2001

Program Error

m If all the accept alternatives have guards then there is
the possibility in certain circumstances that all the
guards will be closed
m If the select statement does not contain an else clause
then it becomes impossible for the statement to be

executed
m The exception Program Error is raised at the point of
the select statement if no alternatives are open

© Alan Burnsand Andy Wellings, 2001

Sample Exam Questlon

m A server task has the following Ada specification.
task Server is
entry Service A

entry Service_B; See answer to Exercise 9.11
entry Service_ C,

end Server:
m Write the body of the Ser ver task so that
— If client tasks are waiting on all the entries, the Ser ver should service

the clients in a cyclic order, that is accept first a Ser vi ce_A entry,
and then a Servi ce_B entry, and thena Service_C, soon

— If not all entries have a client task waiting, the Ser ver should service
the other entries in a cyclic order. The Ser ver tasks should not be
blocked if there are clients still waiting for a service

— If the Ser ver task has no waiting clients then it should NOT busy-wait; it
should block waiting for a client's request to be made

— If all the possible clients have terminated, the Ser ver should terminate

m Assume that client tasks are not aborted and issue simple @ntry-caillsemly

The Selective Accept Su mmary

m A selective accept must contain at least one accept
alternative (each possibly guarded)

m A selective accept may contain one and only one of the

following :
— aterminate alternative (possibly guarded), or

— one or more delay alternatives (each possibly guarded), or

— an else part

© Alan Burnsand Andy Wellings, 2001

The Selective Accept Su mmary I |

m A select alternative is 'open' if it does not contain a
guard or if the boolean condition associated with the

guard evaluates to true; otherwise the alternative is
‘closed'

m On execution: all guards, open delay expressions, and
open entry family expressions are evaluated

m A choice is made from the open alternatives

© Alan Burnsand Andy Wellings, 2001

Non determlnlsm and Selective Waltlng

m Concurrent languages make few assumptions about the
execution order of processes

m A scheduler is assumed to schedule processes non-
deterministically

m Consider a process P that will execute a selective walit
construct upon which processes S and T could call

© Alan Burnsand Andy Wellings, 2001

Non-determinism and Selective Waiting

m P runs first; it is blocked on the select. S (or T) then runs
and rendezvous with P

m S (or T) runs, blocks on the call to P; P runs and executes
the select; a rendezvous takes place with S (or T)

m S (or T) runs first and blocks on the call to P; T (or S) now
runs and is also blocked on P. Finally P runs and executes
the select on which T and S are waiting

m The three possible interleavings lead to P having none,
one or two calls outstanding on the selective walit

m If P, S and T can execute in any order then, in latter case,
P should be able to choose to rendezvous with S or T — it
will not affect the programs correctness

© Alan Burnsand Andy Wellings, 2001

Non-determinism and Selective Waiting

m A similar argument applies to any queue that a
synchronisation primitive defines

m Non-deterministic scheduling implies all queues should
release processes in a non-deterministic order

m Semaphore queues are often defined in this way; entry
gueues and monitor queues are specified to be FIFO

m The rationale here is that FIFO queues prohibit
starvation but If the scheduler is non-deterministic then
starvation can occur anyway!

© Alan Burnsand Andy Wellings, 2001

Timed Entry CaIIs

m A timed entry call issues an entry call which is cancelled
If the call is not accepted within the specified period

(relative or absolute)

m Note that only one delay alternative and one entry call

can be specified.

task type Subscri ber;

© Alan Burnsand Andy Wellings, 2001

Timed Entry CaIIs |

t ask body Subscriber is
Stuarts_Nunber Nunber ;
begi n
| oop
sel ect
An_Op.Directory Enquiry("Stuart Jones",
"10 Main Street, York", Stuarts Nunber);
-- log the cost of a directory enquiry call
or
del ay 10. O;
-- phone up Stuart's parents and ask them
-- log the cost of a long distance call
end sel ect;
end | oop;

end Subscri ber:

Timed ryCaIIsIII -

task body Tel ephone Operator is
begi n
| oop
r equest

-- prepare to accept next

sel ect
accept Directory Enquiry(Person : Nane;
Addr . Address; Num : out Nunber) do
del ay 3600.0; -- take a lunch break

end Directory Enquiry; or

end sel ect: Time-out is on the start of the
rendezvous not the finish
end | oop;
© Alan Burnsand Andy Wellings, 2001

end Tel ephone_Qper at or;

SNopper

— — —
task type Shopper;
task body Shopper is
begi n

-- enter shop
sel ect
shopkeeper. Serve_G oceries(. . .)
or
del ay10. 0O;
- - nmpan about queues;
end sel ect;
-- | eave shop

end Shopper; VWARNI NG
accept Serve Goceries(. . .) do

-- go to lunch
end Serve G ovceri es;

©-AtanBurns-and-Andy-Wellings, 2001

Conditional Entry Call

m The conditional entry call allows the client to withdraw
the offer to communicate if the server task is not
prepared to accept the call immediately

m It has the same meaning as a timed entry call where the
expiry time is immediate

- assunme they are on already

sel ect
Security
el se
nul | ;
end sel ect;

p. Turn_Li ghts_On;

© Alan Burnsand Andy Wellings, 2001

Condltlonal Entry CaII II

m A conditional entry call should only be used when the
task can genuinely do other productive work, if the call
IS not accepted

m Care should be taken not to program polling, or busy-
wait, solutions unless they are explicitly required

m Note, the conditional entry call uses an else, the timed
entry call an or

© Alan Burnsand Andy Wellings, 2001

CondltlonaIEntry Call III B

m They cannot be mixed, nor can two entry call statements
be included

m A client task can not therefore walit for more than one
entry call to be serviced

m The asynchronous select statement allows some of
these restrictions to be overcome

© Alan Burnsand Andy Wellings, 2001

procedure Di ning_Phil osophers is
package Activities is
procedure Thi nk;
procedure Eat;
end Activities;
N : constant :=5; -- nunber of phil osophers

type Phil osophers Range is range 0..N-1;

task type Phil (P : Phil osophers Range);
type Phil osopher is access Phil;

task type Chopstick Control iIs
entry Pick _Up;
entry Put_Down;

end Chopstick Control;

© Alan Burnsand Andy Wellings, 2001

Dining Philosophers ||

t ask Deadl ock _Prevention is
entry Enters;
entry Leaves;

end Deadl ock Preventi on;

Chopsticks : array(Phil osophers Range) of Chopstick Control;
Phi | osophers : array(Phil osophers_Range) of Phil osopher;

package body Activities is separate;

task body Phil is separate,;

t ask body Chopstick Control is separate,;

t ask body Deadl ock _Prevention is separate;

begi n
for P in Philosophers Range | oop
Phi | osophers(P) := new Phil (P);
end | oop;

end Di ni ng_Phi | osophers;

© Alan Burnsand Andy Wellings, 2001

Dlnlng Phllosophers |11

separate (Di ning Philosophers)
t ask body Chopstick Control is
begi n
| oop
accept Pick_Up;
accept Put Down;
end | oop;
end Chopstick Control;

© Alan Burnsand Andy Wellings, 2001

Dining Philosophers |V

separate (D ning Phil osophers)
t ask body Deadl ock Prevention is
1;

Max : constant Integer := N -
People Eating : Integer range 0O..Max : = O;
begi n
| oop
sel ect
when People Eating < Max =>
accept Enters;
People Eating := People Eating + 1;
or
accept Leaves;
People Eating := People Eating - 1;
end sel ect;
end | oop;

end Deadl ock Preventi on;
© Alan Burnsand Andy Wellings, 2001

Dining PhilosophersV -

separate (D ning_Philosophers)
task body Phil is
Chop_Stickl, Chop Stick2 : Phil osophers Range;

begi n
Chop_Stickl = P;
Chop_Stick2 := (Chop_Stickl + 1) nod N,
| oop
Thi nk;

Deadl ock _Prevention. Enters;
Chopsticks(Chop Stickl). Pick Up;
Chopsticks(Chop Stick2). Pick Up;
Eat ;
Chopsticks(Chop _Stickl). Put Down;
Chopsti cks(Chop _Stick2). Put Down;
Deadl ock _Preventi on. Leaves;
end | oop;
end Phi | osopher;

© Alan Burnsand Andy Wellings, 2001

Exercises

m Modify the code so that the program terminates after
each philosopher has taken 32 meals

m Make your solution resilient to a task failing

m Replace the control tasks with protected objects

© Alan Burnsand Andy Wellings, 2001

Task States

non-eX|st|ng

J

l

created

actlvatlng

[non-existing

T

]/—{ terminated

T

[finalising

?

[waiting child actlvatlon

[

delayed

|

waiting for the end
of arendezvous

execunng

H

waiting on
an entry call

completed

|

waiting on
an accept

J waiting on select
, 2001

POSI X Message Queues

POSIX supports asynchronous, indirect message
passing through the notion of message queues

A message queue can have many readers and many
writers

Priority may be associated with the queue

Intended for communication between processes (not
threads)

Message gueues have attributes which indicate their
maximum size, the size of each message, the number of
messages currently queued etc.

An attribute object is used to set the queue attributes
when the queue Is created

© Alan Burnsand Andy Wellings, 2001

POSI X Message Queues

Message queues are given a name when they are created
To gain access to the queue, requires an ng_open name

ng_open is used to both create and open an already
existing queue (also ng_cl ose and ng_unl | nk)

Sending and receiving messages Is done via ng_send
and ng _receive

Data Is read/written from/to a character buffer.

If the buffer is full or empty, the sending/receiving process
IS blocked unless the attribute O NONBLOCK has been
set for the queue (in which case an error return is given)

If senders and receivers are waiting when a message
gueue becomes unblocked, it is not specified which one is
woken up unless the priority scheduling option Is specified

urrts and Andy Wellings, 2001

POSI X Message Queues

A process can also indicate that a signal should be sent to it

when an empty queue receives a message and there are no
waiting receivers

In this way, a process can continue executing whilst waiting
for messages to arrive or one or more message queues

It Is also possible for a process to wait for a signal to arrive;
this allows the equivalent of selective waiting to be
Implemented

If the process is multi-threaded, each thread is considered to
be a potential sender/receiver in its own right

© Alan Burnsand Andy Wellings, 2001

Robot Arm Example

t ypedef enum {xpl ane, yplane, zpl ane} di nension;

void nove arn(int D, int P);

#def i ne DEFAULT_NBYTES 4
I nt nbytes = DEFAULT_NBYTES;

#define MQ XPLANE "/ ng_xplane" -- nessage gueue nane
#define MQ YPLANE "/ ng_yplane" -- nessage gueue nane
#define MQ ZPLANE "/ ng_zpl ane" -- nessage gueue nane
#define MODE . . . /* node info for ng _open */

/* nanmes of nessage queues */

© Alan Burnsand Andy Wellings, 2001

Robot Arm Example

void controller(dinmension dim {
I nt position, setting;
ngd t ny_queue; /* nessage queue */
struct ng_attr ma; /*attributes */
char buf [DEFAULT NBYTES] ;
ssiz t |len;

position = O;
switch(dim { /* open appropriate nmessage queue */
case xpl ane:
ny _queue = M) OPEN(MQ XPLANE, O RDONLY, MODE, &a) ;
br eak;
case yplane: ny _queue = M) OPEN(MQ YPLANE, ...); break;
case zplane: ny_queue = M) OPEN(M) ZPLANE, . ..); break;
def aul t:
return;

} ’ © Alan Burnsand Andy Wellings, 2001

Robot Arm Example -

while (1) {
/* read nessage */
|l en = ng_receive(ny _queue, &buf[0], nbytes,
nul |);
setting = *((int *)(&uf[0]));
position = position + setting;

nmove_arn(dim position);
b

m Now the main program which creates the controller processes
and passes the appropriate coordinates to them:

© Alan Burnsand Andy Wellings, 2001

Robot Arm Exampl

void (*C)(dinension dim = &controller;

int main(int argc, char **argv) {
nmgd t ng_xpl ane, ng _yplane, ng_zpl ane;
struct ng _attr ma; /* queue attributes */
I nt xpid, ypid, zpid;
char buf [DEFAULT _NBYTES] ;

/* set nessage queues attributes*/
ma. ng_flags = O; /* No special behaviour */
ma. ng_naxnsg = 1;
ma. ng_nsgsi ze = nbytes;
ng_xpl ane = MQ OPEN(MQ XPLANE,
O CREAT| O EXCL, MODE, &m);

ng_yplane = .. .;
ng_zplane = .. .;

© Alan Burnsand Andy Wellings, 2001

/* Duplicate the process to get three controllers */
switch (xpid = FORK()) {
case O: controller(xplane); exit(0); /* child */
defaul t: [* parent */
switch (ypid = FORK()) {
case 0: controller(yplane); exit(0);
defaul t: [* parent */
switch (zpid = FORK()) {
case 0: controller(zplane); exit(0);

defaul t: [* parent */
br eak;

\ }
while (1) {
/[* set up buffer to transmt each co-ordinate
to the controllers, for exanple */

MQ SEND(ng_xpl ane, &buf[0], nbytes, 0);
}

Summary

m The semantics of message-based communication are
defined by three issues:
— the model of synchronisation
— the method of process naming
— the message structure

m Variations in the process synchronisation model arise from
the semantics of the send operation.

— asynchronous, synchronous or remote invocation

— Remote invocation can be made to appear syntactically similar to a
procedure call

m Process naming involves two distinct issues; direct or
Indirect, and symmetry

© Alan Burnsand Andy Wellings, 2001

Summary

Ada has remote invocation with direct asymmetric naming

Communication in Ada requires one task to define an
entry and then, within its body, accept any incoming call. A
rendezvous occurs when one task calls an entry Iin
another

Selective waiting allows a process to wait for more than
one message to arrive.

Ada’s select statement has two extra facilities: an else part
and a terminate alternative

POSIX message queues allow asynchronous, many to
many communication

© Alan Burnsand Andy Wellings, 2001

