
Real-Time and Embedded Guide

Herman Bruyninckx
K.U.Leuven, Mechanical Engineering

Leuven
Belgium

Herman.Bruyninckx@mech.kuleuven.ac.be

Real-Time and Embedded Guide
by Herman Bruyninckx

Copyright © 2000, 2001, 2002 Herman.Bruyninckx@mech.kuleuven.ac.be

This Guide covers the fundamentals of (i) real-time and embedded operating systems (focusing mostly on the
differences with general purpose operating systems such as Linux), and (ii) real-time programming. The emphasis is
on Free Software and Open Source Software examples: RTAI, RTLinux, eCos, RT-EMS, uCLinux, . . . , with a more
than proportional focus on RTAI.

This text also talks about design issues, software patterns and frameworks for real-time applications. That is, the
“high-level” aspects of these software projects. These higher levels are often poorly dealt with in publications on
real-time programming, which leads to the unfortunate situation that still too many real-time programmers useonly
the powerful but dangerously unstructured API of their RTOS. Missing the chance to develop more structured, and,
hence, more deterministic and more portable software systems.

Both the low-level RTOS primitives, and the high-level design issues, are illustrated by the real-world example of a
hard real-time core for feedback control and signal processing.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or

any later version published by the Free Software Foundation, with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

Texts. A copy of this license can be found at http://www.fsf.org/copyleft/fdl.html.

Revision History

Revision 0.01 Aug 31, 2000 Revised by: hb
Initial draft
Revision 0.02 Sep 30, 2000 Revised by: hb
Added: more info about signals
Revision 0.03 Sep 20, 2001 Revised by: hb
Removed: empty hardware, user space GUI and FAQ sections. Added: Software Patterns
Revision 0.04-build-20021211-1936 Dec., 11 2002 Revised by: hb
Extended and heavily reworked version. Preparing for pre-release.

Table of Contents
About this Guide...i

1. Purpose and scope...i
2. Feedback...i
3. Copyrights, Licenses and Trademarks.. ii
4. Acknowledgements... ii

I. Operating system basics...i

1. Real-time and embedded operating systems..1
1.1. OS responsibilities...1
1.2. Trade-offs..3
1.3. Time...5
1.4. Embedded OS..9
1.5. Operating system standards...11
1.6. Linux for real-time and embedded..14

2. Task management and scheduling..17
2.1. Processes and threads..17
2.2. POSIX thread management...18
2.3. Linux tasks and tasklets...20
2.4. Scheduling...21
2.5. Priority-based scheduling..22
2.6. Priority spaces...24
2.7. Linux scheduler...24
2.8. Linux real-time scheduling..25

3. Interrupts..27
3.1. Introduction...27
3.2. Interrupt hardware...27
3.3. Interrupt software..29
3.4. ISR, DSR and ASR..32

4. IPC: synchronization..35
4.1. IPC terminology..35
4.2. Race conditions and critical sections...37
4.3. Signals...39
4.4. Exceptions...40
4.5. Atomic operations...41
4.6. Semaphore, mutex, spinlock, read/write lock, barrier...42
4.7. Condition variable for synchronization within mutex...50
4.8. Priority inversion...53
4.9. Priority inheritance and priority ceiling..53
4.10. Lock-free synchronization for data exchange...55

5. IPC: Data exchange..57
5.1. Shared memory..57
5.2. FIFOs...58
5.3. Messages and mailboxes...58
5.4. Circular buffers..60
5.5. Swinging buffers..61
5.6. Remote Procedure Calls..61

iii

6. Memory management..63
6.1. Terminology..63
6.2. Shared memory in Linux...64

7. Real-time device drivers...68
7.1. Mechanism and policy...68
7.2. Device drivers in UNIX...68
7.3. Complex device drivers...69
7.4. Comedi..70
7.5. Real-time serial line...72
7.6. Real-time parallel port...72
7.7. Real-time networking..72

8. RTAI: the features..74
8.1. Overview...74
8.2. Task management and scheduling...74
8.3. Interrupts and traps..83
8.4. IPC: synchronization...84
8.5. IPC: data exchange..88
8.6. Memory management..97
8.7. Real-time device drivers..97
8.8. /proc interface...97
8.9. RTAI loadable modules...97
8.10. Specific features...98

9. Linux-based real-time and embedded operating systems..100
9.1. Introduction...100
9.2. RTLinux: Real-Time Linux...100
9.3. RTAI: the Real-Time Application Interface..102
9.4. uCLinux...103
9.5. Etlinux...103

10. Non-Linux real-time operating systems...104
10.1. The Adeos nano-kernel..104
10.2. eCos...104
10.3. RT-EMS...105
10.4. Jaluna...105
10.5. Wonka + Oswald...105
10.6. FIASCO and DROPS..105
10.7. Real-time micro-kernel..106
10.8. KISS Realtime Kernel...106

II. RTOS implementation..107

11. RTAI: the implementation..108
11.1. The RTAI source tree...108
11.2. Hardware abstraction layer..110
11.3. Linux compatibility layer..115
11.4. RTOS core...116
11.5. LX/RT..118
11.6. Making your own extensions to LX/RT..125
11.7. Module implementations...125

12. C++ and real-time..126

iv

12.1. C and C++...126
12.2. C++ in the Linux RTOSs...127

13. Cross compilation, debugging and tracing...129
13.1. Cross development..129
13.2. Debugging...129
13.3. Linux Trace Toolkit...129

III. Design ...131

14. Design principles..132
14.1. Structure and functionality..132
14.2. Loose coupling..133
14.3. Mediator..134
14.4. Components...134
14.5. Architecture...136

15. Patterns and Frameworks...137
15.1. Definitions...137
15.2. Monitor..137
15.3. Producer-Consumer...144
15.4. Events..147
15.5. State Machines...150
15.6. Execution Engine...152
15.7. Distributed IPC..153
15.8. Transactions...153

16. Design example: “control”...154
16.1. What is control?...154
16.2. Functional components..155
16.3. Infrastructural components..156
16.4. Design..157
16.5. Implementation..158

IV. Tips and tricks ...159

17. Tips and tricks..160
17.1. Tasks..160
17.2. Signals...160
17.3. Condition variables..161
17.4. Locks...161
17.5. Interrupts..162
17.6. Memory...162
17.7. Design..163
17.8. Programming...163

Bibliography ...165

v

List of Figures
4-1. Priority inversion..53
15-1. General structure of a state...150
16-1. Structure of generic control application...156

vi

About this Guide

1. Purpose and scope

This Guide consist of several parts: Part 1 provides atop-down overviewof real-time and embedded
operating systems, up to a more detailed description of the features and implementation of a “typical”
RTOS, i.e., RTAI; Part 2 gives more details about implementation of real-time functionality. Part 3
introduces some time-proven design solutions to common problems in real-time programming, as well as
a list of design and programming hints, to help readers gain time and reliability in their designs and
implementations.

The top-down view on real-time and embedded operating systems is complementary to the typical
bottom-up“show-me-the-code” and “bazaar” approach of development and documentation writing in the
free software world. Not that there is something wrong with this approach, but this Guide’s goal is
different: it wants to make it easier for newcomers to grasp the basic concepts and techniques behind
real-time operating systems, and to help them see the forest for the trees, without having to go and read
the code in a ton of different files. Nevertheless: the source code of the presented projects remains the
onlycomplete and up-to-date documentation.

The document tries to be as independent as possible of any particular implementation or project: so, the
concepts introduced in the theoretical part of the text are not necessarily available in each and every
concrete example given in the text. Moreover, this Guide is not meant to be an exhaustive textbook on
real-time programming, so the reader is urged to go and read some operating system textbooks, and other
“low-level” books such as the Linux Device Drivers (http://www.xml.com/ldd/chapter/book/index.html)
book, for missing details. The reader should be familiar with the basics of operating systems, and be able
to read C code.

This guide first explains the general principles behind real-time and embedded operating systems. These
principles are not too different from general operating systems such as Linux or Microsoft NT, but the
emphasis lies onmaximum determinism, and not onmaximum average throughput. Because determinism
is often compromised in “high-level” programming language and operating system constructs, real-time
designers are confronted more directly than “normal” application developers with concepts, timing,
memory, and efficiency at the level of the operating system.

Another primary goal of this Guide is educational: it could over time evolve into classroom notes,
featuring demos, annotated code, more graphical illustrations, and more examples of good design and
code. Whether it will reach these educational goals depends onyour contributions, as critical reader of
the text, looking out for opportunities to help improve the free documentation available on your favourite
free software project. . .

i

About this Guide

2. Feedback

This Guide still has a number of paragraphs marked with“TODO” , signalling parts that are still to be
filled in with more details, or where the current treatment needs more thought and/or information.

Please direct all questions, additions or suggestions for changes to
<Herman.Bruyninckx@mech.kuleuven.ac.be >.

3. Copyrights, Licenses and Trademarks

Permission is granted to copy, distribute and/or modify this document under the terms of theGNU Free
Documentation License(FDL). Version 1.1 or any later version published by the Free Software
Foundation. A copy of this license can be found here (http://www.fsf.org/copyleft/fdl.html).

Linux is a trademark of Linus Torvalds. RTLinux is a trademark of VJY Associates LLC of RTLinux’s
creators Victor Yodaiken (http://www.linuxdevices.com/articles/AT2238037882.html) and Michael
Barabanov; they released RTLinux under the GPL license (http://www.fsf.org/copyleft/gpl.html). RTAI
was first released under the LGPL (http://www.fsf.org/copyleft/lesser.html) license by Paolo
Mantegazza, but, later, core components got a GPL license. eCos is released under the Red Hat eCos
Public License (http://www.redhat.com/embedded/technologies/ecos/ecoslicense.html), but also got the
GPL license later on. Real Time Scheduler by Montavista Software, Inc. (http://www.mvista.com) is
released under the GPL license. RT-EMS by On-line Applications Research (http://www.rtems.com/)
(OAR) is released under the GPL license. KURT from the University of Kansas Center for Research, Inc.
(http://www.ittc.ukans.edu/kurt/) is released under the GPL license. uCLinux from the Embedded
Linux/Microcontroller Project (http://www.uclinux.org) is released under the GPL license. The Linux
Trace Toolkit (http://www.opersys.com/LTT/) is released under the GPL license by Karim Yaghmour.
David Schleef released Comedi (http://stm.lbl.gov/comedi/) under the GPL license. Karim Yaghmour
and Philippe Gerum released Adeos (http://www.opersys.com/adeos/) under the GPL license.

4. Acknowledgements

Large parts of this document were written with financial support from the FlemishFonds voor
Wetenschappelijk Onderzoek (FWO), and theKatholieke Universiteit Leuven, Belgium. The hospitality
offered by Prof. Henrik Christensen ofKungliga Tekniska Högskolan (KTH)in Stockholm, where other
parts of this document were written, is gratefully acknowledged.

The style for this Guide was originally copied from the LDP Author Guide
(http://www.linuxdoc.org/LDP/LDP-Author-Guide/) written by Mark F. Komarinski and Jorge Godoy. It
used the ldp.dsl SGML stylesheet from the Linux Documentation Project (http://www.linuxdoc.org). The
current style isDocBook.

ii

About this Guide

Linux and the indispensable GNU libraries and tools are wonderful gifts from Linus Torvalds, the people
at the Free Software Foundation (http://www.fsf.org), and thousands of others. While, in general,
GNU/Linuxis the appropriate name to denote the popular free software operating system, this text
usually talks about Linux, because thekernelis the topic of this document. The text also uses the term
free softwareas a general name for software released under licences approved by both the Free Software
Foundation (http://www.fsf.org/philosophy/license-list.html) and the Open Source Initiative
(http://www.opensource.org/licenses/).

The RTLinux (http://www.rtlinux.com) real-time extensions to Linux were originally created by Victor
Yodaiken and Michael Barabanov. Paolo Mantegazza created the Real Time Application Interface
(http://www.rtai.org) (RTAI) real-time extensions. Karim Yaghmour come up with the design of an
alternative approach towards building a real-time nano-kernel underneath Linux (or any operating system
kernel for that matter); this design was implemented in the Adeos project by Philippe Gerum. This text’s
discussion on real-time device drivers is much inspired by David Schleef’s design for Comedi
(http://stm.lbl.gov/comedi/).

Klaas Gadeyne and Patrice Kadionik gave valuable feedback on the first draft. Error feedback was also
received from Werner Spielmann, Gregory Matus, and Oscar Esteban. Paolo Mantegazza and Philippe
Gerum helped to clarify some RTAI internals. Many thanks also go to Peter Soetens of the Orocos
project (http://www.orocos.org), and the many critical students and summer interns whose questions
stimulated me to look deeper into all those things that I thought I understood but didn’t.

iii

I. Operating system basics
This Part introduces the concepts and primitives with which general purpose as well as real-time and
embedded operating systems are built. The text dicusses the applicability and appropriateness of all these
concepts in real-time and embedded operating systems.

(TODO: more annotated code examples.)

Chapter 1. Real-time and embedded operating
systems

This Chapter discusses the basics of operating systems in general, and real-time and embedded operating
systems in particular. (This text uses the abbreviations OS, RTOS and EOS, respectively.) This
discussion makes clear why standard Linux doesn’t qualify as a real-time OS, nor as an embedded OS.

Real-time and embedded operating systems are in most respects similar to general purpose operating
systems: they provide the interface between application programs and the system hardware, and they rely
on basically the same set of programming primitives and concepts. But general purpose operating
systems make different trade-offs inapplyingthese primitives, because they have different goals.

1.1. OS responsibilities

This Section discusses the basic responsibilities of the operating system that are relevant for this text: (i)
task management and scheduling, (ii) (deferred) interrupt servicing, (iii) inter-process communication
and synchronization, and (iv) memory management. General-purpose operating systems also have other
responsibilities, which are beyond the horizon of areal-timeoperating system: file systems and file
management, (graphical) user interaction, communication protocol stacks, disk IO, to name a few. More
details about the relevant responsibilities are given in the following Chapters.

1.1.1. Task management and scheduling

Task (or “process”, or “thread”) managementis a primary job of the operating system: tasks must be
created and deleted while the system is running; tasks can change their priority levels, their timing
constraints, their memory needs; etcetera. Task management for an RTOS is a bit more dangerous than
for a general purpose OS: if a real-time task is created, ithasto get the memory it needs without delay,
and that memoryhasto be locked in main memory in order to avoid access latencies due to swapping;
changing run-time priorities influences the run-time behaviour of the whole system and hence also the
predictability which is so important for an RTOS. So, dynamic process management is a potential
headache for an RTOS.Chapter 2gives more details.

In general, multiple tasks will be active at the same time, and the OS is responsible for sharing the
available resources (CPU time, memory, etc.) over the tasks. The CPU is one of the important resources,
and deciding how to share the CPU over the tasks is called “scheduling”.

The general trade-off made in scheduling algorithms is between, on the one hand, thesimplicity(and
hence efficiency) of the algorithm, and, on the other hand, itsoptimality. (Note that various optimality
criterions exist!) Algorithms that want to be globally optimal are usually quite complex, and/or require
knowledge about a large number of task parameters, that are often not straightforward to find on line
(e.g., the duration of the next run of a specific task; the time instants when sleeping tasks will become

1

Chapter 1. Real-time and embedded operating systems

ready to run; etc.). Real-time and embedded operating systems favour simple scheduling algorithms,
because these take a small and deterministic amount of computing time, and require little memory
footprint for their code.

General purpose and real-time operating systems differ considerably in their scheduling algorithms.
They use the same basic principles, but apply them differently because they have to satisfy different
performance criterions. A general purpose OS aims at maximumaveragethroughput, a real-time OS
aims atdeterministicbehaviour, and an embedded OS wants to keep memory footprint and power
consumption low. A large variety of “real-time” scheduling algorithms exists, but some are standard in
most real-time operating systems (seeSection 2.5): static priority scheduling, earliest deadline first
(EDF), andrate-monotonic scheduling.

1.1.2. Interrupt servicing

An operating system must not only be able to schedule tasks according to a deterministic algorithm, but
it also has to service peripheral hardware, such as timers, motors, sensors, communication devices, disks,
etc. All of those can request the attention of the OSasynchronously, i.e., at the time thattheywant to use
the OS services, the OS has to make sure it is ready to service the requests. Such a request for attention is
often signaled by means of aninterrupt. There are two kinds of interrupts:

• Hardware interrupt.The peripheral device can put a bit on a particular hardware channel that triggers
the processor(s) on which the OS runs, to signal that the device needs servicing. The result of this
trigger is that the processor saves its current state, and jumps to an address in its memory space, that
has been connected to the hardware interrupt at initialisation time.

• Software interrupt.Many processors have built-in software instructions with which the effect of an
hardware interrupt can be generated in software. The result of a software interrupt is also a triggering
of the processor, so that it jumps to a pre-specified address.

The operating system is, in principle, not involved in the execution of the code triggered by the hardware
interrupt: this is taken care of by the CPU without software interference. The OS, however, does have
influence on (i) connecting a memory address to every interrupt line, and (ii) what has to be done
immediately afterthe interrupt has been serviced, i.e., how“deferred interrupt servicing”is to be
handled. Obviously, real-time operating systems have a specific approach towards working with
interrupts, because they are a primary means to guarantee that tasks gets serviced deterministically.
Chapter 3gives more details.

1.1.3. Communication and synchronization

A third responsibility of an OS is commonly known under the name ofInter-Process Communication
(IPC). (“Process” is, in this context, just another name for “task”.) The general name IPC collects a large
set of programming primitives that the operating system makes available to tasks that need to exchange

2

Chapter 1. Real-time and embedded operating systems

information with other tasks, or synchronize their actions. Again, an RTOS has to make sure that this
communication and synchronization take place in a deterministic way.Chapter 4gives more details.

Besides communication and synchronization with other tasks that run on the same computer, some tasks
also need to talk to other computers, or to peripheral hardware (such as analog input or output cards).
This involves some peripheral hardware, such as a serial line or a network, and special purpose device
drivers (Chapter 7).

1.1.4. Memory management

A fourth responsibility of the OS ismemory management: the different tasks in the system all require
part of the available memory, often to be placed on specified hardware addresses (for memory-mapped
IO). The job of the OS then is (i) to give each task the memory it needs (memory allocation), (ii) to map
the real memory onto the address ranges used in the different tasks (memory mapping), and (iii) to take
the appropriate action when a task uses memory that it has not allocated. (Common causes are:
unconnected pointers and array indexing beyond the bounds of the array.) This is the so-called
memory protectionfeature of the OS. Of course, what exactly the “appropriate action” should be depends
on the application; often it boils down to the simplest solution: killing the task and notifying the user.
Chapter 6gives more details.

1.2. Trade-offs

This Section discusses some of the trade-offs that (both, general purpose, and real-time and embedded)
operating system designers commonly make.

• Kernel space versus user space versus real-time space.

Most modern processors allow programs to run in two different hardware protection levels. Linux calls
these two levelskernel spaceanduser space. The latter have more protection against erroneous
accesses to physical memory of I/O devices, but access most of the hardware with larger latencies than
kernels space tasks. The real-time Linux variants add a third layer, thereal-time space. This is in fact
nothing else but a part of kernel space used, but used in a particular way.

• Monolithic kernel versus micro-kernel.

A monolithic kernel has al OS services (including device drivers, network stacks, file systems, etc.)
running within theprivileged modeof the processor. (This doesn’t mean that the whole kernel is one
single C file!) A micro-kernel, on the other hand, uses the privileged mode only for really core
services (task management and scheduling, interprocess communication, interrupt handling, and
memory management), and has most of the device drivers and OS services running as “normal” tasks.
The trade-off between both is as follows: a monolithic kernel is easier to make more efficient (because
OS services can run completely without switches from privileged to non-privileged mode), but a

3

Chapter 1. Real-time and embedded operating systems

micro-kernel is more difficult to crash (an error in a device driver that doesn’t run in privileged mode
is less likely to cause a system halt than an error occurring in privileged mode).

UNIX, Linux and Microsoft NT have monolithic kernels; QNX, FIASCO, VxWorks, and GNU/Hurd
have micro-kernels. Linux, as well as some commercial UNIX systems, allow to dynamically or
statically change the number of services in the kernel: extra functionality is added by loading a
module. But the loaded functionality becomes part of the monolithic kernel. A minimal Linux kernel
(which includes memory management, task switching and timer services) is some hundreds of
kilobytes big; this approaches the footprint for embedded systems. However, more and more
embedded systems have footprints of more than a megabyte, because they also require network stacks
and various communication functionalities.

• Pre-emptable kernel or not.

Linux was originally a non-pre-emptable kernel: a kernel space task cannot be interrupted by other
kernel space tasks, or by user space tasks. The kernel is “locked” as long as one kernel function is
executing. This usage of locks (Section 4.6) makes the design of the kernel simpler, but introduces
indeterministic latencies which are not tolerable in an RTOS.

In the 2.5 kernel series, Linux gets a more and more fine-grained kernel locking mechanism,andhas
become to a large extent pre-emptable. (SeeSection 2.8.) Linux still has one “Big Kernel
Lock (BKL),” called kernel_flag in the Linux source code, but now independent subsystems
(networking, disk IO, etc.) get their own sets of locks.

• Scalability.

Finer-grained locking is good forscalability, but usually an overhead for single-CPU systems.
Solarisis an example of a very fine-grained and scalable operating system, which performs worse on
“low-end” PCs. The Linux Scalability Effort (http://sourceforge.net/projects/lse/) project has more
information about the ongoing activities in this area, as far as the Linux kernel is concerned.

Scalability ismuch lessof an issue inreal-timeapplications, because the goals are so differen: the
desire behind scalable systems is to divide a large work load transparantly over a number of available
CPUs, while the desire behind real-time systems is have everything controlled in a strictly
deterministic way.

• Memory management versus shared memory.

Virtual memory and dynamic allocation and de-allocation of memory pages are amongst the most
commonly used memory management services of a general purpose operating system. However, this
memory management induces overhead,andsome simpler processors have no support for this
memory management. On these processors (which power an enormous number of embedded
systems!), all tasks share the same memory space, such that developers must take care of the proper

4

Chapter 1. Real-time and embedded operating systems

use of that memory. Also some real-time kernels (such as RTLinux) have all their tasks share the same
address space (even if the processor supports memory management), because this allows more
efficient code.

• Dedicated versus general.

For many applications, it is worthwhile not to use a commercially or freely available operating system,
but write one that is optimised for the task at hand. Examples are the operating systems for mobile
phones, or Personal Digital Assistants. Standard operating systems would be too big, and they don’t
have the specific signal processing support (speech and handwriting recognition) that is typical for
these applications. Some applications even don’t need an operating system at all. (For example, a
simple vending machine.) The trade-offs here are: cost of development and decreased portability,
against cost of smaller and cheaper embedded systems.

• Operating system versus language runtime.

Application programs make use of “lower-level” primitives to build their functionality. This
functionality can be offered by the operating system (via system calls), or by a programming language
(via language primitives and libraries). Languages such as C++, Ada and Java offer lots of
functionality this way: memory management, threading, task synchronization, exception handling, etc.
This functionality is collected in a so-calledruntime. The advantages of using a runtime are: its
interface is portable over different operating systems, and it offers ready-to-use and/or safe solutions
to common problems. The disadvantages are that a runtime is in general “heavy”, not deterministic in
execution time, and not very configurable. These disadvantages are important in real-time and
embedded contexts.

1.3. Time

Not surprisingly, “time” plays an important role in the design and use of a real-time operating system.
This Section introduces some relevant terminology and definitions.

1.3.1. Real time

Probably you’ll find as many interpretations of the meaning ofreal timeas you find publications on this
topic. One simple definition is:

A real-time operating system is able to execute all of its tasks without violatingspecifiedtiming constraints.

Another definition is:

Times at which tasks will execute can bepredicted deterministicallyon the basis of knowledge about the
system’s hardware and software.

5

Chapter 1. Real-time and embedded operating systems

That means, if the hardwarecando the job, the RTOS softwarewill do the job deterministically. (This
determinism must be softened a bit, because of the “stochastic” nature of the inevitable scheduling
“jitter”, seeSection 1.3.2.)

One often makes distinction between “soft real time” and “hard real time”. “Soft” indicates that not
meeting the specified timing constraints is not a disaster, while itis a disaster for a hard real-time system.
For example: playing an audio or video file is soft real time, because few people will notice when a
sample comes a fraction of a second too late. Steering a space probe, on the other hand, requires hard
real time, because the rocket moves with a velocity of several kilometers per second such that small
delays in the steering signals add up to significant disturbances in the orbit which can cause erroneous
atmosphere entry situations. Precision mills and high-accuracy radiation or surgical robots are other
examples that require hard real-time: moving the mill or the robot one tenth of a millimeter too far due to
timing errors can cause the rejection of produced parts, or the death of patients.

Practically speaking, the distinction between soft and hard real time is often (implicitly and mistakenly)
related to the time scales involved in the system: in this reasoning, soft real-time tasks must typically be
scheduled with (coarser than)milli-secondsaccuracy, and hard real-time tasks withmicro-seconds
accuracy. But this implicit assumption has many exceptions! For example, a one-dollar 4 bit processor
controlling a traffic light can be more hard real time (in the sense of “deterministic”) than a 5000 dollar
Athlon-based e-commerce server.

1.3.2. Latency

The latency(or tardiness) of a task is the difference between the instant of time on which the task should
have started (or finished) and the instant of time on which it actually did. (Or, in different contexts, the
time between thegenerationof an event, and itsperception.) Latencies are due to several factors: (i) the
timing properties of processor, bus, memory (on-chip cache, off-chip RAM and ROM) and peripheral
devices, (ii) the scheduling properties of the OS, (iii) thepre-emptivenessof its kernel, (iv) the load on
the system (i.e., the number of tasks that want to be scheduled concurrently), and (v) thecontext switch
time. This latter is the time the processor needs to save the data of the currently running task (e.g.,
registers, stack, and instruction pointer), and to replace it with the local data of the newly scheduled task.
Few of these factors are constant over time, and the statistical distribution of the latencies in the
subsequent schedulings of tasks is called thejitter.

This is a far from exhaustive list of kernel activities that introduceindeterminisminto the timing
behaviour of a (general purpose) operating system:

• Accessing the hard disk.Because the alignment of sectors, and the distance between the tracks needed
by a given task are variable, that task cannot be sure about how long it will take to access the data it
needs. In addition, hard disks are mechanical devices, whose time scales are much longer than purely
electronic devices (such as RAM memory); and accesses to the hard disk arebufferedin order to
reduceaveragedisk access time.

• Accessing a network.Especially with the TCP/IP protocol, that re-sends packets in case of
transmission errors.

6

Chapter 1. Real-time and embedded operating systems

• Low-resolution timing.SeeSection 1.3.4.

• Another delay related to time keeping is the fact thatprogramming the timer chipoften generates
unpredictable delays. This delay is of the order of microseconds, so only important for really
high-accuracy timing.

• Non-real-time device drivers.Device drivers are often sloppy about their time budget: they use busy
waiting or roughly estimated sleeping periods, instead of timer interrupts, or lock resources longer
than strictly necessary, or run in user space with the corresponding timing unpredictability.

• Memory allocation and management.After a task has asked for more memory (e.g., through amalloc

function call), the time that the memory allocation task needs to fulfill the request is unpredictable.
Especially when the allocated memory has become strongly fragmented and no contiguous block of
memory can be allocated. Moreover, a general purpose operating system swaps code and data out of
the physical memory when the total memory requirements of all tasks is larger than the available
physical memory.

• proc file system.This is the very rich (non-graphical) user interface to what is going on inside the
Linux kernel: all this information is offered to user tasks in the form of “files” in this (virtual!) file
system. However, accessing information in this file system implies significant overhead in some cases,
because the files are virtual: they are “created” only when needed.

The exactmagnitudeof all the above-mentioned time delays changes very strongly between different
hardware. Hence, it is not just the operating system software that makes the difference. For some
applications, the context switch time is most important (e.g., for sampling audio signals at 44kHz), while
other applications require high computational performance, at lower scheduling frequencies (e.g., robot
motion control at 1kHz). But again, some tasks, such as speech processing, require both.

1.3.3. Timing constraints

Different applications have different timing constraints, which, ideally, the RTOS should be able to
satisfy. However, there still doesn’t exist general and guaranteed scheduler algorithms (Chapter 2) that
are able to satisfy all the following classes of time constraints:

• Deadline: a task has to be completed before a given instant in time, but when exactly the task is
performed during the time interval between now and the deadline is not important for the quality of
the final result. For example: the processor must fill the buffer of a sound card before that buffer
empties; the voltage on an output port must reach a given level before another peripheral device comes
and reads that value.

• Zero execution time: the task must be performed in a time period that is zero in the ideal case. For
example: digital control theory assumes that taking a measurement, caculating the control action, and
sending it out to a peripheral device all take place instantaneously.

• Quality of Service(QoS): the task must get a fixed amount of “service” per time unit. (“Service” often
means “CPU time”, but could also be “memory pages”, “network bandwidth” or “disk access
bandwidth”.) This is important for applications such as multimedia (in order to read or write streaming

7

Chapter 1. Real-time and embedded operating systems

audio or video data to the multimedia devices), or network servers (both in order to guarantee a
minimum service as in order to avoid “denial of service” attacks).

The QoS is often specified by means of a small number of parameters: “s” seconds of service in each
time frame of “t” seconds. A specification of 5 micro-seconds per 20 micro-seconds is a much more
real-time QoS than a specification of 5 seconds per 20 seconds, although, on the average, both result in
the same amount of time allotted to the task.

The major problem is that the scheduler needs complete knowledge about how long each task is going to
take in the near future, and when it will become ready to run. This information is practically impossible
to get, and even when it is available, calculation of the optimal scheduling plan is a search problem with
high complexity, and hence high cost in time.

Different tasks compete for the same resources: processors, network, memory, disks, . . . Much more
than in the general purpose OS case, programmers of real-time systems have to take into account
worst-casescenarios: if various taskscouldbe needing a service, then sooner or later theywill want it at
the same time.

1.3.4. Time data structures

The smallest time slice used in most general purpose operating system is longer than 1 millisecond. Not
because the processors are not fast enough to do significant amounts of work in that time slice, but
because 32 bit machines have only 2^32 time slices before their timing counter runs over. At 1000 ticks
per second, this corresponds to less than 50 days, which is certainly insufficient for servers and
embedded systems. Linux uses a scheduling time slice (“jiffie”) of 10 milliseconds on most processors.
(1 milliseconds on Alpha, which has 64 bit counters.)

The timing constraints of real-time tasks are often expressed with much higher resolutions than those of
the general purpose scheduler, i.e., (less than) microseconds instead of milliseconds. Hence, the data
structure in which the time is kept should be adapted to this higher rate, in order to avoid overflow. For
example, the real-time Linux variants (Chapter 9) use ahigh-resolution time data structurethat counts
time innanoseconds. A 64 bit integer should do the job in that case, but 32 bits could be too dangerous.
(A 32 bit counter overflows after about 4 seconds when counting at a 1 nanosecond rate!) Note that not
all compilers can deal with 64 bit integers, such that some assembly coding may be required in some
cases.

POSIX has standardized “clocks” and “timers” Thetimespec is a data structure that keeps the time
in two separate seconds and nanoseconds sub-structures (include/linux/time.h of the Linux source
tree):

typedef long __kernel_time_t; // include/asm/posix_types.h
typedef __kernel_time_t time_t;

struct timespec {

8

Chapter 1. Real-time and embedded operating systems

time_t tv_sec; /* seconds, */
long tv_nsec; /* nanoseconds */

};

Thetimespec data structure uses 64 bits, but the separation between seconds and nanoseconds is an
inefficient way of representing time: there are only approximately 2^30 = 10^9 nanoseconds in one
second. So, a little more than two bits of the nanoseconds field are not used. This means that, at each and
every addition of a time increment, the software has to check whether the boundary of 1 second hasn’t
been reached, such that the second field has to be updated. This is more complicated than just having a
64 bit counter that can keep on count without having to check.

1.4. Embedded OS

The concepts introduced in the previous sections apply of course also to embedded operating systems
(“EOS”). Embedded operating systems, however, have some features that distinguish them from
real-time and general purpose operating systems. But the definition of an “embedded operating system”
is probably even more ambiguous than that of an RTOS, and they come in a zillion different forms. But
you’ll recognize one when you see one, although the boundary between general purpose operating
systems and embedded operating systems is not sharp, and is even becoming more blurred all the time.

Embedded systems are being installed in tremendous quantities (an order of magnitude more than
desktop PCs!): they control lots of functions in modern cars; they show up in household appliances and
toys; they control vital medical instrumentation; they make remote controls and GPS (Global Position
Systems) work; they make your portable phones work; etc.

The simplest classification between different kinds of embedded operating systems is as follows:

• High-end embedded systems.These systems are often down-sized derivatives of an existing general
purpose OS, but with much of the “balast” removed. Linux has given rise to a large set of such
derivatives, because of its highly modular structure and the availability of source code. Examples are:
routers, switches, personal digital assistants, set top boxes.

• Deeply embedded OS.These OSs must be reallyverysmall, and need only a handful of basic
functions. Therefore, they are mostly designed from the ground up for a particular application. Two
typical functions deeply embedded systems (used to) lack are high-performance graphical user
interfacing or network communication. Examples are: automotive controls, digital cameras, portable
phones. But also these systems get more graphics and networking capabilities. . .

The most important features that make an OS into an embedded OS are:

• Small footprint. Designers are continuously trying to put more computing power in smaller housings,
using cheaper CPUs, with on-board digital and/or analog IO; and they want to integrate these CPUs in
all kinds of small objects. A small embedded OS also often uses only a couple of kilobytes of RAM
and ROM memory.

9

Chapter 1. Real-time and embedded operating systems

• The embedded system should run for years without manual intervention. This means that the hardware
and the software should never fail. Hence, the system should preferably have no mechanical parts,
such as floppy drives or hard disks. Not only because mechanical parts are more sensitive to failures,
but they also take up more space, need more energy, take longer to communicate with, and have more
complex drivers (e.g., due to motion control of the mechanical parts).

• Many embedded systems have to control devices that can be dangerous if they don’t work exactly as
designed. Therefore, the status of these devices has to be checked regularly. The embedded computer
system itself, however, is one of these critical devices, and has to be checked too! Hence, one often
seeshardware watchdogsincluded in embedded systems. These watchdogs are usually retriggerable
monostable timers attached to the processor’s reset input. The operating system checks within
specified intervals whether everything is working as desired, for example by examining the contents of
status registers. It then resets the watchdog. So, if the OS doesn’t succeed in resetting the timer, that
means that the system is not functioning properly and the timer goes off, forcing the processor to reset.

If something went wrong but the OS is still working (e.g., a memory protection error in one of the
tasks) the OS can activate asoftware watchdog, which is nothing else but an interrupt that schedules a
service routine to handle the error. One important job of the software watchdog could be to generate a
core dump, to be used for analysis of what situations led to the crash.

• A long autonomy also implies using as little power as possible: embedded systems often have to live a
long time on batteries (e.g., mobile phones), or are part of a larger system with very limited power
resources (e.g., satellites).

• If the system does fail despite its designed robustness (e.g., caused by a memory protection fault,
Section 1.1.4), there is usually no user around to take the appropriate actions. Hence, the system itself
should reboot autonomously, in a “safe” state, and “instantly” if it is supposed to control other critical
devices. Compare this to the booting of your desktop computer, which needs a minute or more before
it can be used, and always comes up in the same default state. . .

• It should be as cheap as possible. Embedded systems are often produced in quantities of several
thousands or even millions. Decreasing the unit price even a little bit boils down to enormous savings.

• Some embedded systems are not physically reachable anymore after they have been started (e.g.,
launched satellites) in order to add software updates. However, more and more of them can still be
accessed remotely. Therefore, they should supportdynamic linking: object code that did not exist at
the time of start is uploaded to the system, and linked in the running OS without stopping it.

Some applications require all features of embeddedand real-time operating systems. The best known
examples are mobile phones and (speech-operated) handheld computers (“PDA”s): they must be small,
consume little power, and yet be able to execute advanced signal processing algorithms, while taking up
as little space as possible.

The above-mentioned arguments led embedded OS developers to design systems with the absolute
minimum of software and hardware. Roughly speaking, developers of general purpose and real-time
operating systems approach their clients with a “Hey, look how much we can do!” marketing strategy;
while EOS developers say “Hey, look how little we need to do what you want!”. Hence, embedded
systems often come without a memory management unit (MMU), multi-tasking, a networking “stack”,

10

Chapter 1. Real-time and embedded operating systems

or file systems. The extreme is one single monolithic program on the bare processor, thus completely
eliminating the need for any operating system at all.

Taking out more and more features of a general purpose operating system makes its footprint smaller and
its predictability higher. On the other hand, adding more features to an EOS makes it look like a general
purpose OS. Most current RTOS and EOS operating systems are expanding their ranges of application,
and cover more of the full “feature spectrum.”

1.5. Operating system standards

Real-time and embedded systems are not a user product in themselves, but serve as platforms on which
to build applications. As for any other software platform, the availability of standards facilitates the job
of programmers enormously, because it makes it easier, cheaper and faster to develop new applications,
and to port an existing application to new hardware. In the world of real-time and embedded systems,
standardization is not a burning issue, because many projects in this area have unique requirements, need
unique extensions to already existing products, don’t need frequent updates by different people, and are
seldom visible to end-users. All these “features” do not really help in forcing developers to use
standards. . . (They do like standardtoolsthough, which is one reason for the popularity of the Free
Software GNU tools.)

This Section lists some standardization efforts that exist in the real-time and embedded world.

1.5.1. POSIX

POSIX (“Portable Operating Systems Interface”, a name that Richard Stallman came up with) is a
standard for the function calls (theApplication Programming Interface, API) of UNIX-like general
purpose operating systems. POSIX has some specifications on real-time primitives too. Its definition of
real time is quite loose:

The ability of the operating system to provide a required level of service in a bounded response time.

The standard is managed by the Portable Application Standards Committee (http://www.pasc.org/)
(PASC) of the Institute for Electrical and Electronic Engineers (http://www.ieee.org) (IEEE), and is not
freely available. There is an extensiveRationaledocument, that explains the reasons behind the choices
that the POSIX committees made, as well as lots of other interesting remarks. That document can be
found here (http://www.opengroup.org/onlinepubs/007904975/xrat/contents.html).

The POSIX components relevant to real-time are: 1003.1b (real-time), 1003.1d (additional real-time
extensions), 1003.1j (advanced real-time extensions). See this link
(http://www.opengroup.org/onlinepubs/007904975/idx/realtime.html) or here (IEEE Std 1003.1-2001)
(http://www.unix-systems.org/version3/ieee_std.html) for more details. These standards are often also
denoted as ANSI/IEEE Std. 1003.1b, etcetera.

POSIX also defines four so-calledprofiles for real-time systems:

11

Chapter 1. Real-time and embedded operating systems

• PSE51 (Minimal Realtime System Profile). This profile offers the basic set of functionality for a single
process, deeply embedded system, such as for the unattended control of special I/O devices. Neither
user interaction nor a file system (mass storage) is required. The system runs one single POSIX
process, that can run multiple POSIX threads. These threads can use POSIX message passing. The
process itself can use this message passing to communicate with other PSE5X-conformant systems
(e.g., multiple CPUs on a common backplane, each running an independent PSE51 system). The
hardware model for this profile assumes a single processor with its memory, but no memory
management unit (MMU) or common I/O devices (serial line, ethernet card, etc.) are required.

• PSE52 (Realtime Controller System Profile). This profile is the PSE51 profile, plus support for a file
system (possibly implemented as a RAM disk!) andasynchronousI/O.

• PSE53 (Dedicated Realtime System Profile). This profile is the PSE51 profile, plus support for
multiple processes, but minus the file system support of the PSE52 profile. The hardware can have a
memory management unit.

• PSE54 (Multi-Purpose Realtime System Profile). This is the superset of the other profiles and
essentially consists of the entire POSIX.1, POSIX.1b, POSIX.1c and.or POSIX.5b standards. Not all
processes or threads must be real-time. Interactive user processes are allowed on a PSE54 system, so
all of POSIX.2 and POSIX.2a are also included. The hardware model for this profile assumes one or
more processors with memory management units, high-speed storage devices, special interfaces,
network support, and display devices.

RTLinux claims to comply to thePSE51profile; RTAI claims nothing.

Linux’s goal is POSIX compliance, but not blindly, and not at all costs. The/usr/include/unistd.h

header file gives information about which parts of the standard have been implemented already. For
example: the implementation of threads (seeChapter 2), and the scheduler modes (seeSection 2.7).
Many of the real-time POSIX extensions have already been implemented in RTLinux and RTAI (see
Chapter 9).

1.5.2. Unix98

UNIX (UNIX98, Single UNIX Specification, Version 2) is the standardization of UNIX operating systems
driven by the Open Group (http://www.unix-systems.org/unix98.html). It incorporates a lot of the POSIX
standards.

1.5.3. EL/IX

EL/IX. The EL/IX (http://sources.redhat.com/elix/) API for embedded systems wants to be a
standards-compliant subset of POSIX and ANSI C.

1.5.4. µITRON

µITRON.µITRON (http://www.itron.gr.jp/home-e.html) is a Japanese standard for embedded systems.
“TRON” stands forThe Real-time Operating system Nucleus; the letter “I” stands forindustrial, and the

12

Chapter 1. Real-time and embedded operating systems

“mu” for micro. (There are other TRONs too: BTRON for business, CTRON for communication, . . .)

1.5.5. OSEK

OSEK.OSEK (http://www.osek-vdx.org/) is a German standard for an open architecture for distributed
vehicle control units. The architecture is open, but no free software implementation is available.

1.5.6. Real-Time Specification for Java

TheReal-Time Specification for Java (RTSJ).(Java Community Process (http://jcp.org/jsr/detail/1.jsp),
rtj.org (http://www.rtj.org/).) is not really an operating system, but aruntimefor a programming
language. The distinction is not really fundamental for normal desktop use; it can be enormous for
real-time use, because a runtime must make use of the services of the underlying operating system. That
means that a runtime with real-time features is useless on a non real-time operating system.

This specification was released in 2001, and, similar to the POSIX specifications, it isnot an
implementation; some commercial implementations are already available. The basis prescriptions of the
specification are:

• Implementations of the specification are allowed to introduce their own optimizations and extensions,
such as, for example, scheduling algorithms or garbage collection.

• Theminimumtask management includes static priority-based preemptive scheduling, with at least 28
priority levels.

• Priority inversion “prevention” (Section 4.9) is mandatory.

• An implementation must include classes that provide an asynchronous event mechanism.

• Exceptions must be allowed to change the context to another thread.

• Clases must be provided to allow direct access to physical memory.

1.5.7. Ada 95

Ada 95 real-time specifications.

The MaRTE OS (http://marte.unican.es/) is an example of a free software real-time kernel for embedded
applications that complies with Minimal Real-Time POSIX.13. Most of its code is written in Ada with
some C and assembler parts. The Ada runtime from the GNU Ada Toolkit (GNAT)
(ftp://ftp.cs.nyu.edu/pub/gnat) has been adapted to run on the kernel. The Ada compiler comes under the
GPL, but the runtime has a modified GPL license that allows it to be used without constraints in
commercial systems.

13

Chapter 1. Real-time and embedded operating systems

OpenRavenscar (http://polaris.dit.upm.es/~ork/) is another free software real-time kernel in Ada.

1.5.8. Real-Time CORBA

TheOpen Management Group (OMG)has released a specification of a “real-time” component broker
interface, calledReal-Time CORBA(“RT-CORBA”). This isnot a piece of software, but aspecification
interface. So, various implementations can satisfy the interface, with very different real-time behaviour.
The RT-CORBA specifications allow the component builder to specify somedesiredproperties that are
common for real-time tasks, such as static priority levels or time-outs. These specifications have to be
mapped onto real (RT)OS primitives by the specific implementation(s) used in the application.

1.6. Linux for real-time and embedded

Linux is ageneral purposeoperating system, with a non-pre-emptable kernel: it wants to give all tasks a
fair share of the resources (processor, memory, peripheral devices, . . .), and it doesn’t interrupt kernel
activities. Linux’s basic user space scheduler is of thetime slicingtype: it gives more or less equal time
slices to different tasks. It is possible to change the priorities of user space tasks to some extent (using the
nice command), but not enough to make the scheduling deterministic. Other reasons why Linux is a
poor RTOS are the unpredictable delays caused by non-pre-emptable operations running in kernel space,
and by the mere size of that kernel. Indeed,nobodycan understand the kernel sufficiently well to be able
to predict how long a certain operation is going to take.

All remarks above hold for all general purpose operating systems, such as Windows, AIX, IRIX,
HP-UX, Solaris, etc. It may sound strange at first, but “good old” DOS was much closer to being an
RTOS than Linux, because its scheduler was much less “fair” and advanced, and it had fewer system
services to look after. (However, DOS is only an advantage if there is onlyonereal-time task!) Because
none of the desktop or server operating systems is a good candidate for real-time and/or embedded
applications, several companies have started to develop special purpose operating systems, often for
quite small markets. Many of them are UNIX-like, but they are not mutually compatible. The market is
very fragmented, with several dozens of RTOSs, none of which holds a majority of the market. At least,
this was the casebeforeLinux appeared on the radar of real-time and embedded system companies.
Since about the year 2000, the market has seen lots of mergers and acquisitions, and substantial efforts
from the established RTOS companies to become as “Linux-compliant” as possible.

The fact that Microsoft tries to enter the market too (with its PocketPC/Windows CE product line) is only
accelerating this evolution. History has learned that the fragmented UNIX desktop and server markets
were easy targets for Microsoft. . . , even with inferior technology. So, hopefully the competitors have
learned from this experience.

While the Linux kernel people, headed by Linus Torvalds, are very keen on making the general support
and performance of Linux better, their interest in real time is very small, to say the least. . . No efforts to
make Linux into a real RTOS have to be expected from that side, but the kernelis evolving towards

14

Chapter 1. Real-time and embedded operating systems

higher pre-emptability (first of all, because this is necessary if one wants to scale Linux to more than,
say, two CPUs).

Torvalds has mentioned two reasons why he doesn’t want to make Linux into a real-time operating
system:

• Computers are getting faster all the time, such that a general-purpose operating system will satisfy the
requirements of more and more “real-time” users. (That is, those that require afastsystem, which is
not the same as adeterministicsystem.)

• Offering hard real-time features in a general-purpose OS will quickly result in “bad behaviour” of
application programmers (http://kernelnotes.org/lnxlists/linux-kernel/lk_0006_05/msg00180.html):
they will all want their application to perform best, and program it with high priority. Experience has
shown many times that this leads to incompatible timing constraints between different applications
rather sooner than later.

However, there are no technical reasons why Linux would not be able to become (more of) an RTOS, and
much technology to make Linux more powerful on the high-end server systems is also useful for
real-time and embedded purposes: real multi-threading in the kernel, finer locks and scheduling points
needed for SMP systems, migration of processes over CPUs, “hot-swapable” devices, etc.

Anyway, quite a lot of Free Software efforts have started to contribute software in the area of real-time
and embedded systems. These contributions can be classified as follows:

• Eliminating functionalities from the standard Linux kernel.

This approach aims at reducing the memory footprint of the operating system, and is hence mainly
focused on embedded systems. uCLinux (http://www.uclinux.org) is an example. Other projects
develop small and simple C libraries, because the current versions of the GNU tools have become
quite large; for example, BusyBox (http://www.busybox.net) (a replacement for most of the utilities
one usually finds in the GNU fileutils, shellutils, etc.);µclibc (http://www.uclibc.org) (a small version
of the general C library).

• Patches to the standard Linux kernel.

This approach replaces the standard scheduler of Linux with a more deterministic scheduling
algorithm, and adds scheduling points to the Linux source tree, in order to make the kernel more
responsive.

• Real-time patches underneath the Linux kernel.

This approach runs Linux as a low-priority process in a small real-time kernel. This kernel takes over
the real hardware from Linux, and replaces it with a software simulation.

The two major examples that follow this road are RTLinux (http://www.rtlinux.org/) (Section 9.2) and
RTAI (http://www.rtai.org/) (Section 9.3).

15

Chapter 1. Real-time and embedded operating systems

• Linux-independent operating systems.

These projects have been developed completely independently from Linux, and some of them are even
older. Some examples are RT-EMS (http://www.rtems.com/), and eCos
(http://sources.redhat.com/ecos/).

The Linux kernel that supports a typical desktop computer is several hundreds of kilobytes large. And
that doesnot include the memory taken up by the Linux tools and the users’ applications. Hence, the
Linux footprint is too large for many embedded systems. It also takes about a minute or so to boot a
PC-like computer, which is much too long for most embedded systems. And it expects a hard disk to
work with, and a power supply of more than 100 Watts for modern high-end CPUs, video cards and hard
disks.

However, one of the nicest things about Linux is its enormous configurability, of which you can get a
taste if you compile your own Linux kernel. That kernel can be constructed out of lots of more or less
independent modules, and you just leave out the modules that are not needed in your system. If your
application requires no ethernet card, leave out the network drivers; if you don’t need a screen, why
bother with installing the X Window System; etc. This means that many people have configured
Linux-derived systems that become so small that they fit on a single floppy.

The previous paragraphs may suggest that Linux proper has no chance at all at being used as an
embedded OS. However, it has some advantages that may turn out to be decisive in the not too distant
future (certainly because memory and CPUs become cheaper): its configurability, its ability to be
administered from a distance,and its many ways to add security features.

16

Chapter 2. Task management and scheduling

This Chapter explains whattask managementmeans, and how it can influence the real-time behaviour of
an operating system. Concrete examples come from the POSIX standard, but the concepts are identical
for other task management APIs.Schedulingof tasks is one of the responsibilities of the task
management with influence on the real-time behaviour of the system. Other responsibilities are: task
creation and deletion, linking tasks to interrupts and deferred interrupt servicing, and assignment and
change of scheduling priorities.

2.1. Processes and threads

We use “task” as the generic name for bothprocessesandthreads. A process is the normal “unit of
execution” in UNIX systems: if you compile a C program that has one singlemain() , then running this
program requires one process. (That process can generate itself other processes too, of course.) The
operating system must provide several services to each process: memory pages (in virtual memory and in
physical RAM) for code, data, stack and heap, and for file and other descriptors; registers in the CPU;
queues for scheduling; signals and IPC; etc.

A process can spawn new processes (“children”), either by starting up an independent process via a
system call, or byfork -ing itself. (The Linux kernel uses a somewhat other approach, with theclone()

function, seeSection 2.3.) The forked process is a copy of the parent process, but it gets its own memory,
registers, file descriptors, and process identifier. Starting a new process is a relatively heavy task for the
operating system, because memory has to be allocated, and lots of data structures and code segments
must be copied.

A thread is a “lightweight” process, in the sense that different threads share the same address space. That
is, they share global and “static ” variables, file descriptors, signal bookkeeping, code area, and heap,
but they have their own thread status, program counter, registers, signal mask (in Linux but not in
UNIX), and stack. The interesting fact from an RTOS point of view is that threads have shorter creation
andcontext switchtimes, and faster IPC (seeChapter 4). A “context switch” is the saving of the state of
the currently running task (registers, stack pointer, instruction pointer, etc.), and the restoring of the state
of the new task. Other advantages for using multiple threads within a process are:

• The threads can be run on separate processors.

• The tasks can be prioritized, so that a less important computation can, in response to an external event,
be suspended to process that event.

• Computation can occur in one thread, while waiting for an event, such as the completion of I/O, can be
outsourced to another thread.

On the other hand, using threads requires functions to be made “thread-safe”: when a functionfunc() is
called in one thread, this thread can be pre-empted by another thread, which, in turn, can call the same
function; hence, this function should not keep intermediate data in variables that are shared between the
different threads.

17

Chapter 2. Task management and scheduling

Many modern CPUs offer functionality such as floating-point calculation, digital signal processing (e.g.,
“MMX”), or on-chip memory caches. These functions require extra registers and/or operations, so, when
this extra functionality can be avoided, real-time determinism is increased (because the context switch
time is lower if less registers have to be saved and restored). For example, Linux doesn’t save the floating
point registers for kernel tasks and interrupt service routines.

2.2. POSIX thread management

The POSIX operating system standard (seeSection 1.5) has an extensive threads API, which all
UNIX-like operating systems implement (albeit to varying degrees). The thread implementation in Linux
is not the most complete The real-time operating systems discussed in later Chapters all have decent, but
not complete, POSIX thread functionality. The reasons why many operating systems don’t implement
the full POSIX standards are: (i) POSIX is not a single, rigid standard, but a large set of complementary
standards with different focus points; (ii) one doesn’t need the whole API to build functional and
efficient software systems; (iii) some parts of the standard require complicated implementations with
meager practical and not-unique advantages; (iv) some features made it into the standard for the sole
purpose of being backwards compatible with older existing UNIX systems.

The POSIX API provides the following function calls (and others!) for thread creation and deletion:

int pthread_create(
pthread_t *thread, // thread data structure
pthread_attr_t *attr, // attributes data structure
void *(*start_routine) (void *), // function to execute
void *arg // argument to pass to function

);
void pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **status),
int pthread_detach(pthread_t thread),
int pthread_cancel(),

(The initial letter “p” indicates the POSIX heritance.) Thread creation involves some overhead, because
memory has to be allocated for the new thread; in a real-time setting, the memory also has to belocked
into RAM, in order to be sure that no time will ever be lost because the memory pages have to be
swapped in from disk when needed. Similarly, freeing memory at thread deletion is also an overhead. So,
a real-time application should do thread creation and deletionoutsideof the real-time activity.

Other overhead caused by task management is: satisfying requested changes in the timing or priority
properties of tasks, and the maintenance of the task queues at all priority levels when tasks are woken up,
put asleep, made running, obliged to wait for a blocking IPC call, etc.

In thepthread_create() , the programmer can specify therun-time priorityof the task, as well as the
scheduling policy to use, through thepthread_setschedparam() function call.

18

Chapter 2. Task management and scheduling

pthread_join() , pthread_detach() , andpthread_cancel() are different ways to end the
execution of a task. A task should indeed not be deleted blindly, because it shares a lot of its components
with other tasks, so its memory space and locks should not be released when its cousin tasks are still
using them. Especiallycancellinga thread from within another thread is dangerous: it practically
impossible to tell what resources the cancelled task is holding (including locks!). So, POSIX prescribes a
procedure to cancel tasks.pthread_cancel() does not cancel the task immediately, but is only a
requestto the operating system to cancel the task. How the task is cancelled depends on how the task
initialised its own cancellation policy, via:

• int pthread_setcancelstate(int state, int *oldstate) : atomically sets the calling
task’s cancellabilitystateto the indicatedstate and returns the previous cancellability state in
oldstate . Possible values forstate arePTHREAD_CANCEL_ENABLEand
PTHREAD_CANCEL_DISABLE.

• int pthread_setcanceltype(int type, int *oldtype) : atomically sets the calling task’s
cancellabilitytypeto the indicatedtype and returns the previous cancellability type inoldtype .
Possible values fortype arePTHREAD_CANCEL_DEFERREDand
PTHREAD_CANCEL_ASYNCHRONOUS.

The default cancellation type and state arePTHREAD_CANCEL_DEFERREDand
PTHREAD_CANCEL_ENABLE.

Cancellation happens immediately if the task has chosen thePTHREAD_CANCEL_ASYNCHRONOUS
policy; so, this policy should only be chosen when the programmer is certain that the task can be killed at
any time, without compromising the rest of the system. If the task has chosen the
PTHREAD_CANCEL_DEFERREDpolicy, it is cancelled only when it reaches a so-calledcancellation
point. These OS-dependent points are function calls where the task tests whether it has received a
cancellation request. (Or rather, the operating system does the test for it, as well as the cancellation
handling, discussed below.) Cancellation function calls are typically calls that might block for a long
time, such that the OS need only check for pending cancellation requests when the operation is about to
block indefinitely. This includes, but is not at all limited to,pthread_cond_wait() ,
pthread_cond_timedwait(() , or sem_wait() , or sigwait() .

The task that one wants to cancel can postpone cancellation in order to perform application-specific
cleanup processing. It does this by “pushing” cancellationcleanup handlersevery time that it acquires
some resource. As the task leaves the last cancellation point before releasing a resource, it needs to “pop”
the cleanup handler it had pushed earlier for this resource. Pushing and popping is done by the
pthread_cleanup_push() andpthread_cleanup_pop() function calls. Every cleanup handler that
is still on the cleanup stack is invoked (inLast-in, First-Outorder) when the task is cancelled, and its job
is to cleanly release the resource. The task terminates when the last cleanup handler returns. The task exit
status returned bypthread_join() on a cancelled task isPTHREAD_CANCELED.

(This behaviour is quite standard in many software tasks;Section 15.4gives the generic software design
behind such behaviour.)

The cancellation procedures above might seem a bit involved, but that’s due to the complexity of the
problem one wants to solve: making sure that another task exits without blocking other tasks. Anyway,

19

Chapter 2. Task management and scheduling

this kind of cancellation should be avoided whenever possible. The clean solution is to let all tasks in
your application react to acondition variablethat indicates that it must shut down itself (Section 15.4.4).

An RTOS must also allow to specify thetimingwith which threads have to run. One typically uses two
timing modes:

• Periodic: the task must run at regular intervals.

• One-shot: the task must run only once, at a predefined instant in time.

One-shot timing sometimes requires a bit more overhead, because of a more involved hardware timer
programming. POSIX has no standardized function calls forperiodictiming. The reasons are that: (i)
there are multiple ways in which the desired functionality can be programmed with already existing
POSIX primitives; and (ii) most applications have to break the periodic loop in one way or another
anyhow, depending on application-specific conditions. Because of the lack of a (POSIX) standard API
for periodic thread timing, different operating systems implemented the functions on their own, such that
application programs will most probably have portability problems in this area. For example, RTLinux
usespthread_make_periodic_np() for both options (the_np suffix stands for “non-portable”),
while RTAI hasrt_set_periodic_mode() andrt_set_oneshot_mode() .

As examples of alternatives for the periodic timing function, POSIX provides theusleep() and
nanosleep() function calls. These put tasks asleep with a high timing resolution (microsecond,
respectively nanoseconds). The achievable resolution depends of course on the type of CPU.

Some other often-used functionality that POSIX has not standardized is: to allow the use of floating point
operations in a thread (for which, e.g., RTLinux has introducedpthread_setfp_np()); to suspend
execution ofanotherthread than the one that executes the function
(“pthread_suspend_np(another_thread) ”); and “pthread_wakeup_np(another_thread) ” to
resume execution of the other thread. Note again the “..._np ” suffix.

The floating point selection option was considered too low level and hardware dependent to put into the
POSIX standard. Saving a couple of registers more or less is more of a matter ofoptimization, and such
things don’t belong in a standard. The Linux scheduler, for example, always saves floating point registers
of user space processesby default.

Thepthread_suspend_np() andpthread_wakeup_np() functions aredangerous(see below), and
the POSIX committee had very good reasons not to include them in the standard. However, many users
think they are “user-friendly”, because they sometimes save them a lot of keystrokes. The danger of
pthread_suspend_np() is that, while its use is convenient to stop a thread, it leaves that thread most
probably in an undefined state, such that it’s hard to predict what the thread is going to do when
pthread_wakeup_np() starts it again!

The proper way of suspending the execution of a thread is to let the thread do ititself, at a moment it is
ready to do so, i.e., it is in a well-defined state, from which it can restart in a deterministic way.Chapter
17gives some more detailed examples.

20

Chapter 2. Task management and scheduling

2.3. Linux tasks and tasklets

The above-mentioned distinction between “process” and “thread” is not what Linus Torvalds has in
mind. He thinks the really important concept is theContext of execution: that includes things like CPU
state (registers, etc.), memory management state (page mappings), permission state (user ID, group ID),
code to execute, and various “communication states” (open files, signal handlers, etc.). An email by
Torvalds in which he explains his (and hence Linux’s) point of view can be found here
(http://www.uwsg.iu.edu/hypermail/linux/kernel/9608/0191.html). POSIX threads are offered on Linux
as alibrary, and basically only because of compliance with the standard. Anyway, they are just one
single possible way to share context. And the Linux kernel offers a more flexible alternative: the
clone() creates a new “task”, with a large choice in what parts of thecontext of executionone wants to
share between the new task and the task that creates it. See the corresponding man page for more details.

Many operating systems provide another primitive besides threads or processes, that programmers can
use to execute functionality. Linux and RTAI call ittasklets, Section 2.6. A tasklet is afunctionwhose
execution can be asked for by any kernel task, and that the operating system will executebeforeit does
its next scheduling. At that moment, the OS executes these functions one by one. So, the important
features of tasklets are:

• They are a more “lightweight” primitive than tasks, to execute functions outside of, and prior to, the
normal scheduling. of tasks.

• They are not pre-empted by normal tasks.

But taskletscanbe pre-empted by interrupts, because the kernel has enabled all hardware interrupts
when it runs the tasklets. Tasklets are typically only executed once, but some operating systems (e.g.,
RTAI) offer periodic execution of tasklets, by registering them with atimer. The tasklet primitive is also
very useful as a so-calledDeferred Service Routine (DSR), Section 3.4.

2.4. Scheduling

Some texts make a distinction betweenschedulinganddispatching, with dispatching being the simplest
of the two operations:

• Scheduling: determining the order and the timing (i.e., the “schedule”) with which tasks should be run.

• Dispatching: the dispatcher starts and stops the tasks, i.e., itimplementsthe schedule.

This text only uses the term “scheduling”.

A primary responsibility of an RTOS is to make sure that all tasks meet theirtimingconstraints. Timing
constraints come indifferent flavours(deadline, zero execution time, QoS), and for every task the
constraints can change over time. For example, a motion generator for a mobile robot has much more
constraints to take into account when it navigates in an environment with many nearby obstacles, while
its job is much easier in open areas. Or, users of a multimedia server have different QoS requirements for
editing one video stream than for the editing and synchronization of several streams.

21

Chapter 2. Task management and scheduling

So, a “one-size-fits-all” scheduling algorithm does not exist. Although that is exactly what a general
purpose operating system hopes to offer. Hence, it should come as no surprise that there is a vast
literature on the theory of scheduling, accompanied by a large variety of (un)implemented scheduling
algorithms. A theoretically optimal schedule can only be reached in the unlikely situation ofcomplete
knowledgeabout the processing, synchronization and communication requirements of each task, and the
processing and timing properties of the hardware. This state of complete knowledge is seldom reached in
real-world applications, especially when the requirements aredynamic(i.e., time varying). And even with
complete predictability, the general scheduling problem isNP-complete, which means that its complexity
increases exponentially with the number of tasks and constraints involved in the scheduling. And hence,
the scheduling algorithms don’t scale well under a growing load and/or hardware resources. This does
not imply, however, that the problem is infeasible for applications with only a few, well-defined tasks.

Each OS has a schedulerfunction(let’s call it schedule()), that implements the scheduling algorithm.
(Latersectionsdiscuss the most common scheduling algorithms.) This scheduler isnot a task in itself: it
is a function call, that is called at various points in the kernel. These points are, not surprisingly, called
scheduling points.Typical scheduling points are: end of interrupt service routines (Section 3.3), the
moments when tasks want to go to sleep for one reason or another, or when they become ready to run.

Scheduling is pure overhead: all time spent on calculating which task to run next is lost for the really
productive tasks. And trying to use more optimal schedulers isn’t always a clever “solution”: advanced
schedulers consume (often unpredictably!) more time and resources, and their increased complexity
makes it more difficult for programmers to work with. Hence, the chance that those programmers make
the wrong design decisions increases. Simplicity is especially a key feature for real-time and embedded
systems; complex schedulers appear more in Operations Research applications, where the scheduling
problem and its algorithmic complexity are comparable to the operating system case, but where the
real-time constraints and the predictability of the cost of tasks are more manageable.

(TODO: explain (POSIX) cancellation points: why are they needed? what makes a point a valid
cancellation point? Warn against using cancellation, because it’s so error prone. Not only from the OS
point of view (that OS must make sure its thread and lock bookkeeping remains consistent, which is not
a simple job), but also from the application point of view (how do you make sure that there is no race
between one thread trying to cancel another thread, and a third thread that still wants to interact with that
to-be-cancelled thread? It’s way better to have each thread exit itself explicitly, and to have an explicit
exit condition for each thread. And to make thread interactionasynchronous.)

2.5. Priority-based scheduling

Thesimplestapproach to the scheduling problem is to assignstatic priorities to all tasks. That means
that the priority is given to the task at the time it is created. The scheduler functionschedule() is then
very simple, because it looks at all wait queus at each priority level, and starts the task with the highest
priority that is ready to run.

Using priorities implies usingpre-emption: schedule() interrupts a lower priority task in order to run a
higher priority task that requests it. Pre-emption means that the running task’s context is switched out,

22

Chapter 2. Task management and scheduling

and the new task’s context is switched in.

One classifies priorities intostaticallyanddynamicallyassigned priorities. In the former case, a task is
given a priority by the programmer at design time (or by the operator at system initialization time), and it
keeps this priority during its whole lifetime. In the dynamic case,schedule() becomes more complex,
because it has to calculate the task’s priority on-line, based on a number of dynamically changing
parameters (time till next deadline; amount of work to process; etc.). As described before, the optimal
solution to a scheduling problem is usually impossible to find, so scheduling is often based on a set of
heuristics. This is the case for real-time as well as non-real-time schedulers. The heuristics in a general
purpose OS can be quite involved, but real-time and embedded operating systems mostly use simple
heuristics. Because “simple” means: faster and smaller and more predictable! Examples of such simple
dynamic scheduling algorithms, that are sometimes used to replace static priority scheduling, are:

• Rate monotonic(RM). A task gets a higher priority if it has to run more frequently. This is a common
approach in the case thatall tasks are periodic. So, a task that has to run every n milliseconds gets a
higher priority than a task that runs every m milliseconds when n<m. Hence, changing the scheduling
frequency of a task on-line also changes its priority. The scheduler needs to know the periods of all
tasks it has to schedule.

• Earliest deadline first(EDF). At each instant in time, there are a number of tasks that need to be
finished in the near future. A task with a closer deadline gets a higher scheduling priority. The
scheduler needs not only to know the deadline time of all tasks it has to schedule, but also their
duration.

If different tasks in the system request different scheduling policies, the operating system has to make
trade-offs in determining the relative “weight” to give to each of the scheduling algorihtms. These
trade-offs will most probably be quite arbitrary, so porting your application between operating systems
could lead to different scheduling results.

Priority-based scheduling is simple toimplement, becauseschedule() just has to look at the tasks in
the highest priority queue that are ready to be scheduled, and to start the first one in this queue.
Priority-based scheduling, however, isdifficult for the application programmers: they must try to map the
often complex (“high-dimensional”) synchronization interdependencies between the different threads in
their application onto thelinear scaleoffered by priorities! One often-observed phenomenon in real-time
applications that grow over time, is that the programmers tend to raise the priorities of some threads,
every time they notice that the introduction of new functionality (and hence new threads) disturbs the
synchronization of the existing threads.Chapter 14gives some more examples of the negative effects of
“coupling”, andChapter 15discusses time-proven approaches to take care of complex interdependencies.

So, the problem with priority-based scheduling is that it is anindirect way to specify how to cope with
timing and synchronization constraints: at run-time,schedule() doesn’t take these constraints
themselves into account, but knows only about the priorities, which are the programmer’s indirect model
of the constraints.

In practice, all RTOSs at least offer static priority-based scheduling. Many also implement other
algorithms. Not always because of the intrinsic added value of the algorithm, but rather because of
typical marketing drives: users tend to buy software products with the highest number of features, even if

23

Chapter 2. Task management and scheduling

they risk to drown in the complexity and “feature bloat” (whose implications they often even don’t
understand. . .). One of the more serious feature bloat examples in priority-based scheduling is the
so-calledpriority inheritance“solution” to thepriority inversionphenomenon (seeSection 4.8), that
occurs when tasks share resources which they should not access concurrently.

2.6. Priority spaces

Many operating systems (especially RTOSs) let all tasks (system tasks as well as user tasks) live in the
same priority space: any task can be given any priority within this space. Others, such as Linux, UNIX,
or Microsoft NT, have separate priority spaces for different kinds of tasks. Linux has two:user spaceand
kernel space. Tasks running in user space can change their priorities (through thenice() function call),
but all of them are pre-empted by any task in kernel space. Kernel space itself has three priority levels:

1. Interrupts: the “task” that services a hardware interrupt (timer, network, keyboard, . . .) has the
highest priority. Such a task is called aninterrupt service routine (ISR). (Section 3.3.) It should be as
short as possible, because it runs with all other interrupts disabled. An ISR is not really a task, but
just afunction call, and its execution is not determined by the scheduler: the ISR is executed
immediately at the occurrence of an hardware interrupt, by the hardware of the interrupt controller
and the CPU (Section 3.2). The operating system software is not involved at all.

2. Taskletfunctions (Linux specific,Section 3.4) andDeferred Service Routines(terminology often
used outside of Linux) arefunctions(again,not tasks!) that run at the second highest priority. Only
an hardware interrupt can pre-empt them. A tasklet can be activated by any kernel task; a deferred
interrupt function (Section 3.4) is typically triggered by a hardware interrupt service routine, to
further process an interrupt after the ISR has finished. Both have the same properties, and are
executed after all hardware interrupt service routine have finished, and before the “normal” tasks are
scheduled; interrupts are enabled when they run. In contrast to the hardware interrupts, the operating
system softwareis involved in determining when they are executed.

3. All other kernel tasksrun at the lowest priority level in the kernel. They pre-empt every user space
task.

There is no consensus about the relative merits of having separate user and kernel spaces: some consider
it to be a design advantage (“divide et impera”), while others experience it as an unnecessarily artificial
constraint on their flexibility.

2.7. Linux scheduler

The scheduler implemented in the file/usr/src/linux/kernel/sched.c of the Linux source tree
works with three scheduling modes (which are defined in the POSIX standard):SCHED_RR,
SCHED_FIFOandSCHED_OTHER. SCHED_OTHERis the default. The scheduling mode of a task is set
by the POSIXsched_setscheduler() system call.

SCHED_RRis theround-robintime slicing algorithm. After a task finishes its time slice, it is moved to
the tail of its priority queue, such that another task in the same priority level can start running. If there is
no other task at this priority, the pre-empted task can continue.

24

Chapter 2. Task management and scheduling

SCHED_FIFOis aFirst-In, First-Outscheduling algorithm: the tasks in one priority level are scheduled
in the order they get ready to run; once a task is scheduled, it keeps the processor until pre-empted by a
higher priority task, until it releases the processor voluntarily, or until it has to wait to get access to some
resource. This scheduler mode is often called “POSIX soft real-time” because it corresponds to the most
common real-time scheduling approach withstatic priorities, but without the othernecessary real-time
components.

The behaviour of theSCHED_OTHERscheduler function is not prescribed by the POSIX standard. It is
meant to give freedom to the operating system programmers to implement their own scheduling
algorithm. In Linux, as in all general-purpose operating systems, theSCHED_OTHERscheduler function
tries to combine two conflicting performance measures: maximimum throughput and good response to
interactive users. The Linux scheduler calculates a “goodness” value for each candidate task, based on a
number ofheuristic rules. Recently, the scheduler function got a lot of attention from the Linux kernel
developers, since a newO(1) (“order one”) scheduling algorithm was introduced.O(1)means that the
function’s computational time does not increase with the number of tasks that must be scheduled. This
has led to a more responsive kernel, certainly in combination with the increased number of pre-emption
points (Section 2.8), which all lead to a call to the scheduler function.

Kernel tasks with theSCHED_OTHERscheduling policy receive the lowest priority, “0”, while the
SCHED_RRandSCHED_FIFOpolicies can use priority levels from “1” to “99”. User space tasks are
always scheduled with theSCHED_OTHERpolicy. The priority levels 0 to 99 are prescribe in the POSIX
standard, and the portable POSIX way to find out about the minimum and maximum scheduling
priorities is through thesched_get_priority_min() andsched_get_priority_max() system
calls. Both take one of the priority policies as their argument.

The scheduling forSymmetric Multi-Processor(SMP) systems is basically the same as for the
uni-processor case. There are some extra function calls to assign a task or an interrupt to a specific
processor, if the programmers desires so. This decision could lead to more efficient execution, because it
increases the chance that the task’s or ISR’s code can permanently be kept in the cache of that particular
processor.

2.8. Linux real-time scheduling

Linux will not become a full-fledged RTOS, for the simple reason that the requirements for a
general-purpose operating system are very different from those of an RTOS. However, soft real-time
additions to the standard Linux kernel have been developed in several places.

One active source of soft real-time efforts has been the audio and video community: in this area, Linux
and Microsoft NT perform poorly, in comparison to, for example, BeOS and Microsoft Windows 95. The
reason is that Linux and Microsoft NT can’t guarantee these multi-media tasks a deterministic share of
the resources (QoS). BeOS does offer QoS scheduling, while Microsoft Windows 95 simply has much
less things to do than a “real” operating system. . . .

25

Chapter 2. Task management and scheduling

Another reason for soft real-time work is the drive to make Linux scale better on multi-processor
systems. In this context, it is important to keep the locks on kernel functionality as small as possible,
because if one processor needs a lock, the other processors are also disturbed in their activity. The
expectation is that the scalability activity will make Linux into an operating system that can almost
guarantee milli-second deadlines (i.e., “soft real time”), without making it into a real RTOS.

Here is a (non-exhaustive) list of efforts to improve on latency problems in the Linux kernel:

• Montavista’s Hard Hat Linux (http://www.mvista.com/products/hhl.html) with itspre-emption
(http://www.mvista.com/dswp/PreemptibleLinux.pdf)patches. These are currently maintained by
Robert Love (http://www.tech9.net/rml/linux/), and gradually introduced in the new 2.5.x kernels. The
idea is to see whether the scheduler could run, at the moment of that a kernel spinlock (Section 4.6.3)
is released, or an interrupt routine (Chapter 3) exits. Commands exist to disable or enable kernel
pre-emption.

• Ingo Molnar’slow-latencypatches, now maintained by Andrew
Morton (http://www.zipworld.com.au/~akpm/). They introduce more scheduling
points (http://www.linuxdevices.com/articles/AT8906594941.html) in the kernel code, such that the
time is reduced between the occurrence of an event that requires rescheduling and the actual
rescheduling. Probably, this work will be combined with the pre-emption work mentioned above.

• TimeSys Linux/RT (http://www.timesys.com) develops and commercializes the so-called “Resource
Kernel” loadable module, that makes the standard Linux kernel pre-emptable, and that allows to build
QoS scheduling for user tasks.

• KURT (http://www.ittc.ukans.edu/kurt/) (Kansas University Real-Time Linux). KURT Linux allows
for explicit scheduling of any real-timeeventsrather than justtasks. This provides a more generic
framework onto which normal real-time process scheduling is mapped. Since event scheduling is
handled by the system, addition of new events such as periodic sampling data acquisition cards (video,
lab equipment, etc.) is highly simplified. KURT introduces two modes of operation: the normal mode
and the real-time mode. In normal mode, the system acts as a generic Linux system. When the kernel
is running in real-time mode, it only executes real-time processes. While in real-time mode, the system
can no longer be used as a generic workstation, as all of its resources are dedicated to executing its
real-time responsibilities as accurately as possible.

• The LinuxBIOS (http://www.linuxbios.org) project allows to get rid of the usualBIOS chips that
manage part of the hardware, and that introduce significant delays when booting. A LinuxBIOS
startup can take place in a few seconds, booting immediate in a ready-to-go kernel.

• Linux-SRT (http://www.uk.research.att.com/~dmi/linux-srt/) is aQoSscheduler.

• QLinux (http://www.cs.umass.edu/~lass/software/qlinux/) is aQoSscheduler.

• Fairsched (http://fairsched.sourceforge.net/) is a hierarchical QoS scheduler: tasks are divided into
groups and eachgroupreceives guaranteed CPU time allocation proportional to its weight. The
standard scheduler is used to schedule processes within a group.

• DWCS (http://www.cc.gatech.edu/~west/dwcs.html) (Dynamic Window-Constrained Scheduling) is a
QoS scheduler, parameterizing the service in terms of arequest periodand awindow constraint. The
request period is the time interval over which a task must receive some share of the CPU; the window
constraint is the value of that minimum share the task much receive during this “window.”

26

Chapter 3. Interrupts

This Chapter explains the basics of interrupt servicing in a computer system, with again an emphasis on
the real-time application. Interrupt hardware and software come in a great variety of implementations and
functionalities, so some of the concepts talked about in this Chapter may not be relevant to your system.

3.1. Introduction

Interrupts are indispensable in most computer systems with real-time ambitions. Interrupts have to be
processed by a so-called ISR (Interrupt Service Routine). The faster this ISR can do its job, the better the
real-time performance of the RTOS, because other tasks are delayed less. Timers are one example of
peripheral devices that generate interrupts; other such devices are the keyboard, DAQ (Digital
AcQuisition) cards, video cards, the serial and parallel ports, etc. Also the processor itself can generate
interrupts, e.g., to switch to the “protected mode” of the processor, when executing an illegal operation,
as part of a debugging session, or when an “exception” is raised by an application program.

3.2. Interrupt hardware

An interrupt-driven system (which many RTOSs and EOSs are) typically has one or more of the
following hardware components:

• Interrupt vector.Many systems have more than one hardware interrupt line (also calledinterrupt
request (IRQ), and the hardware manufacturer typically assembles all these interrupt lines in an
“interrupt vector”. The INTEL 80x86 processors’ interrupt vector contains 256 entries, and is called
theInterrupt Description Table (IDT), [Hyde97]. (But most PCs manufacturers make only 16 of these
interrupts available ashardwareinterrupts! See below.) The interrupt vector is an array of pointers to
the interrupt service routines (Section 3.3) that will be triggered when the corresponding interrupt
occurs. The vector also contains a bit for each interrupt line that signals whether there is an interrupt
pendingon that line, i.e., a peripheral device has raised the interrupt, and is waiting to be serviced.

Some processors usenon-vectoredinterrupt processing: when an interrupt occurs, control is transfered
to one single routine, that has to decide what to do with the interrupt. The same strategy is also used,
in software, in most operating systems to allow multiple devices to share the same interrupt.

• Synchronous or software interrupt. A synchronous interrupt (also called a software interrupt , or a
trap) is an interrupt that is not caused by an (asynchronous) hardware event, but by a specific
(synchronous)machine language operation code. Such as, for example thetrap in the Motorola
68000, theswi in the ARM, theint in the Intel 80x86, by a divide by zero, a memory segmentation
fault, etc. Since this feature is supported in thehardware, one can expect a large number of different,
not standardized, names and functions for software interrupts. . .

27

Chapter 3. Interrupts

Major differences between asynchronous/hardware interrupts and synchronous/software interrupts, on
most hardware, is that:

1. Further interrupts aredisabledas soon as an hardware interrupt comes in, but not disabled in the
case of a software interrupt.

2. The handler of a software interrupt runs in the context of the interrupting task; the ISR of an
hardware interrupt has not connected task context to run in. So, the OS provides a context (that
canbe the context of the task that happened to be running at the time of the interrupt).

Hardware and software interrupts do share the same interrupt vector, but that vector then provides
separate ranges for hardware and software interrupts.

• Edge-triggered and level-triggered interrupts.From a hardware point of view, peripheral devices can
transmit their interrupt signals in basically two different ways:

• Edge-triggered. An interrupt is sent when the interrupt line changes from low to high, or vice versa.
That is a almost “zero time” event, which increases the chances for ahardwareloss of interrupts by
the interrupt controller. Moreover, if multiple devices are connected to the same interrupt line, the
operating systemmustcall all registered interrupt service routines (seeSection 3.3), because
otherwise it could cause asoftwareloss of an interrupt: even if it detected only one edge transition,
and its first ISR acknowledged the receipt of this interrupt, it could still be that it missed another
edge transition, so it can only be sure after it has given all ISRs the chance to work. But of course,
this is not an efficient situation.

• Level-triggered. An interrupt is signaled by a change in thelevelon the hardware interrupt line. This
not only lowers the chance of missing a transition, but it also allows a more efficient servicing of the
interrupts: each ISR that has serviced the interrupt will acknowledge its peripheral device, which
will take away its contribution to the interrupt line. So, the level will change again after the last
peripheral device has been serviced. And the operating system should not try all ISRs connected to
the same hardware interrupt line.

• Interrupt controller.This is a piece of hardware that shields the operating system from the electronic
details of the interrupt lines. Some controllers are able toqueueinterrupts, such that none of them gets
lost (up to a given hardware limit, of course). Some allow various ways of configuringpriorities on the
different interrupts.

The 8259 (http://www.cast-inc.com/cores/c8259a/c8259a-x.pdf)Programmable Interrupt
Controller (PIC) is still a very common chip for this job on PC architectures, despite its age of more
than 25 years. PC builders usually use two PICs, since each one can cope with only eight interrupts.
But using more than onehasto happen in adaisy chain, i.e., the interrupt output pin of the first PIC is
connected to an input pin of the second one; this introduces delays in the interrupt servicing. As
another disadvantage, PICs were not designed to be used in multiprocessor systems.

Higher-quality and/or SMP motherboards use theAdvanced Programmable Interrupt
Controller (APIC). This is not just a single chip, but a small hardware system that manages
interrupts:

• Each CPU must have a “local APIC” with which it gets interrupts from the APIC system.

28

Chapter 3. Interrupts

• The peripheral hardware connects its interrupt line to theI/O APIC. (There can be eight of them.)
An I/O APIC then sends a signal to the local APIC of the CPU for which the interrupt is meant.

The APIC architecture is better than the PIC, because (i) it can have many more interrupts lines, hence
eliminating the need to share interrupts, (ii) it knows programmable interrupt priorities, (iii) it is faster
to program (only one machine instruction to the local APIC’c Task Priority Register (which ison the
CPU!), instead of two to the PIC, which in addition is not on the CPU) and (iv) it allows to work with
level-triggered interruptsinstead of withedge-triggered interrupts. The PCI bus uses active low,
level-triggered interrupts, so can work fine together with APIC.

The PowerPC platforms have another interrupt hardware standard, the
OpenPIC (http://www.itis.mn.it/inform/materiali/evarchi/cyrix.dir/opnparc.htm), which also
guarantees a high hardware quality. OpenPIC also works with x86 architectures.

3.3. Interrupt software

From the software side, an interrupt-driven system must typically take into account one or more of the
following software issues:

• Interrupt Service Routine(ISR), often calledinterrupt handler tout court. This software routine is
called when an interrupt occurs on the interrupt line for which the ISR has beenregisteredin the
interrupt vector. Typically, this registration takes place through a system call to the operating system,
but it can also be done directly in a machine instruction, by a sufficiently privileged program. The
registration puts the address of the function to be called by the interrupt, in the address field provided
in the interrupt vector at the index of the corresponding interrupt number.

The operating system does not (or rather, cannot) intervene in the launching of the ISR, because
everything is done by the CPU. The context of the currently running task is saved on the stack of that
task: its address is in one of the CPU registers, and it is the only stack that the CPU has immediate and
automatic access to. This fact has influence on the software configuration of the system: each task
must get enough stack space to cope with ISR overhead. So, the worst-case amount of extra stack
space to be foreseen in a task’s memory budget can grow large, especially for systems in which
interrupts can be nested. More and more operating systems, however, provide a separate “context” for
interrupt servicing, shared byall ISRs; examples are Linux and VxWorks.

An ISR should be as short as possible, because it runs with interrupts disabled, which prevents other
interrupts from being serviced, and, hence, other tasks from proceeding. The ISR should service the
peripheral device it was triggered by, and then return. This servicing typically consists of reading or
writing some registers on the device, and buffer them in a place where some other task can process
them further, outside of the ISR and hence with interrupts enabled again. This further processing is the
goal of the DSR (Deferred Service Routine),Section 3.4. Getting the data from the ISR to the DSR
should be done in anon-blockingway; FIFOs (Section 5.2) or circular buffers (Section 5.4) are often
used for this purpose.

29

Chapter 3. Interrupts

• Trap handler/service request.A synchronous interrupt is sometimes also called atrap
(http://www.osdata.com/topic/language/asm/trapgen.htm)or asoftware interrupt. The software
interrupts are “called” by the processor itself, such as in the case of register overflow, page address
errors, etc. They work like a hardware interrupts (saving state, switching to protected mode, jumping
to handler), but they run with the hardware interruptsenabled.

These software interrupts are very important, because they are the only means with which user space
tasks can execute “protected operations,” or “privileged instructions.” These privileged instructions
can only be executed when the processor is in itsprotected mode(also calledprivileged mode).
Privileged instructions are operations such as: to address physical IO directly; to work with the
memory management infrastructure such as the page lookup table; to disable and enable interrupts; or
to halt the machine. Privileged instructions are available to user space tasks viasystem calls, that are in
fact handlers of software interrupts: a system call puts some data in registers or on the stack, and then
executes a software interrupt, which makes the processor switch to protected mode and run the
interrupt handler. That handler can use the register or stack data for task specific execution. Recall that
the handler of a software interrupt runs in the context of the task that executes the system call, so it can
read the data that the task has put on the stack. But now the execution takes place in the protected
mode of the processor.

A system call is just one example of a software interrupt, or trap. An interrupt service routine of a trap
is often called atrap handler. Still another name for a software interrupt is aservice request (SRQ).
Each type of CPU has part of its interrupt vector reserved for these trap handlers. Operating systems
typically have a default trap handler installed, which they attach to all possible software interrupts in
your system. Usually, you can replace any of these by your own. For example, RTAI has a
rt_set_rtai_trap_handler() for this purpose. The OS also reserves a number of traps assystem
signals. For example, RTAI reserves 32 signals, most of them correspond to what standard Linux uses.

Trap handlers are a major tool indebugging: compiling your code with the debug option turned on
results, among other things, in the introduction in (the compiled version of) your original code of
machine instructions that generate a trap after each line in your code. The ISR triggered by that trap
can then inform the debug task about which “breakpoint” in your program was reached, thanks to the
register information that the trap has filled in (Section 3.3).

Another major application of the trap functionality, certainly in the context of this document, is their
use by RTAI to deliver user space hard real-time functionality (Section 11.5). Linux just uses one
single software interrupt, at address0x80 , for its user space system calls, leaving a lot of software
interrupts to applications such as RTAI.

• Interrupt latency.This is the time between the arrival of the hardware interrupt and the start of the
execution of the corresponding ISR. The latency is not a crisp number, but rather a statistical quantity
becaused it is influenced by a large number of undeterministic effects (Section 1.3.2). This becomes
more and more the case in modern processors with their multiple levels of caches and instruction
pipelines, that all might need to be reset before the ISR can start. This latter fact is at the origin of the

30

Chapter 3. Interrupts

somewhat counter-intuitive phenomenon that some modern Gigahertz CPUs have longer interrupt
latencies than much older digital signal processors.

• Interrupt enable/disable.Each processor has atomic operations to enable or disable (“mask”) the
interrupts. Common names for these functions aresti() (“set interrupt enable flag”, i.e., enable
interrupts to come through to interrupt the CPU) andcli() (“clear interrupt enable flag”, i.e., don’t
allow interrupts). In the same context, one finds functions likesave_flags() and
restore_flags() . These are a bit more fine-grained thansti() andcli() , in the sense that they
save/restore a bit-sequence where each bit corresponds to an hardware interrupt line and indicates
whether or not the interrupt on that particular line should be enabled. In other words, it saves the
“state” of the interrupt vector. (restore_flags() in some cases does an implicit enabling of the
interrupts too.) Note thatcli() disablesall interrupts onall processors in an SMP system. That is a
costly approach to use, particularly so in an RTOS.

• Interrupt priorities.Some systems offer, as ahardware feature, (static) priorities to interrupts. That
means that the OS blocks a new interrupt if an ISR of an interrupt with a higher priority is still
running. (Or rather, as long has it has not enabled the interrupts again.) Similarly, the ISR of a
lower-priority interrupt is pre-empted when a higher-priority interrupt comes in. Hence, ISRs must be
re-entrant. And, if the processor allows interrupt priorities, most opportunities/problems that are
known in task scheduling (seeSection 2.4) show up in the interrupt handling too!

• Prioritized interrupt disable.Prioritized enabling/disabling of the interrupts is asoftware feature(that
must have hardware support, of course) that allows the programmer to disable interrupts below a
specifiedpriority level. Microsoft NT is an example of an OS kernel that extensively uses this feature.

• Interrupt nesting.If the processor and/or operating system allow interrupt nesting, then an ISR
servicing one interrupt can itself be pre-empted by another interrupt (which could come from the same
peripheral device that is now being serviced!). Interrupt nesting increases code complexity, because
ISRs must usere-entrantcode only, i.e., the ISR must be written in such a way that it is robust against
being pre-empted at any time.

• Interrupt sharing.Many systems allow different peripheral devices to be linked to the same hardware
interrupt. The ISR servicing this interrupt must then be able to find out which device generated the
interrupt. It does this by (i) checking a status register on each of the devices that share the interrupt, or
(ii) calling in turn all ISRs that users have registered with this IRQ.

Interrupt sharing is implemented in most general purpose operating systems, hence also in the Linux
kernel. (See the file/kernel/softirq.c .) Linux accepts multiple interrupt handlers on the same
interrupt number. The kernel hangs its own ISR on the hardware interrupt, and that kernel ISR invokes
one by one all the handler routines of the ISRs that have been registered by the application programs.
This means that they will be executedafter the hardware ISR has finished, butbeforeany other tasks,
and with interrupts enabled.

While the Linux kernel does interrupt sharing as mentioned in the previous paragraph, RTLinux and
RTAI don’t: they allow only one single ISR per IRQ, in order to be as deterministic as possible. (So,
be careful when putting interface cards in your computer, because all the ones for which you want to
install real-timedrivers must be connected to different interrupt lines!) The real-time ISR that a user
program has registered is directly linked to the hardware interrupt, and hence runs with all interrupts
disabled. The other ISRs on that same IRQ are only executed when the non-real-time Linux kernel on
top of the RTOS gets the occasion to run, i.e., afterall real-time activity is done, also non-ISR activity.

31

Chapter 3. Interrupts

3.4. ISR, DSR and ASR

An ISR should be as short as possible, in order to minimize the delay of interrupts to other ISRs, and the
scheduling of tasks. In general-purpose operating systems, only the ISR that the OS has attached to each
IRQ runs with interrupts disabled, but not the user-registered ISRs. A real real-time operating system, on
the other hand, allows only one ISR per IRQ, otherwise, the time determinism of the other ISRs is not
guaranteed! This makes the job for real-time programmers a bit easier, because they can design
non-re-entrant(and hence often simpler and faster) ISRs: the ISR can store local information without the
danger that it can be overwritten by another invocation of thesameISR code, and it has the guarantee of
atomicity, (i.e., the ISR will run without being pre-empted. However, when the OS and the hardware
allow interrupt priorities, the ISR at one IRQ levelcanbe pre-empted by a higher-priority interrupt.

Typically, a hardware ISR just reads or writes the data involved in the communication with the peripheral
device or the trap that caused the interrupt, acknowledges the interrupt if the peripheral device requires it,
and then, if needed, wakes up another “task” to do any further processing. For example, most drivers for
network cards just transfer the raw packet data to or from the card in the ISR, and delegate all
interpretationof the data to another task. The skeleton of a typical ISR-DSR combination would look
like this:

dsr_thread()
{

while (1) {
wait_for_signal_from_isr();
process_data_of_ISR (); // including all blocking stuff

}
}

interrupt_handler()
{

reset_hardware();
do_isr_stuff();
send_signal_to_wake_up_dsr();
re_enable_interrupts() // some RTOSs do this automatically

}

In the Linux kernel, this latter task used to be abottom half,while the hardware interrupt-driven ISR was
called thetop half. (Note that some operating systems use opposite terminology.) The bottom half
concept is more or less abandoned, and replaced bytaskletsandsoftirqs(see the files
include/linux/interrupt.h andkernel/softirq.c). The reason for abandoning the bottom
halves is that Linux has a hard limit of maximum 32 bottom halves functions. Moreover, they run with
locks over thewholesystem, which is not very good for multi-processor systems. The softirq was

32

Chapter 3. Interrupts

introduced in the 2.3.43 kernel, as a multi-processor-aware version of the bottom half; there are still only
32 of them, so application programmers should stay away from them, and usetaskletsinstead.

(Tasklet are a very appropriate primitive in the context of interrupt servicing, but its usefulness is in no
way limited to only this context!)

“Tasklet” is a bit of an unfortunate name, because it has not much to do with schedulable tasks: a tasklet
is afunctionthat the kernel calls when an ISR has requested a “follow-up” of its interrupt servicing.
Outside of the Linux world, this follow-up function is more often called DSR,Deferred Service
Routine, or (in Microsoft NT),Deferred Processing Call. In Linux, an unlimited number of tasklets is
allowed, and they have the same behaviour and functionality as thesoftirqs.

In Linux the ISR requests the execution of a tasklet/DSR via thetasklet_schedule(&tasklet)

command. The tasklet has first to be initialized with atasklet_init (&tasklet,

tasklet_function, data) ; this call links a tasklet identifier with the function to be executed and a
data structure in which the ISR can store information for processing by the tasklet. The tasklet (or DSR,
or softirq) runs with interruptsenabled, but outside of the context of a particular task, just as the ISR that
has requested it. This means that neither the ISR, nor the DSR can use variables that have been defined
locally in the scope of the task(s) to which they logically are related. The execution of tasklets is
implemented in thekernel/softirq.c file, and both tasklets and softirqs are treated assoftirq
tasks.

Linux (and many other general purpose operating systems) executes the DSRs in sequence (without
mutual pre-emption, that is), at the end of hardware ISRs andbeforethe kernel returns to user space. So,
at the end of each kernel call, the scheduler checks whether some DSRs are ready to be executed; see the
file kernel/softirq.c in the Linux source code.

RTAI also has tasklets, and their semantics is more or less like the Linux tasklets. However, RTAI added
some extra features (see the filesinclude/rtai_tasklets.h andtasklets/tasklets.c):

• There is a special class of tasklets, calledtimers. They can be used to let context-independent
functions run with specified timings.

• RTAI also allows a user space function to be executed as a tasklet.

The RTAI tasklets are executed by a dedicated task and/or ISR in the RTAI kernel.

An ISR is not allowed to use semaphores or any other potentiallyblockingsystem calls: an ISR that
blocks on a lock held by another task causes big trouble, because all interrupts are disabled when the ISR
runs, such that the condition to wake up the other task might never occur. The same holds for RTAI
tasklets: a blocking tasklet also blocks the timer ISR or task that executes all tasklets.

Avoiding non-blocking calls is sufficient for maximum determinism in a UP (“uni-processor”) system. In
a multi-processor system, however, a race condition (seeSection 4.2) can occur between the hardware
ISR on one processor, and any other task on one of the other processors; e.g., because the ISR and the
other task access shared data. (Remember that the ISR cannot use a lock!) The easiest solution is to not

33

Chapter 3. Interrupts

only mask the interrupts for one processor, but for all of them. This, however, preventsall processors
from working. One way around this arespinlocks(seeSection 4.6.3). The operating system also helps a
bit, by guaranteeing that tasklets areserialized over all processorsin the system; i.e., only one is
executed at a time.

Some operating systems have one more level of interrupt sharing: besides the ISR and DSR functions,
they offer the possibility to useAsynchronous Service Routines (ASR). (This name is not as standardized
as ISR and DSR.) In Microsoft NT, it is called anAsynchronous Procedure Call; eCos calls it DSR;
Linux doesn’t have the concept. ASRs can run after all DSRs have finished, but before normal tasks get a
chance to be scheduled. Their goal is to execute that part of the reaction to an interrupt, that needs the
thread’s context; for example, to make the thread stop some of its activities, including itself.

The eCos operating system executes an ASR with interrupts enabled, with the scheduler disabled, and
always in the context of one specific thread. So, the ASR can call all system functions, which is not the
case for ISR and DSR, which are not bound to a deterministically defined context.

The RTAI operating system gives the possibility to add to each real-time task a user-defined function that
runs in the task’s context and with interrupts disabled,everytime that the task gets scheduled (hence, not
just when an interrupt has occurred). This allows, for example, an interrupt servicing to indirectly change
some task-specific attributes at each scheduling instant. This user-defined function is called “signal() ”
and is filled in byrt_task_init() (XXX ???) in the task data structure. However, it’s just a pointer to
a function, so it could be filled in or changed on-line.

34

Chapter 4. IPC: synchronization

The decision about what code to run next is made by the operating system (i.e., its scheduler), or by the
hardware interrupts that force the processor to jump to an associated interrupt routine. To the scheduler
of the OS, all tasks are just “numbers” in scheduling queues; and interrupts “talk” to their own interrupt
service routine only. So, scheduler and interrupts would be sufficient organizational structure in a system
where all tasks just live next to each other, without need for cooperation. This, of course, is not sufficient
for many applications. For example, an interrupt service routine collects measurements from a peripheral
device, this data is processed by a dedicated control task, the results are sent out via another peripheral
device to an actuator, and displayed for the user by still another task.

Hence, the need exists forsynchronizationof different tasks (What is the correct sequence and timing to
execute the different tasks?), as well as fordata exchangebetween them. Synchronization and data
exchange are complementary concepts, because the usefulness of exchanged data often depends on the
correct synchronization of all tasks involved in the exchange. Both concepts are collectively referred to
asInterprocess communication(“IPC”).

The role of the operating system in matters of IPC is to offer a sufficiently rich set of IPC-supporting
primitives. These should allow the tasks to engage in IPC without having to bother with the details of
their implementation and with hardware dependence. This is not a minor achievement of the operating
system developers, because making these IPC primitives safe and easy to use requires a lot of care and
insight. In any case, the current state-of-the-art in operating systems’ IPC support is such that they still
don’t offer much more than justprimitives. Hence, programmers have to know how to apply these
primitives appropriately when building software systems consisting of multiple concurrent tasks; this
often remains a difficult because error-prone design and implementation job. Not in the least because no
one-size-fits-allsolution can exist for all application needs.

4.1. IPC terminology

The generalsynchronizationanddata exchangeproblems involve (at least) two tasks, which we will call
the “sender” and the “receiver”. (These tasks are often also called “writer” and “reader”, or “producer”
and “consumer”.) Forsynchronization, “sender” and “receiver” want to make sure they are both in (or
not in) specified parts of their code at the same time. Fordata exchange, “sender” and “receiver” want to
make sure they can exchange data efficiently, without having to know too much of each other
(“decoupling”,Chapter 14), and according to several differentpolicies, such as blocking/non-blocking,
or with/without data loss.

Data exchange has a natural direction of flow, and, hence, the terminology “sender” and “receiver” is
appropriate. Synchronization is often without natural order or direction of flow, and, hence, the
terminology “sender” and “receiver” is less appropriate in this context, and “(IPC) client” might be a
more appropriate because symmetric terminology. Anyway, the exact terminology doesn’t matter too
much. Unless we want to be more specific, we will use the generic system callssend() andreceive()

to indicate the IPC primitives used by sender and receiver, respectively.

35

Chapter 4. IPC: synchronization

4.1.1. Blocking/Non-blocking

IPC primitives can have different effects ontask scheduling:

• Blocking.When executing thesend() part of the IPC, the sender task is blocked (i.e., non-available
for scheduling) until the receiver has accepted the IPC in areceive() call. And similarly the other
way around. If both the sender and the receiver block untilboth of themare in theirsend() and
receive() commands, the IPC is calledsynchronous. (Other names are:rendez-vous, or handshake.)
Synchronous IPC is the easiest to design with, and is very similar to building hardware systems.

• Non-blocking (asynchronous).Sender and receiver are not blocked in their IPC commands. This
means that there is incomplete synchronization: the sender doesn’t know when the receiver will get its
message, and the receiver cannot be sure the sender is still in the same state as when it sent the
message.

• Blocking with time out.The tasks wait in their IPC commands for at most a specified maximum
amount of time.

• Conditional blocking.The tasks block in their IPC commands only if a certain condition is fulfilled.

Of course, blocking primitives should be used with care in real-time sections of a software system.

4.1.2. Coupling

IPC primitives can use different degrees ofcoupling:

• Named connection: sender and receiver know about each other, and cancall each other by name. That
means that the sender fills in the unique identifier of the receiver in itssend() command, and vice
versa. This can set up a connection between both tasks, in a way very similar to the telephone system,
where one has to dial the number of the person one wants to talk to.

The connection can beone-to-one, or one-to-many(i.e., the single sender sends to more than one
receiver, such as for broadcasting to a set of named correspondents), ormany-to-one(for example,
many tasks send logging commands to an activity logging task), ormany-to-many(for example, video
conferencing).

• Broadcast: the sender sends its message to all “listeners” (without explicitly calling them by name) on
the (sub-branch of the)networkto which it is connected. The listeners receive the message if they
want, without the sender knowing exactly which tasks have really used its message.

• Blackboard: while a broadcast is a message on a network-like medium (i.e., the message is not stored
in the network for later use), a blackboard IPCstoresthe messages from different senders. So,
receivers can look at them at any later time.

• Object request broker(ORB): the previous types of IPC all imply a rather high level ofcoupling
between sender and receiver, in the sense that they have to know explicitly the identity of their
communication partner, of the network branch, or of the blackboard. The current trend towards more
distributedanddynamically reconfigurablecomputer systems calls for moreloosely-coupledforms of
IPC. The ORB concept has been developed to cover these needs: a sendercomponentregisters its

36

Chapter 4. IPC: synchronization

interfacewith the ORB; interested receivers can ask the broker to forward their requests to an
appropriate sender (“server”) component, without the need to know its identity, nor its address.

4.1.3. Buffering

IPC primitives can use different degrees ofbuffering, ranging from the case where the operating system
stores and delivers all messages, to the case where the message is lost if the receiver is not ready to
receive it.

Not all of the above-mentioned forms of IPC are equally appropriate forreal-timeuse, because some
imply too much and/or too indeterministic overhead for communication and resource allocation.

4.2. Race conditions and critical sections

Often, two or more tasks need access to the same data or device, for writing and/or reading. The origin of
most problems withresource sharing(or resource allocation) in multi-tasking and multi-processor
systems is the fact that operations on resources can usually not be performedatomically, i.e., as if they
were executed as one single, non-interruptable instruction that takes zero time. Indeed, a task that
interfaces with a resource can at any instant be pre-empted, and hence, when it gets re-scheduled again, it
cannot just take for granted that the data it uses now is in the same state (or at least, a state that is
consistent with the state) before the pre-emption. Consider the following situation:

data number_1;
data number_2;

task A
{ data A_number;

A_number = read(number_1);
A_number = A_number + 1;
write(number_2,A_number);

}

task B
{ if (read(number_1) == read(number_2))

do_something();
else

do_something_else();
}

}

task B takes different actions based on the (non-)equality ofnumber_1 andnumber_2 . But task B

can be pre-empted in itsif statement bytask A , exactly at the moment thattask B has already read

37

Chapter 4. IPC: synchronization

number_1 , but not yetnumber_2 . This means that it has readnumber_1 before the pre-emption,
andnumber_2 after the pre-emption, which violates the validity of the test.

The if statement is one example of a so-calledcritical section: it is critical to the validity of the code
that theaccess to the dataused in that statement (i.e.,number_1 andnumber_2) be executed
atomically, i.e., un-interruptable by anything else. (Most)machine codeinstructions of a given processor
execute atomically; but instructions in higher-level programming languages are usually translated into a
sequence of many machine code instructions, such that atomicity cannot be guaranteed.

There are three generic types of critical sections:

• Access to the same data from different tasks,as illustrated by the example above.

• Access to a service.For example, allocation of a resource, execution of a “transaction” on a database.
The service typically has to process a sequence of queries, and these have to succeed as a whole, or
fail as a whole.

• Access to procedure code.Application tasks often run exactly the same code (for example the control
algorithm in each of the joints of a robot), but on other data, and some parts of that code should be
executed by one task at a time only.

Of course, many applications involve combinations of different resource sharing needs.

The problem in all above-mentioned examples of access to shared resources is often called arace
condition: two or more tasks compete (“race”) against each other to get access to the shared resources.
Some of these race conditions have been given a special name:

• Deadlock.Task A has locked a resource and is blocked waiting for a resource that is locked bytask

B, while task B is blocked waiting for the resource that is locked bytask A .

• Livelock.This situation is similar to the deadlock, with this difference: both tasks are not blocked but
are actively trying to get the resource, in some form ofbusy waiting.

• Starvation.In this situation, some tasks never get the chance to allocate the resource they require,
because other tasks always get priority.

The four conditions that have to be satisfied in order to (potentially!) give rise to a deadlock are:

1. Locks are onlyreleased voluntarilyby tasks. So, a task that needs two locks might obtain the first
lock, but block on the second one, so that it is not able anymore to voluntarily release the first lock.

2. Tasks can only get in a deadlock if they needmore than one lock, and have to obtain them in a
(non-atomic)sequentialorder.

3. The resources guarded by locks can only beallocated to one single task. (Or to a finite number of
tasks.)

4. Tasks try to obtain locks that other tasks have already obtained, and these tasks form acircular list.
For example,task A is waiting for task B to release a lock,task B is waiting for task C to
release a lock, andtask C is waiting for task A .

38

Chapter 4. IPC: synchronization

As soon asoneof these four conditions is not satisfied, a deadlock can not occur. Moreover, these
conditions arenot sufficientfor deadlocks to occur: they just describe the conditions under which it is
possibleto have deadlocks.

The literature contains many examples of deadlockavoidanceandpreventionalgorithms. Deadlock
avoidance makes sure that all four necessary conditions are never satisfied at the same time; deadlock
prevention allows the possibility for a deadlock to occur, but makes sure that this possibility is never
realized. Both kinds of algorithms, however, often require some form of “global” knowledge about the
states of all tasks in the system. Hence, they are too indeterministic for real-time execution, and not
suitable forcomponent-baseddesign (because the requirement for global knowledge is in contradiction
with the loose couplingstrived for in component systems (seeChapter 14).

There are some guaranteed deadlock avoidance algorithms, that are reasonably simple to implement. For
example, a deadlock cannot occur ifall programsalways take locks in the same order. This requires a
globally known and ordered lists of locks, and coding discipline from the programmers. Other prevention
algorithms use some of the following approaches: only allow each task to hold one resource; pre-allocate
resources; force release of a resource before a new request can be made; ordering all tasks and give them
priority according to that order.

Race conditions occur on a single processor system because of its multi-tasking and interrupt
functionalities. But they show up even more onmulti-processor systems: even if one CPU is preventing
the tasks that it runs from accessing a resource concurrently, a task on another CPU might interfere.

4.3. Signals

Signalsare one of the IPC synchronization primitives used forasynchronous notification: one task fires a
signal, whichcancause other tasks to start doing thins. The emphasis is on “asynchronous” and on
“can”:

• Asynchronous: the tasks that react to signals are in a completely arbitrary state, unrelated with the
signaling task. Their reaction to the signal also need not be instantaneous, or synchronized, with the
signaling task. The task that sends the signal, and the tasks that use the signal, need not share any
memory, as in the case of semaphores or mutexes. This makes signals about the only synchronization
primitive that is straightforward to scale over anetwork.

• Can: the signaling task fires a signal, and continues with its job. Whether or not other tasks do
something with its signal is not of its concerns. The operating system takes care of the delivery of the
signal, and it nobody wants it, it is just lost.

In most operating systems, signals

• arenot queued. A task’s signal handler has no means to detect whether it has been signaled more than
once.

• carry no data.

39

Chapter 4. IPC: synchronization

• have no deterministic delivery time or order. A task that gets signaled is not necessarily scheduled
immediately.

• have no deterministic order. A task that gets signaled multiple times has no way to find out in which
temporal order the signals were sent.

So, these are reasons to avoid signals forsynchronization between two running tasks, [BrinchHansen73].
In other words:notificationin itself is not sufficient forsynchronization. Synchronization needs two tasks
that do something together, while taking notice of each other, and respecting each other’s activities. Later
sections of the text present IPC primitives that are better suited for synchronization than signals.

POSIX has standardized signals and their connection to threads. The OS offers a number of pre-defined
signals (such as “kill”), and task can ask the operating system to connect a handler (i.e., a function) to a
particular signal on its behalf. The handler is “registered”, using the system callsigaction() . The task
also asks the OS to receive or block a specific subset of all available signals; this is its “signal mask”.
Whenever a signal is received by the operating system, it executes the registered handlers of all tasks that
have this signal in their mask. The task can also issue asigwait(signal) , which makes it sleep until
thesignal is received; in this case, the signal handler isnot executed. Anyway, signals are a bit difficult
to work with, as illustrated by this quote from thesignal man page:

For sigwait to work reliably, the signals being waited for must be blocked in all threads, not only in the
calling thread, since otherwise the POSIX semantics for signal delivery do not guarantee that it’s the thread
doing thesigwait that will receive the signal. The best way to achieve this is block those signals before any
threads are created, and never unblock them in the program other than by callingsigwait .

The masks are also set on aper-threadbasis, but the signal handlers are shared between all threads in a
process. Moreover, the implementation of signals tend to differ between operating systems, and the
POSIX standard leaves room for interpretation of its specification. For example, it doesn’t say anything
about theorder in which blocked threads must be woken up by signals. So, these are reasons why many
developers don’t use signals too much.

POSIX has a specification for so-called “real-time signals” too. Real-time signals are queued, they pass a
4-byte data value to their associated signal handler, and they are guaranteed to be delivered in numerical
order, i.e., from lowest signal number to highest. For example, RTLinux implements POSIX real-time
signals, and offers 32 different signal levels. (See the fileinclude/rtl_sched.h in the RTLinux
source tree.) And RTAI also offers a 32 bit unsigned integer for events, but in a little different way: the
integer is used to allow signallingmultipleevents: each bit in the integer is an event, and a task can ask to
be notified when a certain AND or OR combination of these bits becomes valid. (See the file
include/rtai_bits.h in the RTAI source tree.)

4.4. Exceptions

Exceptionsare signals that are sent (“raised”)synchronously, i.e., by the task that is currently running.
(Recall that signals areasynchronous, in the sense that a task can receive a signal at any arbitrary
moment in its lifetime.) Exceptions are, roughly speaking, a signal from a task to itself. As operating
system primitive, an exception is a software interrupt (seeSection 3.1) used to handle non-normal cases
in the execution of a task: numerical errors; devices that are not reachable or deliver illegal messages;
etc. The software interrupt gives rise to the execution of an exception handler, that the task (or the

40

Chapter 4. IPC: synchronization

operating system, or another task) registered previously. In high-level programming languages, an
exception need not be a software interrupt, but it is a function call to the language’sruntimesupport, that
will take care of the exception handling.

4.5. Atomic operations

The concept of anatomic operationis very important in interprocess communication, because the
operating system must guarantee that the taking or releasing a lock is done without interruption. That can
only be the case if thehardwareoffers some form of atomic operation on bits or bytes. Atomic
operations come in various forms: in the hardware, in the operating system, in a language’s run-time, or
in an application’s support library, but always, the hardware atomic operation is at the bottom of the
atomic service. This Section focuses on thehardwaresupport that is commonly available.

Most processors offer an atomic machine instruction totest a bit(or a byte or a word). In fact, the
operation not justteststhe bit, but alsosetsthe bit if that bit has not already been set. Hence, the
associated assembly instruction is often calledtest_and_set() , or something similar. Expressed in
pseudo-code, thetest_and_set() would look like this:

int test_and_set(int *lock){
int temp = *lock;
*lock = 1;
return temp;

}

Another atomic instruction offered by (a fewer number of) processors is
compare_and_swap(address,old,new) : it compares a value at a given memory address with an
“old” value given as parameter, and overwrites it with a “new” value if the compared values are the
same; in this case, it returns “true”. If the values are not equal, the new value is copied over the old value.
Examples of processors with acompare_and_swap() are the Alpha, ia32/ia64, SPARC and the
M68000/PowerPC. (Look in the Linux source tree for the__HAVE_ARCH_CMPXCHGmacro to find
them.)

Thecompare_and_swap() operation is appropriate for the implementation of the synchronization
needed in, for example,swinging pointers(seeSection 4.10): in this case, the parameters of the
compare_and_swap(address,old,new) are the address of the pointer and its old and new values.

The following pseudo-implementation is simplest to understand the semantics of the
compare_and_swap() :

int compare_and_swap(address, old, new) {
get_lock();
if (*address == old) {

*address == new;
release_lock();

41

Chapter 4. IPC: synchronization

return (1);
} else {

release_lock();
return (0);

};

Thecompare_and_swap() can, however, be implemented without locks, using the following pair of
atomic instructions:load_linked() andstore_conditional() . Together, they implement an
atomic read-modify-write cycle. The idea is that theload_linked() instruction marks a memory
location as “reserved” (but does not lock it!) and if no processor has tried to change the contents of that
memory location when thestore_conditional() takes place, the store will succeed, otherwise it will
fail. If it fails, the calling task must decide what to do next: retry, or do something else.

This pair of instructions can be used to implementcompare_and_swap() in an obvious way, and
without needing a lock:

int compare_and_swap(address, old, new) {
temp = load_linked(address);
if (old == temp) return store_conditional(address,new);
else return;

}

The testold == temp need not take place in a critical section, because both arguments arelocal to this
single task.

There are someimportant caveatswith thecompare_and_swap() function:

• It only compares thevaluesat a given memory location, but does not detect whether (or how many
times) this value has changed! That is: a memory location can be changed twice and have its original
value back. To overcome this problem, a more extensive atomic operation is needed, the
double_word_compare_and_swap() , which also checks atagattached to the pointer, and that
increments the tag at each change of the value of the pointer. This operation is not very common in
processors!

• It is not multi-processor safe: (TODO: why exactly?)

While the hardware support forlocksis quite satisfactory, there is no support fortransaction rollback.
Transaction rollback means that the software can undo the effects of a sequence of actions, in such a way
that the complete sequence takes place as a whole, or else is undone without leaving any trace.
Transaction rollback is a quite advanced feature, and not supported by operating systems; it’s however a
primary component of high-end database servers.

42

Chapter 4. IPC: synchronization

4.6. Semaphore, mutex, spinlock, read/write lock, barrier

Race conditions can occur because the access to a shared resource is not well synchronized between
different tasks. One solution is to allow tasks to get alockon the resource. The simplest way to lock is to
disable all interrupts and disable the scheduler when the task wants the resource. This is certainly quite
effective for the running task, but also quite drastic and far from efficient for the activity of all other
tasks. Hence, programmers should not use these methods lightly if they want to maintain real
multi-tasking in the system. So, this text focuses on locking mechanisms that donot follow this drastic
approach. Basically, programmers can choose between two types of locking primitives (see later sections
for more details):

1. One based onbusy waiting. This method has overhead due to wasting CPU cycles in the busy
waiting, but it avoids the overhead due to bookkeeping of queues in which tasks have to wait.

2. One based on the concept of asemaphore. This method has no overhead of wasting CPU cycles, but
it does have the overhead of task queue bookkeeping and context switches.

A generic program that uses locks would look like this:

data number_1;
data number_2;
lock lock_AB;

task A
{ data A_number;

get_lock(lock_AB);
A_number = read(number_1);
A_number = A_number + 1;
write(number_2,A_number);
release_lock(lock_AB);

}

task B
{ get_lock(lock_AB);

i = (read(number_1) == read(number_2));
release_lock(lock_AB);
if (i)

do_something();
else do_something_else();
}

}

Theget_lock() andrelease_lock() function calls do not belong to any specific programming
language, library or standard. They have just been invented for the purpose of illustration of the idea.
When eithertask A or task B reaches its so-calledcritical section, it requests the lock; it gets the lock
if the lock is not taken by the other task, and can enter the critical section; otherwise, it waits (“blocks”,
“sleeps”) till the other task releases the lock at the end of its critical section. A blocked task cannot be
scheduled for execution, so locks are to be used with care in real-time applications: the application
programmer should be sure about themaximumamount of time that a task can be delayed because of

43

Chapter 4. IPC: synchronization

locks held by other tasks; and this maximum should be less that specified by the timing constraints of the
system.

Theget_lock() should be executedatomically, in order to avoid a race condition when both tasks try
to get the lock at the same time. (Indeed, the lock is in this case an example of a shared resource, so
locking is prone to all race conditions involved in allocation of shared resources.) The atomicity of
getting a lock seems to be a vicious circle: one needs a lock to guarantee atomicity of the execution of
the function that must give you a lock. Of course, (only) the use of an atomic machine instruction can
break this circle. Operating systems implement theget_lock() function by means of a atomic
test_and_set() machine instruction (seeSection 4.5) on a variable associated with the lock.

Another effective (but not necessarily efficient!) implementation of a lock is as follows (borrowed from
the Linux kernel source code):

int flags;

save_flags(flags); // save the state of the interrupt vector
cli(); // disable interrupts

// ... critical section ...
restore_flags(flags); // restore the interrupt vector to

// its original state
sti(); // enable interrupts

(Note that, in various implementations,restore_flags() implicitly usessti() .)

The implementation described above is not always efficient because: (i) in SMP systems thecli() turns
off interrupts onall CPUs (seeSection 3.1), and (ii) if a test_and_set() can do the job, one should
use it, because the disabling of the interrupts and the saving of the flags generate a lot of overhead.

The lock concept can easily lead to unpredictable latencies in the scheduling of a task: the task can sleep
while waiting for a lock to be released; it doesn’t have influence on how many locks other tasks are
using, how deep the locks arenested, or how well-behaved other tasks use locks.Bothtasks involved in a
synchronization using a lock have (i) to agree about which lock they use to protect their common data (it
must be in their common address space!), (ii) to be disciplined enough to release the lock, and (iii) to
keep the critical section as short as possible. Hence, the locks-based solution toaccess or allocation
constraintsis equallyindirect and primitiveas the priority-based solution totiming constraints: it doesn’t
protect thedatadirectly, but synchronizes thecodethat accesses the data. As with scheduling priorities,
locks give disciplined(!) programmers a means to reach deterministic performance measures. But even
discipline is not sufficient to guarantee consistency in large-scale systems, where many developers work
more or less independently on different parts.

Locks are inevitable for tasksynchronization, but for some commondata exchangeproblems there exist
lock-freesolutions (seeSection 4.10). The problem with using locks is that they make an application
vulnerable for thepriority inversionproblem (seeSection 4.8). Another problem occurs when the CPU
on which the task holding the lock is running, suddenly fails, or when that task enters a trap and/or
exception (seeSection 3.1), because then the lock is not released, or, at best its release is delayed.

44

Chapter 4. IPC: synchronization

4.6.1. Semaphore

The name “semaphore” has its origin in the railroad world, where a it was the (hardware) signal used to
(dis)allow trains to access sections of the track: when the semaphore was lowered, a train could proceed
and enter the track; when entering, the semaphore was raised, preventing other trains from entering;
when the train in the critical section left that section, the semaphore was lowered again.

Edsger Dijkstra introduced the semaphore concept in the context of computing in 1965, [Dijkstra65]. A
semaphore is aninteger number(initialized to a positive value), together with a set of function callsto
countup() anddown() . POSIX names forup() anddown() aresem_wait() andsem_signal() .
POSIX also introduces thenon-blockingfunctionssem_post() (set the semaphore) and
sem_trywait() (same assem_wait() but instead of blocking, the state of the semaphore is given in
the function’s return value).

A task that executes asem_wait() blocks if the count is zero or negative. The count is decremented
when a task executes asem_signal() ; if this makes the semaphore value non-negative again, the
semaphore unblocks one of the tasks that were blocking on it.

So, the number of tasks that a semaphore allows to pass without blocking is equal to the positive number
with which it is initialized; the number of blocked tasks is indicated by the absolute value of a negative
value of the semaphore count.

The semaphoreS must also be created (sem_init(S,initial_count)) and deleted
(sem_destroy(S)) somewhere. Theinitial_count is the number of allowedholdersof the
semaphore lock. Usually, that number is equal to 1, and the semaphore is called abinary semaphore..
The general case is called acounting semaphore,.Most operating systems offer both, because their
implementations differ only in the initialization of the semaphore’s count.

From an implementation point of view, the minimum data structure of a semaphore has two fields:

struct semaphore {
int count; // keeps the counter of the semaphore.
queue Q; // lists the tasks that are blocked on the semaphore.

}

And (non-atomic!) pseudo code forsem_wait() andsem_signal() (for abinarysemaphore)
basically looks like this (see, for example,upscheduler/rtai_sched.c of the RTAI code tree for
more detailed code):

semaphore S;

sem_wait(S)
{

if (S.count > 0) then S.count = S.count - 1;
else block the task in S.Q;

}

45

Chapter 4. IPC: synchronization

sem_signal(S)
{

if (S.Q is non-empty) then wakeup a task in S.Q;
else S.count = S.count + 1;

}

So, at each instant in time, a negativeS.count indicates the fact that at least one task is blocked on the
semaphore; the absolute value ofS.count gives the number of blocked tasks.

The semantics of the semaphore as a lock around a critical section is exactly as in its historical railway
inspiration. However, a semaphore can also be used for differentsynchronizationgoals: if task A just
wants tosynchronizewith task B , (irrespective of the fact whether or not it needs to excludetask B

from entering a shared piece of code), both tasks can use thesem_wait() andsem_signal() function
calls.

Here is a pseudo code example of two taskstask A andtask B that synchronize their mutual job by
means of a semaphore:

semaphore S;

task A: task B:
main() main()
{ ... { ...

do_first_part_of_job(); do_something_else_B();
sem_signal(S); sem_wait(S);
do_something_else_A(); do_second_part_of_job();
... ...

} }

Finally, note that a semaphore is a lock for which the normal behaviour of the locking task is to go to
sleep. Hence, this involves the overhead of context switching, so don’t use semaphores for critical
sections that should take only a very short time; in these casesspinlocksare a more appropriate choice
(Section 4.6.3).

4.6.2. Mutex

A mutex (MUTual EXclusion) is often defined as a synonym for a binary semaphore. However, binary
semaphore and mutex have an important semantic distinction: a semaphore can be “signaled” and
“waited for” by anytask, while only the task that hastakena mutex is allowed to release it. So, a mutex
has anowner, as soon as it has been taken. This semantics of a mutex corresponds nicely to its envisaged
use as a lock that givesonly one taskaccess to a critical section, excluding all others. That is, the task
entering the critical sectiontakesthe mutex, andreleasesit when it exits the critical section. When
another task tries to take the mutex when the first one still holds it, that other task willblock. The

46

Chapter 4. IPC: synchronization

operating systems unblocks one waiting task as soon as the first task releases the mutex. This mutually
exclusive access to a section of the code is often also calledserialization.

A POSIX mutex, for example, is a (counting) semaphore withpriority inheritanceimplied (seeSection
4.9). The basic POSIX API for mutexes is:

pthread_mutex_t lock;
int pthread_mutex_init(// Initialise mutex object:

pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutex_attr

);

// Destroy mutex object.
int pthread_mutex_destroy(pthread_mutex_t *mutex);

// Non blocking mutex lock:
int pthread_mutex_trylock(pthread_mutex_t *mutex);

// Blocking mutex lock:
int pthread_mutex_lock(pthread_mutex_t *mutex);

// Mutex unlock:
int pthread_mutex_unlock(pthread_mutex_t *mutex);

A recursive mutex(or recursive semaphore) is a mutex that can be locked repeatedly by the owner.
Otherwise the thread that holds a mutex and would try to take the mutex again would lock itself, hence
leading to a deadlock. This recursive property is useful for complex mutual exclusion situations, such as
in monitors, Section 15.2.

The POSIX API requires to indicate explicitly that a mutex should be recursive:

pthread_mutexattr_settype(&mutex, PTHREAD_MUTEX_RECURSIVE);

Some operating systems (e.g., VxWorks) use the recursive mutex mode as the default. Some offer a
so-called afastmutex: such a mutex is locked and unlocked in the fastest manner possible on the given
operating system (i.e., it doesn’t perform any error checks). A fast mutex can only be locked one single
time bypthread_mutex_lock() , andall subsequent calls cause the calling thread to block until the
mutex is freed; also the thread that holds the mutex is locked, which causes a deadlock. So, be careful
with using fast mutexes.

Many programmers tend to think that a semaphore is necessarily a more primitive RTOS function than a
mutex. This is not necessarily so, because one can implement acounting semaphorewith a mutex and a
condition variable (Section 4.7):

int sem_wait(sem_t *sem)
{

pthread_mutex_lock(&sem->mutex);

47

Chapter 4. IPC: synchronization

while (sem->count == 0) pthread_cond_wait(&sem->cond, &sem->mutex);
sem->count--;
pthread_mutex_unlock(&sem->mutex);
return(0);

}

4.6.3. Spinlocks

A “spinlock” is the appropriate lock mechanism for multi-processor systems, and for use in all kinds of
contexts (kernel call, interrupt service routine, etc.). They are phasing out the use of “hard” exclusion
methods such ascli() andsti() , because: (i) these are too “global”, in the sense that they don’t
specify the context in which the lock is needed; (ii) it is usually not necessary to disable interrupts in
order to protect two tasks from entering a critical section. However, you can not do all kinds of things
when running inside a critical section locked by a spinlock! For example, do nothing that can take a
“long” time, or that can sleep. Use semaphores or mutexes for this kind of locks.

The task that wants to get a spinlock tries to get a lock that is shared by all processors. If it doesn’t get
the lock, it keeps trying (“busy waiting”) till it succeeds:

int spinlock(spinlock_t l){
while test_and_set(l) {};

};

So, it’s clear why you shouldn’t do things that take a long time within a spinlock context: another task
could be busy waiting for you all the time! An example of a spinlock in the Linux kernel is the “Big
Kernel Lock” (Section 1.2): the BKL is arecursivespinlock, i.e., it can be locked multiple times
recursively. That means that you (possibly in two separate tasks) can lock it twice in a row, but you also
have to release it twice after that.

Spinlocks come in three versions:

1. spin_lock andspin_unlock : the classical mutual exclusion version, allowing interrupts to occur
while in the critical section.

2. spin_lock_irq andspin_unlock_irq : as above, but with interrupts disabled.

3. spin_lock_irqsave andspin_unlock_irqrestore : as above, but saving the current state flag
of the processor.

All of them work on (the address of) variables of the typespinlock_t . One should call
spin_lock_init() before using the lock. The spinlock versions that disable interrupts donot disable
interrupts on theotherCPUs than the one the calling task is running on, in order not to bring down the
throughput of the whole multi-processor system. An example (Linux specific!) of the usage (not the
implementation!) of a spinlock with local interrupt disabling is given here:

spinlock_t l = SPIN_LOCK_UNLOCKED;
unsigned long flags

48

Chapter 4. IPC: synchronization

spin_lock_irqsave(&l, flags);
/* critical section ... */
spin_unlock_irqrestore(&l, flags);

So, both the concurrency and the multi-processor issues are dealt with. On a uni-processor system, this
should translate into:

unsigned long flags;
save_flags(flags);
cli();
/* critical section ... */
restore_flags(flags);

Note: the POSIX functionpthread_spin_lock() has this semantics of disabling interrupts.

Spinlocks are a trade-off between (i) disabling all interrupts on all processors (costly, safe, but what you
don’t want to do on a multi-processor system or a pre-emptable kernel), and (ii) wasting time in busy
waiting (which is the only alternative that remains). So, spinlocks work if the programmer is disciplined
enough to use them with care, that is for guaranteedveryshort critical sections. In principle, the latency
induced by a spinlock isnot deterministic, which is in contradiction to its use for real-time. But they
offer a good solution in the case that the scheduling and context switching times generated by the use of
locks, are larger than the time required to execute the critical section the spinlock is guarding.

There is a reason why atomictest-and-setoperations are not optimal on multi-processor systems built
from typical PC architecture processors: thetest-and-setperformed by one processor can make parts of
the caches on the other processors invalid because part of the operation involveswriting to memory. And
this cache invalidating lowers the benefits to be expected from caching. But the following
implementation can help a bit:

int spinlock(spinlock_type l){
while test_and_set(l) { // enter wait state if l is 1

while (l == 1) {} // stay in wait state until l becomes 0
};

};

The difference with the previous implementation is that thetest_and_set() requires a readanda
write operation (whichhasto block memory access for other CPUs), while the testl == 1 requires only
a read, which can be done from cache.

4.6.4. Read/write locks

Often, data has only to be protected against concurrent writing, not concurrent reading. So, many tasks
can get a read lock at the same time for the same critical section, but only one single task can get a write
lock. Before this task gets the write lock, all read locks have to be released. Read locks are often useful to
access complex data structures like linked lists: most tasks only read through the lists to find the element
they are interested in; changes to the list are much less common. (See alsoSection 5.5.)

49

Chapter 4. IPC: synchronization

Linux has a reader/writer spinlock (see below), that is used similarly to the standard spinlock, with the
exception of separate reader/writer locking:

rwlock_t rwlock = RW_LOCK_UNLOCKED; // initialize

read_lock(&rwlock);
/* critical section (read only) ... */
read_unlock(&rwlock);

write_lock(&rwlock);
/* critical section (read and write) ... */
write_unlock(&_rwlock);

Similarly, Linux has aread/write semaphore.

4.6.5. Barrier

Sometimes it is necessary to synchronize a lot of threads, i.e., they should wait untilall of them have
reached a certain “barrier.” A typical implementation initializes the barrier with a counter equal to the
number of threads, and decrements the counter whenever one of the threads reaches the barrier (and
blocks). Each decrement requires synchronization, so the barrier cost scales linearly in the number of
threads.

POSIX (1003.1-2001) has apthread_barrier_wait() function, and apthread_barrier_t
type. RTAI has something similar to a barrier but somewhat more flexible, which it calls “bits” (see file
bits/rtai_bits.c in the RTAI source tree), and what some other operating systems callflagsor
events. Thebits is a 32 bit value, that tasks can share to encode any kind of AND or OR combination of
binary flags. It can be used as a barrier for a set of tasks, by initializing the bits corresponding to each of
the tasks to “1” and letting each task that reaches the barrier reset its bit to “0”. This is similar to a
semaphore (or rather, an array of semaphores), but it is not “counting”.

4.7. Condition variable for synchronization within mutex

Condition variables have been introduced for two reasons (which amount basically to one single reason):

1. It allows to make a task sleep until a certainapplication-defined logical criteriumis satisfied.

2. It allows to make a task sleepwithin a critical section. (Unlike a semaphore.) This is in fact the same
reason as above, because the critical section is needed to evaluate the application-defined logical
criterium atomically.

The solution to this problem is well known, and consists of thecombinationof three things:

1. A mutex lock(seeSection 4.6.2).

2. A boolean expression, which represents the above-mentioned logical criterium.

50

Chapter 4. IPC: synchronization

3. A signal(seeSection 4.3), that other tasks can fire to wake up the task blocked in the condition
variable, so that it can re-check its boolean expression.

The lock allows to check the boolean expression “atomically” in a critical section, and to wait for the
signal within that critical section. It’s the operating system’s responsibility to release the mutex behind
the back of the task, when it goes to sleep in the wait, and to take it again when the task is woken up by
the signal.

There exists a POSIX standard for condition variables. Here are some of the major prototypes for the
pthread_cond_wait() system call, used to make a task wait for its wake-up signal:

#include <pthread.h>

// Initialise condition attribute data structure:
int pthread_condattr_init(pthread_condattr_t *attr);

// Destroy condition attribute data structure:
int pthread_condattr_destroy(pthread_condattr_t *attr);

// Initialise conditional variable:
int pthread_cond_init(

pthread_cond_t *cond,
const pthread_condattr_t *cond_attr

);

// Destroy conditional variable:
int pthread_cond_destroy(pthread_cond_t *cond);

// Wait for condition variable to be signaled:
int pthread_cond_wait(

pthread_cond_t *cond,
pthread_mutex_t *mutex

);

// Wait for condition variable to be signaled or timed-out:
int pthread_cond_timedwait(

pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime

);

// Restart one specific waiting thread:
int pthread_cond_signal(pthread_cond_t *cond);

// Restart all waiting threads:
int pthread_cond_broadcast(pthread_cond_t *cond);

Others system calls that take the same arguments are:pthread_cond_init() (initialize the data
structure with which a condition variable is built),pthread_cond_signal() (signal the fact that a
condition variable has changed state),pthread_cond_broadcast() (signals the state change toall
tasks that are waiting for the signal, and wakes them all),pthread_cond_timedwait() (wait for the
signal, or for a timer to expire, whichever comes first).

51

Chapter 4. IPC: synchronization

Thesem_wait() of Section 4.6.2shows a typical application of a condition variable. We repeat the
code here for convenience:

int sem_wait(sem_t *sem)
{

pthread_mutex_lock(&sem->mutex);
while (sem->count == 0) pthread_cond_wait(&sem->cond, &sem->mutex);
sem->count--;
pthread_mutex_unlock(&sem->mutex);
return(0);

}

The semaphore has a mutexsem->mutex , a condition signalsem->cond , and its particular boolean
expression, namely itscount being zero or not. The checking of this condition, as well as the possible
decrement of thecount , must be done in a critical section, in order to synchronize access to the
semaphore with other tasks. Thepthread_cond_wait() function makes the calling task block on the
condition variable if the boolean expression evaluates to false. The operating system releases the mutex
when the task must block, so that other tasks can use the semaphore. When the condition is signaled (this
is done by the complementary functionsem_signal() , which is not given here but that executes a
pthread_cond_broadcast()), the calling task is woken up and its mutex is activated (all in one
atomic operation) such that the woken-up task can safely access the critical section, i.e., check its
boolean expression again. The above-mentioned atomicity is guaranteed by the operating system, which
itself uses some more internal locks in its implementation of thepthread_cond_wait() call.

It is essential that tasks that wake up from waiting on a condition variable,re-checkthe boolean
expression for which they were waiting, because nothing guarantees that it is still true at the time of
waking up. Indeed, a task can be scheduled a long time after it was signaled. So, it should also be
prepared to wait again. This leads to the almost inevitablewhile loop around a
pthread_cond_wait() .

Thepthread_cond_broadcast() should be the default way to signal the condition variable, and not
pthread_cond_signal() . The latter is only anoptimizationin the case that one knows for sure that
only one waiter must be woken up. However, this optimization violates theloose couplingprinciple of
good software design (Chapter 14): if the application is changed somewhat, the “optimization” of before
could well become a bottleneck, and solving the situation involves looking for the
pthread_cond_signal() calls that can be spread over various files in the application.

However, blindly usingpthread_cond_broadcast() can also have a negative effect, called the
“ thundering herd” problem:pthread_cond_broadcast() can wake up a large number of tasks, and
in the case that only one task is needed to process the broadcast, all other woken-up tasks will
immediately go to sleep again. That means the scheduler is hidden under a “herd” of unnecessary
wake-up and sleep calls. So, Linux and other operating systems introduced policies that programmers
can use to give some tasks the priority in wake-ups.

Both semaphores/mutexes and condition variables can be used forsynchronizationbetween tasks.
However, they have some basic differences:

52

Chapter 4. IPC: synchronization

1. Signaling a semaphore hasalwaysan effect on the semaphore’s internal count. Signaling a condition
variable can sometimes have no effect at all, i.e., when no task is waiting for it.

2. A condition variable can be used to check anarbitrary complexboolean expression.

3. According to the POSIX rationale, a condition variable can be used to make a task waitindefinitely
long, but spinlocks, semaphores and mutexes are meant for shorter waiting periods. The reason is
thatpthread_mutex_lock() is not acancelling point, while thepthread_cond_wait() is.

4. A condition variable is nothing more than a notification to a task that the condition it was waiting for
mighthave changed. And the woken-up taskshouldcheck that condition again before proceeding.
This check-on-wake-up policy is not part of the semaphore primitive.

4.8. Priority inversion

Priority scheduling and locks are, in fact, contradictory OS primitives: priority scheduling wants to run
the highest priority job first, while a mutex excludeseveryother job (so, also the highest priority job)
from running in a critical section that is already entered by another job. And these contradictory goals
lead to tricky trade-offs. For example, everybody coding multi-tasking systems using priority-based task
scheduling and locking primitives should know about the “priority inversion” danger: in some situations,
the use of a lock prevents a task to proceed because it has to wait for a lower-priority task. The reason is
that a low-priority task (i) is in a critical section for which it holds the lock that blocks the high-priority
task, and (ii) it is itself pre-empted by a medium-priority task that has nothing to do with the critical
section in which the high- and low-priority tasks are involved. Hence, the name “priority inversion”: a
medium-priority job runs while a high-priority task is ready to proceed. The simplest case is depicted in
Figure 4-1. In that Figure,task H is the high-priority task,task M the medium-priority task, andtask

L the low-priority task. At time instantT1, task L enters the critical section it shares withtask H . At
timeT2, task H blocks on the lock issued bytask L . (Recall that it cannot pre-empttask L because
that task has the lock on their common critical section.) At timeT3, task M pre-empts the lower-priority
tasktask L , andat the same timealso the higher-prioritytask H . At time T4, task M stops, andtask

L gets the chance again to finish the critical section code at timeT5 when, at last,task H can run.

Figure 4-1. Priority inversion.

The best-known practical case of a priority inversion problem occurred during the Mars
Pathfinder mission in 1997. (More information about this story can be found at
http://www.kohala.com/start/papers.others/pathfinder.html or
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html.)

4.9. Priority inheritance and priority ceiling

Operating system programmers have tried to “solve” (not prevent) the priority inversion problem, in two

53

Chapter 4. IPC: synchronization

different ways:

• Priority inheritance.A low-priority task that holds the lock requested by a high-priority task
temporarily “inherits” the priority of that high-priority task,from the moment the high-priority task
does the request. That way, the low-priority task will not be pre-empted by medium-level priority
tasks, and will be able to finish its critical section without holding up the high-priority task any longer
than needed. When it releases the lock, its priority drops to its original level, while the high-priority
task will now get the lock. The maximum predictable delay is the length of the critical section of the
low-priority task.

Priority inheritance generatesrun-timeoverhead, because the scheduler has to inspect the priorities of
all tasks that access a lock.

• Priority ceiling. Every lock gets a priority level corresponding to the priority of the highest-priority
task thatcanuse the lock. This level is called theceiling priority. Note that it is thelock that gets a
priority, which it gives to every task that tries the lock. So, when the low-priority task enters the
critical section, itimmediatelygets the ceiling priority from the lock, such that it will not be
pre-empted by any medium-level priority task. Therefore, another name of the priority ceiling protocol
is instant inheritance.

Priority ceiling generatescompile-timeoverhead, because it can already at that moment check the
priorities of all tasks that will request a lock.

Priority ceiling has the pleasant property that it simplifies implementation and has small run-time
overhead (only the change in priority for the task entering a critical section): the locknever has to be
testedfor being free or not, because any task that tries the lock runs at the highest priority to enter the
critical section: any other task that could test the lock would run at the same ceiling priority, and hence
would not have been interrupted in its critical section by the task that currently tests the lock. Indeed,
both tasks live in the same priority level and are scheduled with aSCHED_FIFOpolicy. Instant
inheritance also offers a solution to the “deadly embrace” (seeSection 4.2) occurring when two tasks
lock nestedcritical sections in opposite order: the first task to enter the outermost lock will have the
appropriate priority to finish the complete set of nested critical sections.

A possible problem with priority ceiling is that it makes more processes run at higher priorities, for
longer times than necessary. Indeed, the priorities of tasks are changed,irrespectiveof the fact whether
another task will try to request the lock or not. This reduces the discriminating effects of using
priorities is the first place,and it gives rise to “hidden” priority inversion: while taskL gets its priority
raised to the ceiling priority because it is involved in a lock with another taskV that has a very high
priority, a third taskH not involved in the lock could get pre-empted byL although its priority is
higher andV is dormant most of the time.

Priority ceiling and inheritance look great at first sight, and they are part of some OS standards: priority
ceiling is in the POSIX standard (POSIX_PRIO_PROTECT), the Real-Time Specification for Java
(RTSJ), OSEK, and the Ada 95 real-time specifications. Priority inheritance is also part of standards such
as POSIX (POSIX_PRIO_INHERIT), and the RTSJ. But priority ceiling and inheritance can still not

54

Chapter 4. IPC: synchronization

guaranteethat no inversion or indeterministic delays will occur, [Yodaiken2002], [Locke2002]. Morever,
the priority inheritance “feature” gives rise to code that is more complex to understand and certainly to
predict. Also, determininga priori the ceiling priority for a lock is not an easy matter (the compiler must
have access toall code that can possibly use a lock!), and can cause portability and extendability
headaches.

Priority inversion is always a result of abad design, so it’s much better topreventrace conditions instead
of “solving” them. However, contrary to the deadlock prevention algorithm (Section 4.2), no similarly
simple and guaranteed algorithm for priority inversion is known. So, all an operating system could do to
help the programmers is signalling when priority inversion takes place, such that they can improve their
design.

Most RTOSes don’t apply priority inversion solutions for every case of sender-receiver synchronization.
For example Neutrino (from QNX) uses separate synchronization mechanisms for critical sections
(semaphores) and sender-receiver (which is synchronous IPC in QNX). It solves priority inversion only
so long as applications use a many-to-one IPC model. As soon as an application uses many-to-many
IPC (via a POSIX queue) there is no more prevention of priority inversion. Many-to-many is inherently
difficult because the kernel has no way to know which receiver might be ready next, so all it could do
would be to raise the priority of all potential listeners (and the processes upon which they are waiting).
And this would often result in a logjam as every process was raised to the same priority, invalidating
exactly the major reason why priorities were introduced in the first place.

4.10. Lock-free synchronization for data exchange

Some synchronization can also be donewithout locks, and hence this is much more efficient and
guaranteed to be deadlock-free, [Herlihy91], [Herlihy93]. Lock-free synchronization uses the
compare_and_swap(address,old,new) (seeSection 4.5), or similar constructs. This functionality is
applicable to the manipulation ofpointers, e.g., to interchange two buffers in one atomic operation, or to
do linked list, queue or stack operations.

The following code fragment shows the basic form of thispointer swinging:

ptr = ...
do {

old = ptr;
new = new_value_for_pointer;

while (!compare_and_swap(ptr,old,new));

If the compare_and_swap() returns “false”, the swinging of the pointers should not be done, because
some other task has done something with the pointer in the meantime.

Recall the possible problem withcompare_and_swap() : it only compares thevaluesof the addresses,
not whether this value has been changed! This means that a double change of the pointer (back to its
original value) will not be detected. This occurs quite frequently, i.e., any time when memory space is
re-used, e.g., in a stack or a linked list.

55

Chapter 4. IPC: synchronization

Another problem of usingcompare_and_swap for lock-free synchronization is that it is not always the
most efficient method available, because it involves thecopyingof a complete data structure before that
data structure can be updated without a lock.

56

Chapter 5. IPC: Data exchange

The previous Chapter looked at thesynchronizationaspect of IPC; this Chapter deals with the
mechanisms and policies ofdata exchange. The emphasis is on data exchange for real-time systems.

Themechanismof all data exchange IPC is quite similar: the operating system has some memory space
reserved for the data that has to be exchanged, and uses some sychronization IPC primitives for reading
or writing to that memory space. There is some “object” responsible for the memory and the locks; we
call this object themediator, (Section 14.3) or thechannel. The mediator is really the heart of the data
exchange: the IPC clients make function calls on it, but it’s the mediator that takes care of memory
allocation, buffering, locking, signalling, etc. Although a mediator is more of anobject-oriented design
concept, it is there already in most of the old C code of operating systems. The bad news is that most
operating system designers didn’t realize that, and hence, they didn’t reuse the mediator code when
implementing the myriads of IPC forms they developed. . .

It’s especially in theirpolicy (i.e., the choice ofhowthe low-level mechanism is being used) that the
different forms of data exchange differ from each other. Below is a non-exhaustive list of policies for
data exchange. Almost every possible combination of options is feasible, so it should come as no surprise
that operating systems tend to have data exchange primitives with not quite the same API. . .

• (No) Data loss.Whether or not everything that the “sender” sends to the “receiver” (or rather, to the
IPC mediator object) will indeed be received by the “receiver”.

• (Non)Blocking.(Also called(a)synchronous.) The “sender” and/or “receiver” block until the
exchange is finished.

• One-to-many/many-to-one/many-to-many/one-to-one.There is one single “sender” and multiple
“receivers”. Or any variation on this theme.

• Named/anonymous.The “sender” must explicitly give the identification of the “receivers”, or it must
only name the mediator.

• (Non)Buffered.The “sender” sends some data to the “receiver”, but onlyindirectly: the data is stored
in a buffer, from which the “receiver” reads at its own leisure.

• (Non)Prioritized.A message can get a priority, and the highest priority message gets delivered first.
Similarly, the tasks that wait for a data exchange (hence, which are blocked by the lock of the
mediator), can be woken up according to their static priority.

There does exist some standardization in data exchange IPC: POSIX has its standard 1003.1b, in which it
specifies message queues, with 32 priorities and priority-based task queues on their locks.

5.1. Shared memory

Two (or more) tasks can exchange information by reading and writing the same area in memory. The

57

Chapter 5. IPC: Data exchange

main advantage is that the data exchange can take place withzero copying, because the “buffer” is just
one deep. For the rest, any policy can be implemented on top of shared memory. One area where shared
memory is very popular is for the data exchange with peripheral hardware, if possible underDirect
Memory Access (DMA).

Avalaible RAM memory is the only limit to the number of independent shared memory IPC “channels”.
The shared memory must be reserved from the operating system, and locked into RAM. (SeeSection
6.1.) If the tasks involved in the shared memory IPC want to know how “fresh” the data in the shared
segment is, they have to implement their own handshake protocol themselves, because the operating
system gives no indication as to whether data from shared memory has already been accessed or not. One
common approach is to put a counter in the shared memory data structure, that indicates how many writes
have already taken place. This counter could be a time stamp, which is, in addition, particularly useful
for an asynchronous monitor task in user space: that task, for example, plots the data from the real-time
task at its own rate, and the time stamps provide a way to keep the data plotted on a correct time line.

5.2. FIFOs

Shared memory has the properties of a so-calledblock device: programs can access arbitrary blocks on
the device, in any sequence.Character devices, on the other hand, can access the data only in a specified
linear sequence. A FIFO (First-in, First-Out) is such a character device IPC: its mediator policy is
loss-free, non-blocking(unless the FIFO is empty or full), in principlemany-to-manybut in practice
often1-to-1(i.e., only one sender and one receiver), andbuffered(i.e., FIFOs put data in apipeline,
where the sender adds data on one end, and the reader reads it at the other end).

Some FIFO implementations support blocking for synchronization at the reader’s end, so the reader gets
woken up as soon as new data has arrived. FIFOs that implement blocking have a “task queue” data
structure in which blocked tasks can wait.

FIFO’s often also allowasynchronousdata exchange: a task can register aFIFO handler that the
operating system executes after data has been put into the FIFO. This is done with exactly the same
ISR-DSR principle as for hardware and software interrupts (Section 3.4): the writing of data into the
FIFO also fires an event that activates the FIFO handler; this handler will be atasklet(Section 3.4), that,
just as in the case of an interrupt, is executed by the operating system before it does its next scheduling.

The boundaries between successive data in the FIFO need not necessarily be sharp, because different
blocks might have different sizes. However, in that case, one speaks more often aboutmailboxes, see
Section 5.3.

Themediatorimplementing the FIFO uses a lock for mutual exclusion during read or write, and in order
to keep the FIFO’s task queue data structures consistent. However, if the FIFO runs between a real-time
task and a user space task, the locking problem is very much simplified: the real-time task can never be
interrupted by the user task (because it runs in kernel space) so no lock is needed at the real-time side.

58

Chapter 5. IPC: Data exchange

5.3. Messages and mailboxes

Messages and mailboxes allow the sender to send data inarbitrary chunks, only limited by available
memory in the buffer. The message contains some “meta-information” about the size and sender of the
message; or whatever data that the message protocol prescribes. This meta-information is, in fact, the
only practical difference with FIFOs. From an implementation point of view, FIFOs, messages and
mailboxes all look very similar, in the sense that there is themediatorobject that takes care of the buffer,
the locks and the queues of waiting tasks. Moreover, many operating systems make no distinction
between messages and mailboxes. If they do make a distinction, it is the following:

• Message.The sender puts its message in a memory space it has allocated itself, and then sends the
addressof that memory to the OS, together with an identification of the receiver. The receiver asks the
OS whether there are messages for it, and decides to read them or not. Reading a message is done in
the same place as where it was written. If desired, a counter on the message data allows for1-to-many
IPC.

Be careful with this oversimplified description: passing the address of a data chunk is error-prone
(multi-processor systems; virtual memory; . . .).

• Mailbox.The sender notifies the OS that it has a message, and gives the identification of the receiver.
The OS thencopiesthe message to the mailbox of the receiver; this mailbox is a buffer managed by
theoperating system. The receiver task reads the messages in the order of arrival. (Of course,
variations on this policy exist.)

A natural extension to messages or mailboxes issynchronous message passing, sometimes also called
Send/Receive/Reply(because that’s what it is called in QNX): the “sender” sends a message, and waits
until the “receiver” has acknowledged the reception of the message. Hence,twomessages are exchanged
in this form of IPC. The SIMPL (http://www.holoweb.net/~simpl/) (Synchronous Interprocess Messaging
Project for Linux) project offers a free software implementation of this form of message passing.

POSIX has standardized an API for messages (with the semantics of what was called “mailboxes” above,
i.e., the message queues are managed by the operating system). Here are the basic data structures and
prototypes:

struct mq_attr {
long mq_maxmsg; // Maximum number of messages in queue
long mq_msgsize; // Maximum size of a message (in bytes)
long mq_flags; // Blocking/Non-blocking behaviour specifier

// not used in mq_open only relevant
// for mq_getattrs and mq_setattrs

long mq_curmsgs; // Number of messages currently in queue
};

// Create and/or open a message queue:
mqd_t mq_open(

char *mq_name,
int oflags,
mode_t permissions,

59

Chapter 5. IPC: Data exchange

struct mq_attr *mq_attr
);

// Receive a message:
size_t mq_receive(

mqd_t mq,
char *msg_buffer,
size_t buflen,
unsigned int *msgprio

);

// Send a message to a queue
int mq_send(

mqd_t mq,
const char *msg,
size_t msglen,
unsigned int msgprio

);

// Close a message queue:
int mq_close(mqd_t mq);

// Get the attributes of a message queue:
int mq_setattr(mqd_t mq, const struct mq_attr *new_attrs,

struct mq_attr *old_attrs);

// Register a request to be notified whenever a message
// arrives on an empty queue:

int mq_notify(mqd_t mq, const struct sigevent *notification);

// Destroy a message queue:
int mq_unlink(char *mq_name);

5.4. Circular buffers

A circular (or ring) buffer has most of the properties of shared memory, except that (i) its depth is larger
than one (i.e., it can contain more than one of the data structures exchanged in the communication). The
buffer is usually implemented as an array of communication data structures, and the positions of sender
and receiver are indicated by pointers in this array. When one of these pointers reaches the end of the
buffer, it swaps back to the start of the buffer and continues from there. So, data is lost when the sender
pointer overtakes the reader pointer; data is read multiple times if the reader pointer overtakes the writer
pointer. It’s straightforward to use a lock to avoid these situations. In that case, the lock makes the buffer
blocking. A lock can also be set on each data item in the buffer, in order to avoid concurrent access of the
same data.

Two common options for buffers (especially in real-time applications) are:

60

Chapter 5. IPC: Data exchange

• Locking in memory.The memory used for the buffer should not be swapped out of the physical RAM.

• “Buffer Half Full” (High water/Low water) interrupt. The sender and/or receiver tasks can raise an
event if the buffer is more than half full or half empty. This event must wake up the other part of the
IPC, such that it can take the appropriate actions to prevent the buffer from overflowing or getting
empty.

5.5. Swinging buffers

A swinging buffer (or “flip buffer”) is two things:

• An advanced circular buffer.Instead of using one single shared memory array, a swinging buffer uses
two or more. The sender fills up one of the buffers, while the receiver empties another one. Every time
one of the tasks reaches the end of its buffer, it starts operating on a buffer that the other task is not
using.

• A deadlock-free “lock.”Both tasks operate on different data structures, hence no locks are used to
access the data. Only when the tasks must decide which buffer to use, they use a lock on the buffer
pointers, or the corresponding atomic pointer switching operation (seeSection 4.10). In this latter
case, the “lock” is atomic in hardware, and hence cannot cause any of the problems generated by
software locks.

So, a swinging buffer isnon-blockingbut loss-prone, because one task can fill or empty the same buffer
of the swinging buffer pair multiple times before the other task is ready to switch buffers.

The swinging buffer approach is also known under the name ofread-copy-update (RCU
(http://lse.sourceforge.net/locking/rcu/rcupdate_doc.html)). It can be used as an alternative for
read-writelocks (Section 4.6.4) for “frequent reads/infrequent writes” applications: the readers follow a
pointer, and need no locks, while the (less frequent) writer swaps the pointers after having filled in the
new data structure.

5.6. Remote Procedure Calls

The previous flavours of IPC can all be catalogued as “low-level”: they are implemented with very basic
OS primitives, and are usually shielded from the users within system calls. One of the popular IPC
mechanisms at the user level areRemote Procedure Calls(RPC). With RPC, a user can invoke the
execution of a task on a remote computer, as if that task ran on the processor of the calling task. RPC is
implemented on top of messages, with a synchronizing hand-shake protocol. Obviously, RPC is not very
real-time, but could be useful for embedded systems.

On the other hand, RPC is the simplest form of what is also calleddistributedor embedded components:
software objects (“agents”) that can live on any computer on a network, and that tasks can access
transparently. There are three major standards in the area of distributed components:

61

Chapter 5. IPC: Data exchange

• CORBA (http://www.corba.org) (Common Object Request Broker Architecture). This is a fully
platform and vendor independent initiative.

• DCOM, controlled by Microsoft.

• RMI (Remote Method of Invocation), from the Java world.

A real-time extension to CORBA has been specified in 2001. It takes care of thespecificationof the
determinism required for real-time applications, but needs to map its functionality onto primitives
offered on the host operating system. Of course, the absolute time scales of CORBA real-time are longer
than those of a stand-alone computer system.

(TODO: more details about CORBA, and real-time CORBA.)

62

Chapter 6. Memory management

This Chapter explains whatmemory managementmeans, and how it influences the real-time behaviour
of an operating system. Non real-time aspects of memory management (virtual memory, swapping, dirty
pages management, etc.) are outside the scope of this document.

6.1. Terminology

All tasks need RAM memory to execute. Not only for placing their data, but also for their code and for
IPC with other tasks. A computer system offers a (most often) contiguous space of physical RAM, and
the MMU (Memory Management Unit) of the hardware, and theVirtual Memorysoftware of the
operating system, help to give a task the impression that it is the only one that uses the memory. And that
that memory is (i) larger than the physically available RAM; (ii) distributed (transparantly to the task)
over a number of physically non-contiguous memorypagesof fixed size; and (iii) protected from access
by other tasks.

But these general-purpose OS requirements are not those of real-time systems, or of embedded systems
on processors without MMU. Their concerns are:

• Fast and deterministic memory management.The fastest and most deterministic approach to memory
management is no memory management at all. This means that the programmers have all physical
RAM available as one contiguous block that they can use as they like. This approach is usually only an
option for small embedded systems that run a fixed and small number of tasks. Other RTOSs and EOSs
offer at least the basic memory management: memory allocation and deletion through system calls.

• Page locking.Demand paging is the common approach in general purpose operating systems to
distribute the scarce physical RAM over all tasks: each task gets a number of pages in RAM, and the
pages it hasn’t accessed recently are “swapped out” to make room for pages of other tasks. This
swapping is a non-deterministic thing, because it needs access to disk, and most disk controllers have
non-deterministic buffering for optimising the average throughput to or from the disk: when the task
needs code or data from one of its pages that is currently swapped out, the page has to be retrieved
from disk, and often another page in RAM has first to be swapped out to disk. Hence, the MMU of an
RTOSmustlock the pages of real-time tasks in the physical RAM, in order to avoid the paging
overhead. POSIX provides themlock() andmlockall() function calls to do this locking.

Page locking is aQuality of Servicefeature of the operating system: it guarantees that tasks have a
specified amount of the memory resource at their disposal. In this respect, it is similar to the QoS
extensions of the scheduler (seeSection 1.3.3).

• Dynamic allocation.A task’s memory needs can change during its lifetime, such that it should be able
to ask the operating system for more memory. The Linux system call for this purpose is
vmalloc() . (In kernel space!) A real-time memory manager can only make this dynamic allocation
of memory deterministic, if the memory pages can be got from apoolof free pages locked in the
physical RAM. Anyway, dynamic allocation should be used very carefully in any real-time task,

63

Chapter 6. Memory management

because there is no guarantee that the memory pool has enough free pages left to satisfy all requests.
This implies, for example, that IPC approaches with dynamic memory allocation needs (such as
unlimited mailboxes and messages, seeSection 5.3) are to be avoided.

Nothing prevents an operating system from allocating memory in smaller blocks than one page.
However, finer and variable-sized granularity implies more complex memory management, memory
fragmentation, and hence less determinism.

• Memory mapping.Real-time and embedded systems typically have to access peripheral devices. The
on-board registers in which these devices place their data have to bemappedsomewhere into the
address space of the corresponding device driver task. The POSIX system call to do this mapping is
mmap() . Typically, this mapping is a configuration activity, and hence need not be done in real-time.

• Memory sharing.One of the most efficient ways for tasks to communicate is through shared memory
(seeSection 6.2). The operating system has two major responsibilities in this area: (i) (de)allocation of
the shared memory, and (ii) synchronizing access to that memory by different tasks. The latter topic is
discussed inChapter 4; the former is illustrated later in this Chapter.

• RAM disks.In order to avoid the non-deterministic overhead of accessing hard disks (for real-time
systems) or the extra cost, extra space, and reduced robustness of mechanical disk devices (for
embedded systems), part of the available RAM can used toemulatea hard disk. This means that that
memory is organized and accessed as afile system, as if it would reside on a hard disk.

When the RAM disk should be able to preserve data when the power is switched off, the embedded
system designer implements it in the form of aflash disk. This is memory that can be “burned” many
thousand times, rather quickly, with very little power, and from within the system code itself.
Reburning (“flashing”) is required either for reprogramming the device, or for temporary storage of
“non-volatile” data.

Having the system code in a file system on flash gives the added bonus that the code need not be
loaded into RAM, but may be executed in place. This results in shorter start-up times.

• Stripped libraries.RAM is a scarce resource in real-time and embedded systems, such that
programmers try to use as little of it as possible. Hence, they often use “stripped down” versions of
general utility libraries (C library, math library, GUI library, etc.).µlibc is such a low-footprint version
of the C library.

6.2. Shared memory in Linux

(TODO: update state of affairs on shared memory! POSIX API for shared memory; sharing between
real-time and user space; shared memory managment through locks and/or monitor;copy_to_user() ,
copy_from_user() .)

64

Chapter 6. Memory management

This Section discusses two complementary ways to allocate shared memory in Linux. There is nothing
particularly real-time aboutusingshared memory;allocatingshared memory, however, is more
controversial: RTLinux doesn’t allow to allocate memory on-line, RTAI does.

The shared-memory pool is a block of physical memory set aside at boot time so that Linux does not use
it for processes. To set up the pool, you first determine how much physical memory the system has and
how much is to be used for shared memory. Normal Linux processes are required to map physical
memory into their private address space to access it. To do this, the Linux processes callsopen() on the
memory device/dev/mem . After the file descriptor is opened, the Linux process maps the shared
memory into its address space usingmmap() , which returns a pointer to the shared memory as mapped
into the Linux process’s address space. Once the shared memory is mapped, it may be accessed by
dereferencing the pointer. When the process terminates, you usemunmap() to unmap the shared memory
by passing the pointer and the size of its object. Shared-memory access is easier in the kernel space of
the real-time Linux variants, since the real-time code executes in kernel space and thus is not required to
map physical addresses to virtual addresses.

6.2.1. Allocation at boot time

In this approach, a block of shared memory can be reserved atboot time, to prevent Linux from using it
for general purposes. The reservation is done using theappend= parameter in LILO (or something
similar for other bootloaders). Here is an example of a/etc/lilo.conf file that reserves 1 Megabyte
for shared memory out of 16 available Megabytes:

image=/boot/zImage
label=rtlinux
root=/dev/hda1
append="mem=15m"

Linux will use only thefirst 15 Megabytes, and the last Megabyte can be used for shared memory
purposes. Thebase addressof the shared memory in the above-mentioned example is:

#define BASE_ADDRESS (15 * 0x100000)

The real-time and user Linux tasks use different ways to access the memory.

A real-time task runs in kernel space, and hence can directly access the memory with itsphysical
address. For example, a data structure of typemy_data at the start of the shared memory is accessed as:

my_data *ptr;

ptr = (my_data *) BASE_ADDRESS;
ptr->... = ...

A user space tasks must use itsvirtual address. This mapping of physical memory into the virtual
address space consists of two steps:

65

Chapter 6. Memory management

• The user space task must “open” the memory, by using theopen() system call on the device
/dev/mem :

#include <unistd.h> // POSIX defined open()
#include <fcntl.h> // O_RDWR for read and write access

// or O_RDONLY for read-only access, etc.

int fd; // file descriptor for the opened memory

if ((fd = open("/dev/mem", O_RDWR)) < 0)) {
// handle possible error here

}

• Themmap() system call then does the actual mapping.

my_data *ptr;

ptr = (my_data *) mmap (0, sizeof(my_data),
PROT_READ | PROT_WRITE,
MAP_SHARED,
fd, BASE_ADDRESS);

The parametersPROT_READandPROT_WRITEare POSIX-defined and indicate read and write
access;MAP_SHAREDindicates that memory can be shared with any other task that maps it too. (See
the man pages for more details.)

The shared memory is then accessed via the pointer, as in the kernel space task.

my_data *ptr;

ptr->... = ...

The task must usemunmap() to un-map the shared memory used for themy_data data structure:

my_data *ptr;

munmap(ptr, sizeof(my_data));

6.2.2. Allocation in kernel space

The mbuff module implements the/dev/mbuff device. This device offers shared memory (allocated in
the kernel using thevmalloc) in kernel as well as in user space. The shared memory does not need to be
reserved at the system startup and its size is not limited by memory fragmentation. It is logically (but not
physically) contiguous, and is locked in the physical RAM. When you allocate a block, the kernel first
grabs the free pages, then if there is not enough of them, starts freeing more, by reducing buffers, disk
cache and finally by swapping out to disk some user data and code. For sure this is not a real-time
operation—it may take seconds to get something like 100 MB out of 128 MB RAM machine.

66

Chapter 6. Memory management

6.2.3. Allocation in module

(TODO: latest kernel options for memory allocation; dmaBuffer module. Use this approach preferably at
boot time, otherwise you might not be able to find all the requested memory as a contiguous area in
RAM.)

(TODO: copy_from_user() .)

67

Chapter 7. Real-time device drivers

An operating system must interface its peripheral devices to its kernel software as well as to the user
application software. This should be done in a modular and systematic way, such that all hardware
“looks the same” to software applications. The software that takes care of this hardware-independent
interfacing aredevice drivers. For the Linux real-time variants, Comedi (Section 7.4) is a successful and
steadily growing project for real-time and non real-time device drivers for digital acquisition cards.

In the UNIX world, device drivers are visible through the/dev/xyz “files” (wherexyz stands for a
particular device, such as, for example,hda for the first hard disk,ttyS0 for the first serial line, etc.).
The 2.4.X kernels have introduced thedevfs and driverfs (“driver file system”) approaches, which give
more structure to the information about the devices that have actually been loaded. But all these things
are foruser space, and hence not relevant for the real-time Linux variants that operate in kernel space.

The bookkeeping aspects of registering a device driver, with major and minor numbers, as well as
guidelines for writing device drivers, are explained in detail in the UNIX literature. For the Linux
example, Rubini’sLinux Device Driversbook ([Rubini2001]) is the major reference.

7.1. Mechanism and policy

A major feature of a good device driver is that it “provides mechanism, not policy.” This means that it
should faithfully mimic all the interfacing capabilities of the device (the “mechanism”), but nothing
more. It shouldnot try to interpret the exchanged data in any possible user context (the “policy”),
because that is the job of that user application program itself. Indeed, once a device driver offers a
software interface to the mechanism of the device, an application writer can use this mechanism interface
to use the device inone particular way. That is, some of the data stuctures offered by the mechanism are
interpreted in specific physical units, or some of them are taken together because this composition is
relevant for the application. For example, a analog output card can be used to generate voltages that are
the inputs for the electronic drivers of the motors of a robot; these voltages can be interpreted as setpoints
for the desired velocity of these motors, and six of them are taken together to steer one particular robot
with six-degrees of freedom. Some of the other outputs of the same physical device can be used by
another application program, for example to generate a sine wave that drives a vibration shaker. Or, the
robot control program can use a force sensor that is interfaced through a serial line. The force sensor
device driver “talks” to both the application program (i.e., the force control algorithm), and the serial line
device driver (for which it is a “user application” itself!). It is obvious that the serial line driver should
never implement function calls that are only useful in the force sensor driver context. Nevertheless, that’s
exactly what happens in many projects with constrained scope, vision and time. . .

As for the other operating system responsibilities discussed in the previous Chapters, writing device
drivers for an RTOS or an EOS is not so much different from writing them for a general-purpose OS.
Basically, in an RTOS context, one should make sure that all timing delays in the drivers are bothshort
anddeterministic, and every DSR should be an appropriately prioritized thread or handler that waits on
an event to become active.

68

Chapter 7. Real-time device drivers

7.2. Device drivers in UNIX

In the UNIX philosophy, all devices are considered as being “files”, and hence, their device drivers share
the following functions:open() , close() , read() , write() , read_config() , set_config() . The
function call names are operating system independent, and just for demonstration. However,open() ,
close() , read() andwrite() , are POSIX compliant. The configuration function calls are, in UNIX
often taken together in theioctl() function.

open() makes the device accessible for programs, whileclose() ends the accessibility. The device can
be opened in different modes, such as, for example,O_RDONLY(“read-only”)O_WRONLY,
(“write-only”), O_RDWR(“read and write”), andO_NONBLOCK(“non-blocking”).

read() andwrite() interchange data between the peripheral device and the (kernel or application)
software: a known datastructure is copied from one place in memory to another. Of course, the exact
contents of that data structure depends on the device and/or on the particular use of this device by the
programmer.

read_config() reads out the device’s current configuration status, andset_config() programs that
configuration. Configuration management often has less strict timing constraints than reading and
writing. It also has less standardized function calls, because of the larger variety in possible settings of
different hardware. Nevertheless, the POSIX standard prescribes the use of theioctl() function call,
for all configuration actions that don’t fit cleanly in the classic UNIX stream I/O model ofopen() ,
close() , read() , andwrite() :

int ioctl(int d, int request, ...)

Thed parameter is the “file descriptor” with which the device has been opened;request is the
particular configuration identifier; and... are possible arguments that come with therequest .

7.3. Complex device drivers

A simple device driver need nothing more than writing and/or reading of some hardware registers on a
peripheral device. Some devices interact with the software through hardware interrupts. Hence, their
device drivers must include an ISR, and possibly also a DSR (seeSection 3.4). Recall that only a subset
of all kernel space functions are available in the run-time context of an ISR. And a real-time device
driver is subjected to even more constraints.

Almost all devices can be interfaced inProgrammed Input/Output (PIO)mode: the processor is
responsible for accessing bus addresses allocated to the device, and to read or write data. Some devices
also allow shared memory, or evenDirect Memory Access (DMA): the device and the memory exchange
data amongst each other directly, without needing the processor. DMA is a feature of the bus, not of the
operating system; the operating system, however, must support its processes to use the feature, i.e.,
provide a system call to initialize DMA transfer, and a handler to react to the notification of the device

69

Chapter 7. Real-time device drivers

that it has finished its DMA. Anyway, support for shared memory and DMA makes a device driver again
a bit more complex.

From the point of view of system developers, it is worthwhile, in the case of complex devices or systems
with lots of devices, to standardize the structure and the API for the device drivers as much as possible:

• API: devices that offer similar mechanism, should have the same software interface, and their
differences should be coped with by parameterizing the interfaces, not by changing the interface for
each new device in the family.

• Structure: many electronic interfaces have more than one layer of functionality between the hardware
and the operating system, and the device driver code should reflect this fact. For example, many
different interface cards use the same PCI driver chips, or use the parallel port to connect to the
hardware device. Hence, providing “low-level” device drivers for these PCI chips and parallel ports
allows for an increased modularity and re-useability of the software. And the mechanism of the
low-level drivers is used with different policies in the various higher-level drivers.

7.4. Comedi

David Schleef started the Comedi (http://stm.lbl.gov/comedi/) project to interface lots of different cards
for measurement and control purposes. This type of cards are often calledData Acquisitioncards, or
DAQ cards. Schleef designed a structure which is a balance betweenmodularity(i.e., it’s fairly easy to
integrate a new card because most of the infrastructure part of the driver can be reused) andcomplexity
(i.e., the structure doesn’t present so much overhead that new contributors are scared away from writing
their new drivers within the Comedi framework).

Comedi works with a standard Linux kernel, but also with its real-time extensionsRTAI andRTLinux.

The Comedi project consists of two packages, and three parts: the “comedi” package contains the
drivers, and the kcomedilib kernel module for Linux (which is an library to use the drivers in real-time);
the “comedilib” package implements the user space access to the device driver functionality.

The cards supported in Comedi have one or more of the following features:analog inputchannels,
analog outputchannels,digital input channels, anddigital outputchannels. The digital channels are
conceptually quite simple, and don’t need much configuration: the number of channels, their addresses
on the bus, and their direction (input/output).

The analog channels are a bit more complicated. Typically, an analog channel can be programmed to
generate or read a voltage between a lower and an upper threshold (e.g., -10V and +10V); the card’s
electronics can be programmed to automatically sample a set of channels, in a prescribed order; to buffer
sequences of data on the board; or to use DMA to dump the data in an available part of memory, without
intervention from the processor.

70

Chapter 7. Real-time device drivers

Many interface cards have extra functionality, besides the analog and digital channels. For example, an
EEPROM for configuration and board parameters, calibration inputs, counters and timers, encoders (=
quadrature counter on two channels), etc. Therefore, Comedi offers more than just analog and digital
data acquisition.

The kernel space structures that Comedi uses have the following hierarchy:

• channel: the lowest-level component, that represents the properties of one single data channel (analog
in or out; digital in or out). Each channel has parameters for: the voltage range, the reference voltage,
the channel polarity (unipolar, bipolar), a conversion factor between voltages and physical units.

• sub-device: a set of functionally identical channels that are physically implemented on the same (chip
on an) interface card. For example, a set of 16 identical analog outputs. Each sub-device has
parameters for: the number of channels, and the type of the channels.

• device: a set of sub-devices that are physically implemented on the same interface card; in other
words, the interface card itself. For example, the National Instruments 6024E device has a sub-device
with 16 analog input channels, another sub-device with two analog output channels, and a third
sub-device with eight digital inputs/outputs. Each device has parameters for: the device identification
tag from the manufacturer, the identification tag given by the operating system (in order to
discriminate between multiple interface cards of the same type), the number of sub-devices, etc.

The basic functionalities offered by Comedi are:

• instruction: to synchronously perform one single data acquisition on a specified channel, or to perform
a configuration on the channel. “Synchronous” means that the calling process blocks until the data
acquisition has finished.

• scan: repeated instructions on a number of different channels, with a programmed sequence and
timing.

• command: start or stop an autonomous (and hence asynchronous) data acquisition (i.e., a number of
scans) on a specified set of channels. “Autonomous” means: without interaction from the software,
i.e., by means of on-board timers or possibly external triggers.

This command functionality is not offered by all DAQ cards. When using RTAI or RTLinux, the
command functionality is emulated through thecomedi_rt_timer virtual driver. The command
functionality is very configurable, with respect to the choice of events with which to signal the progress
of the programmed scans: external triggers, end of instruction, etc.

Comedi not only offers the API to access the functionality of the cards, but also to query the capabilities
of the installed Comedi devices. That is, a user process can find out on-line what channels are available,
and what their physical parameters are (range, direction of input/output, etc.).

Comedi contains more than just procedural function calls: it also offers event-driven functionality. The
data acquisition can signal its completion by means of an interrupt or acallbackfunction call. Callbacks
are also used to signal errors during the data acquisition or when writing to buffers, or at the end of a

71

Chapter 7. Real-time device drivers

scan or acquisition that has been launched previously to take place asynchronously (i.e., the card fills up
som shared memory buffer autonomously, and only warns the user program after it has finished).

The mechanisms for synchronization and interrupt handling are a bit different when used in a real-time
context (i.e., with either RTAI or RTLinux), but both are encapsulated behind the same Comedi calls.

Because multiple devices can all be active at the same time, Comedi provides (non-SMP!) locking
primitives to ensure atomic operations on critical sections of the code or data structures.

Finally, Comedi offers the above-mentioned “high-level” interaction, i.e., at the level of user space device
drivers, through file operations on entries in the/dev directory (for access to the device’s functionality),
or interactively from the command line through the “files” in the/proc directory (which allow to inspect
the status of a Comedi device). This high-level interface resides in the “comedilib” tarball, which is the
user space library, with facilities to connect to the kernel space drivers residing in the “comedi” tarball.

7.4.1. Writing a Comedi device driver

(TODO: describe series of steps.)

7.5. Real-time serial line

A real-time device driver for the serial lines is integrated into RTAI. There used to be an independent
project, rt_com (http://rt-com.sourceforge.net/), but the developers joined the RTAI bandwagon, and the
code was thoroughly rewritten. (Under supervision of the Comedi maintainer, David Schleef.)

The RTAI device driver resides in the “SPdrv” (Serial Port driver) sub-directory of RTAI. It provides
very configurable address initialization, interrupt handling, buffering, callbacks, and non-intrusive buffer
inspection. It’s a nice purely “mechanism” device driver.

7.6. Real-time parallel port

A real-time device driver for the parallel port is integrated into Comedi. It’s not much different from a
user space driver, except for the real-time interrupt handler that can be connected to the interrupt that can
be generated on pin 10 of the parallel port. The driver doesnot supportECP/EPPparallel ports.

7.7. Real-time networking

Thertnetproject used to be stand-alone, but is now also integrated into RTAI. It provides acommon
programming interface(real-time and user space) between the RTOS and the device drivers of ethernet

72

Chapter 7. Real-time device drivers

cards. Of course, TCP is not supported, due to its inherently non-realtime specifications; UDP is
supported.

Although about every possible ethernet card has a Linux driver, these cannot be used unchanged for hard
real-time, because their interrupt handling is not real-time safe. Only a couple of the most popular cards
are supported, and there is not much interest from the community to port more drivers.

TheCAN busis a two-wire bus with a 1Mbits/sec maximum transmission rate, that has become very
popular in many industries, such as the automotive. It can be used for real-time, thanks to its
CSMA/CD-NDBA bus arbitration protocol. CSMA/CD-NDBA stands forCarrier Sense Multiple Access
with Collision Detect—Non-Destructive Bit Arbitration.CSMA is also used for ethernet: all clients of
the bus sense what is happening on the bus, and stop transmitting when they sense a collision of
messages from different clients. The CAN bus adds, in hardware, the NDBA part: this guarantees that the
bit sent on the bus is not destroyed in a collision. In CAN thedominant bitis the logical “0”, and it
overrides therecessive bit(logical “1”). So the client that sends a dominant bit will see this dominant bit
on the bus, and can continue sending. Each client on the CAN bus has a unique and statically defined
identifier of 11 bits wide (29 bits in the extended version of the standard), that corresponds to itspriority.
That means that the client with the most dominant bits early on in its identifier will be the one that
survives the NDBA the longest, and hence it is the one that gets the bus first. So, the CAN bus
implements “priority-based scheduling” of its clients. Due to the hardware limitations that must
guarantee the above-mentioned procedure of surviving dominant bits, a CAN bus has a maximum length
of about 100 meters.

The Real-time Transport Protocol (RTP) (http://www.cs.columbia.edu/~hgs/rtp/) (RFC 1889
(ftp://ftp.isi.edu/in-notes/rfc1889.txt)) and theReal-Time Publish-Subscribeprotocol (drafted by
Real-Time Innovations, and to be adopted by the IDA (http://www.ida-group.org)) are “policies” on top
of thenormalethernet protocol. Hence, despite their names, they will at most be soft real time.

73

Chapter 8. RTAI: the features

This Chapter introduces the RTAI real-time operating system, as an illustration of the concepts and
terminology introduced in the previous Chapters. It describes which features are available in RTAI, and
how the API looks like. This Chapter doesn’t aim to be a reference or user manual of all RTAI
commands; you should look for those manuals you on the RTAI webpage.
(http://www.aero.polimi.it/~rtai/documentation/index.html)

8.1. Overview

RTAI consists of five complementary parts:

1. TheHAL (Hardware Abstraction Layer)provides an interface to the hardware, on top of which both
Linux and the hard real-time core can run.

2. TheLinux compatibility layerprovides an interface to the Linux operating system, with which RTAI
tasks can be integrated into the Linux task management, without Linux noticing anything.

3. RTOS core.This part offers the hard real-time functionality for task scheduling, interrupt processing,
and locking. This functionality is not really different from other real-time operating systems.

4. LX/RT (Linux Real-Time).The modularity offered by a Hardware Abstraction Layer separated from
a core built on top of it, is used in other operating systems too, e.g., eCos. The particular thing about
RTAI is the LX/RT component, that makes soft and hard real-time features available to user space
tasks in Linux. LX/RT puts a strong emphasis on offering asymmetricreal-time API: the same
real-time functionality should be useable with the same function calls from user space as well as
from kernel space. And also the IPC that LX/RT offers between user space and kernel space
real-time tasks works with a symmetric API.

5. Extended functionality packages.The core is extended with useful extras, such as: several forms of
inter-process communication, network and serial line drivers; POSIX interface; interfaces to
domain-specific third-party toolboxes such as Labview, Comedi (Section 7.4) and Real-Time
Workshop; software watchdogs; etc.

This Chapter explains what features are available in each of these major RTAI parts, as of the 24.1.9
version of RTAI (May 2002). Details about the exact function prototypes can be found in the RTAI
reference manual. The following Chapter discusses theirimplementation. The discussion is categorized
according to the contents of the previous Chapters of this document. In summary, the feature set of RTAI
is quite complete, offering almost all previously presented concepts. RTAI also implements some
POSIX parts (Section 1.5): it has POSIX 1003.1c compliant pthreads, mutexes and condition variables,
and POSIX 1003.1b compliant pqueues. But POSIX compliance is not high on the priority list of new
developments. (A property that RTAI shares with standard Linux development, by the way.)

8.2. Task management and scheduling

Summary: RTAI offers the whole variety of real-time tasks and schedulers. Besides normal tasks that end

74

Chapter 8. RTAI: the features

up in the scheduler queues of the operating system, RTAI offers also non-schedulable units of execution:
tasklets, timers, ASRs, andqueue blocks.

8.2.1. Task management

RTAI has its own specific API, but offers POSIX wrappers for threads. A task is created with the
following function:

int rt_task_init (
RT_TASK *task,
void (*rt_thread)(int),
int data,
int stack_size,
int priority,
int uses_fpu,
void(*signal)(void)

);

The function’s arguments are:

• task is a pointer to anRT_TASKtype structure whose space must be provided by the application. It
must be kept during the whole lifetime of the real time task.

• rt_thread is the entry point of the task function. The parent task can pass a single integer value
data to the new task.

• stack_size is the size of the stack to be used by the new task.

• priority is the priority to be given the task. The highestpriority is 0, while the lowest is
RT_LOWEST_PRIORITY.

• uses_fpu is a flag. Nonzero value indicates that the task will save the floating point registers at
context switches. On a(multi) uni-processor, a real-time task doesnot save its floating point context
by default. However, when the task is created for asymmetric multi-processingsystem, the floating
point contextis saved, because the task’s context must be save against CPU migration anyway.

• signal is an “ASR” function (Section 3.4) that is called, within the task environment and with
interrupts disabled, when the task becomes the current running task after a context switch.

Here is a typical RTAI code for creating and starting a real-time task, from within aninit_module() ,
that periodically runs the function whose code is in the application dependent functionfun() :

#define STACK_SIZE 4096
static RT_TASK mytask; ➊

int init_module(void)
{

rt_task_init(&mytask, fun, 0, STACK_SIZE, 0, 1, 0); ➋

rt_set_runnable_on_cpus(&mytask, ...); ➌

rt_linux_use_fpu(1); ➍

now = rt_get_time(); ➎

75

Chapter 8. RTAI: the features

rt_task_make_periodic(\ ➏

&mytask, now + 2000, 100*1000*1000);
return 0;

}

// function that runs periodically in
// the created real-time task:
static void fun(int t) { ➐

...
while (...) {

... // do what has to be done each period
rt_task_wait_period(); ➑

}
}

➊ The task’s data structure.

➋ Initialize the task’s data structures, giving it, among other things, values for stack space and static
priority.

➌ Ask OS to run the task on aselectionof specified processors.

➍ Ask the OS to save the floating point registers when switching contexts.

➎ Read in the current absolute time.

➏ Ask the OS to run this task periodically. This call also sets the first time instant that the thread wants
to become active, and its period. These times are innanoseconds.

➐ The function to be run in the real-time task.

➑ Go to sleep until the schedulers wakes you up when your timer expires.

Using RTAI’s wrappers for POSIX pthreads, a typical skeleton for task (“thread”) creation and
activation looks like this:

static pthread_t thread; // POSIX data structures for task,
static pthread_mutex_t mutex; // ... mutex,
static pthread_cond_t cond; // ... and condition variable,

int init_module(void)
{

pthread_attr_t attr; // POSIX data structure for
// task properties

pthread_attr_init (&attr); // initializations
pthread_mutex_init (&mutex, NULL); // ...
pthread_cond_init (&cond, NULL); // ...

pthread_create (&thread, &attr, fun, 0); ➊

... // doing stuff until it’s time to delete thread

pthread_mutex_lock (&mutex);
pthread_cond_signal (&cond); ➋

76

Chapter 8. RTAI: the features

pthread_mutex_unlock (&mutex);
...

}

// function that runs periodically in
// the created real-time task:
static void fun(int t) {

#define TIME_OUT 10000000

...
struct sched_param p;
p.sched_priority = 1;
pthread_setschedparam (pthread_self(), SCHED_FIFO, &p); ➌

...
while (1) {

time = ...;
pthread_mutex_lock (&mutex);
pthread_cond_timedwait (&cond, &mutex, time+TIME_OUT)); ➍

pthread_mutex_unlock (&mutex);
... // do what has to be done each period

}
}

➊ Here, the task is created, i.e., its data structures and function to execute are initialized.

➋ The created task is signaled; the signal is typically the notification that the thread should stop itself,
in a clean way.

➌ The thread itself fills in its scheduling properties. (This could also be done by another task.)

➍ This command makes the task sleep until the specified next wake-up time, or until it receives the
signal to clean up. (This signal could have another, task-dependent interpretation too, of course.)

The functionpthread_cond_timedwait() is used to, both, wait for a time to expire, and for a
condition to be signaled (Section 4.7):

int pthread_cond_timedwait(
pthread_cond_t *cond, // condition variable
pthread_mutex_t *mutex, // mutex to protect scope
struct timespec *abstime);// absolute time to wake up

So, the semantics of the pure RTAI and the POSIX implementations are not exactly the same. Another
difference between both versions is that a POSIX thread initialization makes the task active immediately,
while the task created by art_task_init() is suspended when created, and must be activated
explicitly. (This is achieved by the second argument inrt_task_make_periodic() : it specifies the
time when the task will be first woken up.)

77

Chapter 8. RTAI: the features

8.2.2. Tasklets

The data structure to hold the status and the data connected to a tasklet (Section 2.3) is created with the
following function:

struct rt_tasklet_struct *rt_init_tasklet(void)

It is configured with

int rt_insert_tasklet(
struct rt_tasklet_struct *tasklet, // data structure
int priority, // static priority
void (*handler)(unsigned long), // function to execute
unsigned long data, // data to pass to handler
unsigned long id, // user-defined identifier
int pid) // OS process identifier

There also exist function calls with which one can set most of the above-mentioned properties separately.
RTAI executes the tasklets before it runs its scheduler. And tasklets can set priorities to influence the
order in which the operating system executes them. An application can also execute a tasklet explicitly
(or rather, wake it up for execution) by art_tasklet_exec(tasklet) function call. Tasklets donot
save their floating point registers by default.

8.2.3. Timers

These are nothing else but timed tasklets, so its interface functions have the same semantics as those of
tasklets.rt_init_timer() is in fact a copy of thert_init_tasklet() function. The major
difference lies in thert_insert_timer() function, which inserts the timer tasklet in a list of timers to
be processed by atime managertask. This function has two more parameters than
rt_insert_tasklet , which give the tasklet the semantics of a timer:

int rt_insert_timer(
struct rt_tasklet_struct *timer,
int priority,
RTIME firing_time, // fire time
RTIME period, // period, if timer must be periodic
void (*handler)(unsigned long),
unsigned long data,
int pid)

Thepid parameter is not needed, because the timer tasklet will never be referred to as a “real” task
anyway, i.e., as a task that is scheduled by the scheduler. So, some of the fields in the timer data structure
(which is equal to the tasklet data structure) are not used. The timer list is ordered according to the
desired fire time of the timer tasklets. The time manager always inherits the priority of the
highest-priority timer.

78

Chapter 8. RTAI: the features

8.2.4. ASR

Via thesignal parameter ofrt_task_init() , the application programmer can register a function
that will be executed whenever the task it belongs to will be scheduled, andbeforethat task is scheduled.
This is the functionality of what is sometimes called anAsynchronous Service Routinein other operating
systems (Section 3.4). An ASR is different from a tasklet, in the following sense:

• the ASR’s function is executed in the context of the task it belongs to, while a tasklet has its own
context.

• The ASR is run with interrupts disabled. (This is not always the case for ASRs in other operating
systems.)

• The ASR is not a schedulable task itself, i.e., it will never show up in the scheduling queues, just like
the timer tasklets.

8.2.5. Queue blocks

(TODO: what is the real use of queue blocks? Seems to be a primitive that somebody happened to have
implemented (on QNX) and ported to RTAI without filling a real need?)

Queue blocks are simple structures that contain a pointer to a function and the time at which the function
must be executed. The queue blocks are linked into a list and a family of functions are provided to
manage the whole thing. The functions are of the typevoid (*handler)(void *data, int

event) , and therefore the simple structures also include the arguments data and event. The application
may or may not use any of the arguments.

8.2.6. Task scheduling

RTAI provides several complementary scheduling configuration options:

• Depending on the hardware, the following scheduling options are available: uni-processor scheduling
(UP), multi-processor scheduling (MUP; the application programmer can assign each task to a
specific (set of) processors), and symmetric multi-processor systems (SMP; the scheduler assigns
tasks at run-time to any available processor).

• Tasks can configureperiodic scheduling(scheduled every time a certain time has elapsed) and
one-shot scheduling(scheduled only once at the requested time).

• RTAI has static priority-based scheduling (“SCHED_FIFO”) as its default hard real-time scheduler,
but if offers also Round Robin time-sliced scheduling (“SCHED_RR”), Rate Monotonic Scheduling,
andEarliest Deadline First. It’s the responsibility of theapplication programmerto get the scheduler
and timings choices correct. When multiple scheduler schemes are used, RTAI has made the
(arbitrary) choice to give EDF tasks a higher priority than tasks scheduled with other policies.

79

Chapter 8. RTAI: the features

By definition (Section 2.5), only SCHED_FIFOandSCHED_RRcan be chosen on a per task basis, and
with a per task quantum time (only relevant forSCHED_RR):

rt_set_sched_policy(
RT_TASK *task, // pointer to task’s data structure
int policy, // 0: RT_SCHED_FIFO, 1: RT_SCHED_RR
int rr_quantum_ns // RR time slice in nanoseconds, lying between

// 0 (= default Linux value) and
// 0x0FFFFFFF (= 1/4th of a second)

),

(Needing Round Robin scheduling in an application program should be considered as an indication that
the program logic is poorly designed. . .) The EDF and RMS schedulers needglobal information about
the task timings, so the procedures are a little bit more complex:

• RMS: the RMS scheduler is (re)initialized by the functionvoid rt_spv_RMS(int cpuid) , to be
calledafter the operating system knows the timing information ofall your tasks. That is, after you
have made all of your tasks periodic at the beginning of your application, or after you create a periodic
task dynamically, or after changing the period of a task. Thecpuid parameter of the function
rt_spv_RMS() is only used by the multi uni-processor scheduler.

• EDF: this scheduler must know thestart andterminationtimes of all your tasks, so a task must call
the function

void rt_task_set_resume_end(RTIME resume_time, RTIME end_time);

at the end ofeveryrun of one cycle of the task.

RTAI provides several function calls that influence task scheduling (ABCscheduler/rtai_sched.c):

void rt_task_yield(void);
// stops the current task and takes it at the end of the list of
// ready tasks, with the same priority. The scheduler makes the
// next ready task of the same priority active.

int rt_task_suspend(RT_TASK *task);
// suspends execution of the "task". It will not be executed
// until a call to "rt_task_resume()" or
// "rt_task_make_periodic()" is made.

int rt_task_resume(RT_TASK *task);
// resumes execution of the "task" previously suspended by
// "rt_task_suspend()" or makes a newly created task ready to run.

int rt_task_make_periodic(
RT_TASK *task,
RTIME start_time,
RTIME period);

// mark the "task" as available for periodic execution, with
// period "period", when "rt_task_wait_period()" is called.
// The time of the task’s first execution is given by
// "start_time", an absolute value measured in clock ticks.

80

Chapter 8. RTAI: the features

int rt_task_make_periodic_relative_ns(
RT_TASK *task,
RTIME start_delay,
RTIME period);

// As "rt_task_make_periodic", but with "start_delay" relative
// to the current time and measured in nanosecs.

void rt_task_wait_period(void);
// suspends the execution of the currently running task until
// the next period is reached. The task must have been previously
// marked for execution with "rt_task_make_periodic()" or
// "rt_task_make_periodic_relative_ns()".
// The task is suspended only temporarily, i.e. it simply gives up
// control until the next time period.

void rt_task_set_resume_end_times(RTIME resume, RTIME end);
int rt_set_resume_time(RT_TASK *task, RTIME new_resume_time);
int rt_set_period(RT_TASK *task, RTIME new_period);

RTIME next_period(void);
// returns the time when the caller task will run next.

void rt_busy_sleep(int ns);
// delays the execution of the caller task without giving back
// the control to the scheduler. This function burns away CPU
// cycles in a busy wait loop. It may be used for very short
// synchronization delays only. "nanosecs" is the number of
// nanoseconds to wait.

void rt_sleep(RTIME delay);
// suspends execution of the caller task for a time of
// "delay" internal count units. During this time the CPU is
// used by other tasks.
// A higher priority task or interrupt handler can run
// during the sleep, so the actual time spent in this function
// may be longer than the specified time.

void rt_sleep_until(RTIME time);
// similar to "rt_sleep", but the parameter "time" is the
// absolute time untill when the task is suspended. If the
// given time is already passed this call has no effect.

int rt_task_wakeup_sleeping(RT_TASK *task);

The status of a task can be found with:

int rt_get_task_state (RT_TASK *task);

The task state is formed by the bitwise OR of one or more of the following flags:

• READY: task is ready to run (i.e. unblocked).

81

Chapter 8. RTAI: the features

• SUSPENDED: task is suspended.

• DELAYED: task waits for its next running period or expiration of a timeout.

• SEMAPHORE: task is blocked on a semaphore.

• SEND: task sent a message and waits for the receiver task.

• RECEIVE: task waits for an incoming message.

• RPC: task sent a Remote Procedure Call and the receiver has not got it yet.

• RETURN: task waits for reply to a Remote Procedure Call.

The returned task state is just an approximative information. Timer and other hardware interrupts may
cause a change in the state of the queried task before the caller could evaluate the returned value. The
caller should disable interrupts if it wants reliable info about another task.

A task can find its own task data structure with:

RT_TASK *rt_whoami (void);

Tasks can choose whether or not to save floating point registers at context switches:

int rt_task_use_fpu (RT_TASK* task, int use_fpu_flag);
// informs the scheduler that floating point arithmetic
// operations will be used by the "task".
// If "use_fpu_flag" has a nonzero value, FPU context is also
// switched when task or the kernel become active. This makes task
// switching slower. The initial value of this flag is set by
// "rt_task_init()" when the real time task is created. By default,
// a Linux "task" has this flag cleared. It can be set with the
// "LinuxFpu" command line parameter of the "rtai_sched" module.

void rt_linux_use_fpu (int use_fpu_flag);
// informs the scheduler that floating point arithmetic
// operations will be used in the background task (i.e.,
// the Linux kernel itself and all of its processes).

8.2.7. Getting the time

RTAI provides several function calls for getting the current time (ABCscheduler/rtai_sched.c):

RTIME rt_get_time(void)
RTIME rt_get_time_cpuid(unsigned int cpuid)
RTIME rt_get_time_ns(void)
RTIME rt_get_time_ns_cpuid(unsigned int cpuid)
RTIME rt_get_cpu_time_ns(void)

82

Chapter 8. RTAI: the features

The time is given in “ticks”, or in nanoseconds. The parametercpuid indicates the number of the CPU
in a multi-processor system, and these calls (andrt_get_cpu_time_ns) read the localTime Stamp
Clock, instead of the external timer chip. The latter has usually a lower resolution.

8.3. Interrupts and traps

An interrupt handler (Section 3.3) must be registered with the operating system via a call of the
following function:

int rt_request_global_irq (
unsigned int irq,
void (*handler)(void)

);

This call installs the functionhandler as the interrupt service routine for IRQ levelirq . handler is
then invoked whenever interrupt numberirq occurs. The installed handler must take care of properly
activating any Linux handler using the same irq number, by calling thevoid rt_pend_linux_irq

(unsigned int irq) function, which “pends” the interrupt to Linux (in software!). This means that
Linux will process the interrupt as soon as it gets control back from RTAI. Note that, at that time,
hardware interrupts are againenabledfor RTAI. The use ofrt_pend_linux_irq() does only make
sense foredge-triggeredinterrupts (Section 3.2): the level-triggered one is still active, unless you have
acknowledged it alreadyexplicitly.

From an RTAI task, one can also register an interrupt handler with Linux, via

int rt_request_linux_irq (
unsigned int irq,
void (*handler)(int irq, void *dev_id, struct pt_regs *regs),
char *linux_handler_id,
void *dev_id

);

This forces Linux to share the interrupt. The handler is appended to any already existing Linux handler
for the same irq and run as a Linux irq handler. The handler appears in/proc/interrupts , under the
name given in the parameterlinux_handler_id . The parameterdev_id is passed to the interrupt
handler, in the same way as the standard Linux irq request call.

void rt_request_timer (
void (*handler)(void),
int tick,
int apic

);

registers thehandler as the ISR of a timer interrupt. Iftick is zero, the timer is executed only once.
If apic is nonzero, the local APIC is used (Section 3.2). The difference with the timer tasklets (Section
8.2.3) is that the latter are not directly registered as an interrupt handler, but executed by a timer manager
(which is itself woken up by a timer).

83

Chapter 8. RTAI: the features

Floating point register saving ison by defaultin RTAI interrupt handlers. The DSR functionality (Section
3.4) is available through tasklets, and ASR functionality through thesignal() parameter. One can also
select which CPU must receive and handle a particular IRQ, via thert_assign_irq_to_cpu(int

irq, int cpu) function.rt_reset_irq_to_sym_mode(int irq) resets this choice, back to the
symmetric “don’t care” behaviour.

In RTAI, application programmers must explicitly enable interrupts themselves, viart_irq_enable() .
Whether this is done in the ISR or in the DSR depends on the hardware of the application: if it has an
interrupt ready immediately, enabling the interrupts in the ISR could cause recursive calls to the ISR,
possibly blocking the system.

Section 3.3discussed the concept oftrapsandtrap handlers. The API that RTAI offers is as follows:

// data structure of handler
typedef int (*RT_TRAP_HANDLER)(

int, // interrupt vec
int, // signal number
struct pt_regs *, // argument pointers that can be

// given to a trap handler (see Linux)
void * // data pointer

);

// fill in trap handler data structure:
int rt_trap_handler(

int vec,
int signo,
struct pt_regs *regs,
void *dummy_data

);

// register trap handler:
RT_TRAP_HANDLER rt_set_task_trap_handler(

RT_TASK *task, // task which registers handler
unsigned int vec, // interrupt vec which triggers handler
RT_TRAP_HANDLER handler // data structure of handler

);

RTAI reserves 32system signals, most of them correspond to what standard Linux uses. These signals
are denoted by “signo ” in the code above, and are defined in the data structure
rtai_signr[NR_TRAPS] in the file"arch/i386/rtai.c , for i386 only. The default configuration
policies of RTAI are: (i) to add the same handler to all traps, (ii) to trap the non-maskable interrupt of the
processor and let it do nothing (getting it in the first place indicates that something major has gone
wrong), and (iii) to suspend a task that calls a non-existing handler.

8.4. IPC: synchronization

Also in this area, RTAI offers the whole range of synchronization primitives: semaphore and mutex,
condition variable, and barrier or flags (“bits”).

84

Chapter 8. RTAI: the features

8.4.1. Semaphore and mutex

RTAI has counting semaphores, binary semaphores and recursive semaphores ,Section 4.6.1.
semaphores can block tasks waiting on them in FIFO or priority order;

Semaphores in RTAI have the following API:

void rt_sem_init (SEM* sem, int value);
int rt_sem_signal (SEM* sem);
int rt_sem_wait (SEM* sem);

// version that returns immediately when not free:
int rt_sem_wait_if (SEM* sem);

// versions with a timeout:
int rt_sem_wait_until (SEM* sem, RTIME time); // absolute time
int rt_sem_wait_timed (SEM* sem, RTIME delay); // relative time

RTAI semaphores havepriority inheritance. and (adaptive)priority ceiling (Section 4.9).

8.4.2. POSIX mutex

RTAI implements the standard POSIX mutexes (Section 4.6.2), with the prescribedpriority inheritance.
The API is, of course, the standard POSIX API as presented inSection 4.6.2.

8.4.3. Spinlocks

Application programmers can choose from a wide variety of spinlocks, each with well-defined scope.
Basically, they look like the spinlocks in Linux, with a “rt_ ” prefix, but using the same data structures.
But the RTAI spinlocks need an extra level with respect to Linux, because Linux runs on an hardware
simulation layer as soon as RTAI has been activated. Indeed, from that moment on, the Linux calls are
replaced by “soft” versions, in the sense that RTAI can always pre-empt critical Linux sections. Here is
the list of RTAI spinlocks:

unsigned long flags;
spinlock_t lock;

rt_spin_lock(&lock);
/* critical section in Linux (as the ‘spin_lock()’ there, hence

Linux’s (soft) interrupts still pass), but pre-emptable by RTAI.
*/

rt_spin_unlock(&lock);

rt_spin_lock_irq(&lock);
/* same as above but Linux’s soft interrupts disabled. */

rt_spin_unlock_irq(&lock);

flags = rt_spin_lock_irqsave(&lock);
/* critical section in RTAI with hardware interrupts disabled

85

Chapter 8. RTAI: the features

on current CPU. */
rt_spin_lock_irqrestore(flags,&lock);

The following locks don’t need a lock data structure, because they are drastic, and use a “global lock”
over all processors:

rt_global_cli();
/* critical section with interrupts disabled on the calling CPU,

and "global lock" for all CPUs. */
rt_global_sti();

flags = rt_global_save_flags_and_cli();
/* as "rt_global_cli()", but saves the state of the interrupt flag,

and the "global lock" flag. */
rt_global_restore_flags(flags);

flags = hard_lock_all();
/* Most drastic way of making the system safe from pre-emption by

interrupts.
On UP boxes is the same as "rt_global_save_flags_and_cli()"
above. On SMP locks out all the other CPUs, sending then an
IPI (inter-processor interrupt) signal. */

hard_unlock_all(flags);

The normal Linux spinlocks still work in RTAI, so be careful when using them, because they won’t
always offer the same protection in RTAI hard real ime as what you expect from knowing how they
behave in un-modified Linux.

8.4.4. Condition variable

RTAI implements the standard POSIX condition variables (Section 4.7).

8.4.5. Barrier/flags

RTAI has a barrier-like (Section 4.6.5) primitive, which it callsbits. It allows tasks to suspend on an
AND or OR combination of bits sets in a 32 bit mask called “BITS” (include/rtai_bits.h):

struct rt_bits_struct {
struct rt_queue queue; // must be first in struct
int magic;
int type; // needed because BITS and semaphores share some things
unsigned long mask;

};

typedef struct rt_bits_struct BITS;

Tasks can read and write bits in this mask, and perform “wait” calls on the mask. The full API: is as
follows:

86

Chapter 8. RTAI: the features

#include <rtai_bits.h>

// basic bit operation functions, indicated by macros:
#define SET_BITS 0
#define CLR_BITS 1
#define SET_CLR_BITS 2
#define NOP_BITS 3

void rt_bits_init(BITS *bits, unsigned long mask)
// create and initialize the bits structure pointed to by "bits",
// setting bits mask to "mask".

int rt_bits_delete(BITS *bits)
// delete the "bits" data structure

unsigned long rt_get_bits(BITS *bits)
// get the actual value of the "bits" mask.

unsigned long rt_bits_signal(
BITS *bits,
int setfun,
unsigned long masks)

// execute "setfun" (which is any of the basic bits operations
// above: SET_BITS, etc.), oring/anding masks onto the actual
// bits mask, schedule any task blocked on "bits" if the new bits
// mask meets its request;
// returns the value of bits after executing setfun;
// in case of combined operations (AND and OR), "masks" is to be
// cast to a pointer of a two elements array of unsigned longs
// containing the masks to be used for the combined "setfun".

int rt_bits_reset(BITS *bits, unsigned long mask)
// unconditionally schedule any task blocked on "bits" and
// reset its mask to "mask";
// returns the value of bits mask before being reset to "mask".

int rt_bits_wait(
BITS *bits,
int testfun,
unsigned long testmasks,
int exitfun,
unsigned long exitmasks,
unsigned long *resulting_mask)

// test "bits" mask against "testmasks" according to "testfun"
// (which is any of the test functions above, e.g., SET_BIT, etc.);
// if the test is not satisfied block the task;
// whenever the condition is met, execute "exitfun:, and any bits
// operation above, using "exitmasks",
// save the the mask resulting after the whole processing in the
// variable pointed by "resulting_mask".

int rt_bits_wait_if(
BITS *bits,

87

Chapter 8. RTAI: the features

int testfun,
unsigned long testmasks,
int exitfun,
unsigned long exitmasks,
unsigned long *resulting_mask)

// as "rt_bits_wait",
// but does not block if "testfun" is not satisfied.

int rt_bits_wait_until(
BITS *bits,
int testfun,
unsigned long
testmasks,
int exitfun,
unsigned long exitmasks,
RTIME time,
unsigned long *resulting_mask)

// as "rt_bits_wait",
// but waits at most till "time" expires.

unsigned long rt_bits_wait_timed(
BITS *bits,
int testfun,
unsigned long testmasks,
int exitfun,
unsigned long exitmasks,
RTIME delay,
unsigned long *resulting_mask)

// as "rt_bits_wait_until",
// but waits at most for "delay" to meet the required condition.

8.5. IPC: data exchange.

RTAI has messages, mailboxes, and POSIX message queues (“pqueues”), including synchronous
message passing semantics (Section 5.3), FIFOs, Remote Procedure Calls, and shared memory.

8.5.1. Messages

RTAI makes the distinction between messages and mailboxes, as explained inSection 5.3. The messages
are the more primitive form, and in RTAI, the basic implementation of messages carry only afour byte
message in the call itself. So, no buffering must be provided. The API for this simple inter-task
messaging is:

RT_TASK* rt_send (RT_TASK* task, unsigned int msg);
// sends the message "msg" to the task "task".
// If the receiver task is ready to get the message,

88

Chapter 8. RTAI: the features

// "rt_send" returns immediately.
// Otherwise the caller task is blocked.

RT_TASK* rt_send_if (RT_TASK* task, unsigned int msg);
// sends the message “if possible”. If the receiver task is not
// ready, the sending task just continues.
// On success, "task" (the pointer to the task that received the
// message) is returned.
// If message has not been sent, 0 is returned.

RT_TASK* rt_send_until (RT_TASK* task, unsigned int msg, RTIME time);
RT_TASK* rt_send_timed (RT_TASK* task, unsigned int msg, RTIME delay);

// As "rt_send", but the sending is given up after either an
// absolute "time", or a relative "delay".

RT_TASK* rt_receive (RT_TASK* task, unsigned int *msg);
// gets a message from the "task", and stores it in the buffer "msg"
// that the caller task provides.
// If "task" is equal to 0, the caller accepts messages from any
// task. If there is a pending message, "rt_receive" returns
// immediately. Otherwise the caller task is blocked and queued up.

RT_TASK* rt_receive_if (RT_TASK* task, unsigned int *msg);
// as "rt_receive", but only “if possible”.

RT_TASK* rt_receive_until (RT_TASK* task, unsigned int *msg, RTIME time);
RT_TASK* rt_receive_timed (RT_TASK* task, unsigned int *msg, RTIME delay);

// as "rt_receive", but with time limits as in the send calls.

Blocking may happen in priority order or on a FIFO base. This is determined by an RTAI compile time
optionMSG_PRIORD.)

More recently, RTAI got so-calledextended messages. These are less efficient than their four-byte
cousins, but more flexible in that they allow messages of arbitrary size. To this end, the extended
message functions use a double buffer data structure:

struct mcb_t {
void *sbuf; // buffer for the sender
int sbytes; // number of bytes sent
void *rbuf; // buffer for the receiver
int rbytes; // number of bytes received

};

The following function prototypes are quite self-explanatory, withsmsg indicating the sender’s message
buffer,ssize the sender’s message size, andrmsg andrsize similarly for the receiver.

RT_TASK *rt_sendx(RT_TASK *task, void *smsg, int ssize)

RT_TASK *rt_sendx_if(RT_TASK *task, void *smsg, int ssize)

RT_TASK *rt_sendx_until(
RT_TASK *task,

89

Chapter 8. RTAI: the features

void *smsg,
int ssize,
RTIME time)

RT_TASK *rt_sendx_timed(
RT_TASK *task,
void *smsg,
int ssize,
RTIME delay)

RT_TASK *rt_receivex(
RT_TASK *task,
void *msg,
int size,
int *truesize)

RT_TASK *rt_receivex_if(
RT_TASK *task,
void *msg,
int size,
int *truesize)

RT_TASK *rt_receivex_until(
RT_TASK *task,
void *msg,
int size,
int *truesize,
RTIME time)

RT_TASK *rt_receivex_timed(
RT_TASK *task,
void *msg,
int size,
int *truesize,
RTIME delay)

RT_TASK *rt_rpcx(
RT_TASK *task,
void *smsg,
void *rmsg,
int ssize,
int rsize)

RT_TASK *rt_rpcx_if(
RT_TASK *task,
void *smsg,
void *rmsg,
int ssize,
int rsize)

RT_TASK *rt_rpcx_until(
RT_TASK *task,
void *smsg,

90

Chapter 8. RTAI: the features

void *rmsg,
int ssize,
int rsize,
RTIME time)

RT_TASK *rt_rpcx_timed(
RT_TASK *task,
void *smsg,
void *rmsg,
int ssize,
int rsize,
RTIME delay)

T_TASK *rt_returnx(RT_TASK *task, void *msg, int size)
// ???

int rt_isrpcx(RT_TASK *task)
// ???

8.5.2. Mailboxes

RTAI supports mailboxes (Section 5.3). They are flexible in the sense that they allow to send any
message size by using any mailbox buffer size. The original implementation uses a FIFO (First In, First
Out) policy; a recent addition are “typed” mailboxes, that have a priority message delivery option.
Sending and receiving messages can be done with several policies:

• Unconditionally: the task blocks until the whole message has passed.

• Best-effort: only pass the bytes that can be passed immediately.

• Conditional on availability: only pass a message if the whole message can be passed immediately.

• Timed: with absolute or relative time-outs.

The API for mailboxes is given ininclude/rtai_sched.h (of all places. . .):

struct rt_mailbox {
int magic; // identifier for mailbox data structure
SEM sndsem, // semaphores to queue sending...

rcvsem; // ... and receiving tasks.
RT_TASK *waiting_task, // pointer to waiting tasks

*owndby; // pointer to task that created mailbox
char *bufadr; // mailbox buffer
int size, // mailbox size

fbyte, // circular buffer first byte pointer
lbyte, // circular buffer last byte pointer
avbs, // bytes in buffer
frbs; // bytes free

spinlock_t lock; // lock to protect access to buffer
};

91

Chapter 8. RTAI: the features

typedef struct rt_mailbox MBX;

int rt_typed_mbx_init(MBX *mbx, int size, int qtype);
// Initialize a mailbox "mbx" with a buffer of "size" bytes,
// queueing tasks according to the specified type: FIFO_Q, PRIO_Q and
// RES_Q.

int rt_mbx_init(MBX *mbx, int size);
// equivalent to rt_typed_mbx_init(mbx, size, PRIO_Q)

int rt_mbx_delete(MBX *mbx);
// Delete the mailbox "mbx".

int rt_mbx_send(MBX *mbx, void *msg, int msg_size);
// Send unconditionally, i.e. return when the whole message has
// been received or an error occured, to the mailbox "mbx", the
// message pointed by "msg", whose size is "msg_size" bytes.
// Returns the number of unsent bytes.

int rt_mbx_send_wp(MBX *mbx, void *msg, int msg_size);
// As "rt_mbx_send", but only available bytes.
// “_wp” stands for: “what possible.”

int rt_mbx_send_if(MBX *mbx, void *msg, int msg_size);
// Send to the mailbox "mbx" only if all "msg_size" bytes
// of "msg" can be received immediately.
// Returns the number of unsent bytes, i.e. either 0 or "msg_size".
// “_if” stands for: “if available.”

int rt_mbx_send_until(MBX *mbx, void *msg, int msg_size, RTIME time);
// As "rt_mbx_send", unless the absolute time dead-line "time"
// is reached.

int rt_mbx_send_timed(MBX *mbx, void *msg, int msg_size, RTIME delay);
// As "rt_mbx_send", unless the time-out "delay" has expired.

// Similar semantics for receiving message:
int rt_mbx_receive(MBX *mbx, void *msg, int msg_size);
int rt_mbx_receive_wp(MBX *mbx, void *msg, int msg_size);
int rt_mbx_receive_if(MBX *mbx, void *msg, int msg_size);
int rt_mbx_receive_until(MBX *mbx, void *msg, int msg_size, RTIME time);
int rt_mbx_receive_timed(MBX *mbx, void *msg, int msg_size, RTIME delay);

int rt_mbx_evdrp(MBX *mbx, void *msg, int msg_size);
// This is the “unsafe” version, that doesn’t protect against
// overwriting the circular message buffer.
// The name stands for “eventual dropping” of data. (???)

Typedmailboxes offer a functionality that is asupersetof the mailboxes above, adding the following
features:

92

Chapter 8. RTAI: the features

• Message broadcasting: a message is sent toall tasks that are pending on the same mailbox.

• Priority configuration: aurgentor normalwakeup policy can be set when creating the mailbox.

These features are achieved by adding a 1-bytetype fieldto every message inserted in a typed mailbox.
So, when receiving it is possible to discriminate normal, urgent and broadcast messages. The type field is
silently removed by the receiving functions, so from the user point of view it is not visible. Users must
consider type fields only when specifying the types mailbox sizes.

The API for typed mailboxes is given ininclude/rtai_tbx.h :

struct rt_typed_mailbox {
int magic;
int waiting_nr; // number of tasks waiting for a broadcast
SEM sndsmx, // semaphores to queue sending...

rcvsmx; // ... and receiving tasks.
SEM bcbsmx; // binary semaphore needed to wakeup the

// sleeping tasks when the broadcasting of a
// message is terminated

RT_TASK *waiting_task;
char *bufadr; // mailbox buffer
char *bcbadr; // broadcasting buffer
int size; // mailbox size
int fbyte; // circular buffer read pointer
int avbs; // bytes occupied
int frbs; // bytes free
spinlock_t buflock; // lock to protect buffer access

};

typedef struct rt_typed_mailbox TBX;

// The function prototypes are similar to normal mailboxes,
// with "_mbx_" replaced by "_tbx_". For example:

int rt_tbx_init(TBX *tbx, int size, int type);
int rt_tbx_send(TBX *tbx, void *msg, int msg_size)

// etc.
// Some functions are new:

int rt_tbx_broadcast(TBX *tbx, void *msg, int msg_size);
int rt_tbx_broadcast_if(TBX *tbx, void *msg, int msg_size);
int rt_tbx_broadcast_until(TBX *tbx, void *msg, int msg_size, RTIME time);
int rt_tbx_broadcast_timed(TBX *tbx, void *msg, int msg_size, RTIME delay);

int rt_tbx_urgent(TBX *tbx, void *msg, int msg_size);
int rt_tbx_urgent_if(TBX *tbx, void *msg, int msg_size);
int rt_tbx_urgent_until(TBX *tbx, void *msg, int msg_size, RTIME time);
int rt_tbx_urgent_timed(TBX *tbx, void *msg, int msg_size, RTIME delay);

Theunconditionalversions of mailbox communication correspond tosynchronous message passing.

93

Chapter 8. RTAI: the features

8.5.3. POSIX message queues

RTAI supports standard POSIX message queues (Section 5.3).

8.5.4. FIFO

FIFOs are a basic IPC data exchange primitive, and well supported under RTAI. It offers an API for
kernel space FIFOs, and one for user space FIFOs:

struct rt_fifo_info_struct{
unsigned int fifo_number;
unsigned int size;
unsigned int opncnt;
char name[RTF_NAMELEN+1];

};

struct rt_fifo_get_info_struct{
unsigned int fifo;
unsigned int n;
struct rt_fifo_info_struct *ptr;

};

// initialize FIFO data structure:
int rtf_init(void);

/* Attach a handler to an RT-FIFO.
*
* Allow function handler to be called when a user process reads or
* writes to
* the FIFO. When the function is called, it is passed the fifo number
* as the
* argument.
*/

extern int rtf_create_handler(unsigned int fifo, /* RT-FIFO */
int (*handler)(unsigned int fifo) /* function to be called

*/);

Here is the skeleton of a user space task and a hard real-time task, that use a FIFO to communicate; the
other IPC primitives use similar skeletons.

// user space task:
int main(int argc,char *argv[])
{

int rtf, cmd;
int data[...];

94

Chapter 8. RTAI: the features

double ddata[...];
...
if ((rtf = open("/dev/rtf0", O_RDONLY)) < 0) { ➊

fprintf(stderr, "Error opening /dev/rtf0\n");
exit(1);

}
if ((cmd = open("/dev/rtf1", O_WRONLY)) < 0) { ➋

fprintf(stderr, "Error opening /dev/rtf1\n");
exit(1);

}
while (...) { ➌

write(cmd, &data, ...);
... ➍

read(rtf, &ddata, ...);
...

};
...
return 0;

}

// module that creates hard real-time task:
#define RTF 0
#define CMD 1

static RT_TASK mytask;

int init_module(void)
{

rtf_create(RTF, 4000); ➎

rtf_create(CMD, 100); ➏

rt_task_init(&mytask, fun, 0, STACK_SIZE, 0, 1, 0);
rt_set_runnable_on_cpus(&mytask, ...);
rt_assign_irq_to_cpu(TIMER_8254_IRQ, TIMER_TO_CPU);
rt_linux_use_fpu(1);
now = rt_get_time();
rt_task_make_periodic(&mytask, now + 2000, ...);
return 0;

}

// function run in real-time task:
static void fun(int t) {

...
while (...) {

cpu_used[hard_cpu_id()]++;
rtf_put(RTF, ..., ...);
rtf_get(CMD, ..., ...):
rt_task_wait_period();

}
}

➊ Opens first FIFO as a user space device.

➋ Opens second FIFO as a user space device.

95

Chapter 8. RTAI: the features

➌ Writes data in the FIFO.

➍ Reads data from the FIFO.

One can add a handler to a FIFO, viartf_create_handler() . One can also send a signal to notify
data availability, viartf_set_async_sig(int fd, int signum) . This handler and signal
functionality is not available for the other IPC primitives.

8.5.5. RPC

RTAI supports Remote Procedure Calls,Section 5.3. (Even over a network, In which case the user is
responsible for using appropriate hardware, of course. This text skips the details of this latter
functionality, because it falls outside of the scope of hard real-time systems.) The on-system RPC in
RTAI works as a “send/receive” message pair: a task sends a four-byte message to another task, and then
waits until a reply is received. The caller task is always blocked and queued up. Calling this a “Remote
Procedure Call” is a bit ambitious: the communicating tasks just send four bytes, and they have to agree
on a protocol that defines themeaningof these four bytes, and whether or not the message triggers the
execution of a procedure call at the receiver’s end. The API for this form of RPC is:

RT_TASK *rt_rpc(
RT_TASK *task,
unsigned int to_do,
unsigned int *reply);

// The receiver task may get the message with any "rt_receive_*"
// function. It can send the answer with "rt_return()".
// "reply" points to a buffer provided by the caller.

RT_TASK *rt_return(
RT_TASK *task,
unsigned int reply);

RT_TASK *rt_rpc_if(
RT_TASK *task,
unsigned int to_do,
unsigned int *result);

RT_TASK *rt_rpc_until(
RT_TASK *task,
unsigned int to_do,
unsigned int *result,
RTIME time);

RT_TASK *rt_rpc_timed(
RT_TASK *task,
unsigned int to_do,
unsigned int *result,
RTIME delay);

int rt_isrpc(RT_TASK *task);

96

Chapter 8. RTAI: the features

// After receiving a message, by calling "rt_isrpc" a task
// can find out whether the sender task "task" is waiting for
// a reply or not.
// "rt_return" is intelligent enough to not send an answer to
// a task which is not waiting for it. Therefore using "rt_isrpc"
// is not necessary and discouraged.

The meaning of the suffixes “_if ”, “ _until ”, and “_timed ” is as in the APIs of messages and
mailboxes.

8.6. Memory management

Shared memory implementation inshmem. Again symmetric. Dynamic memory management;

(TODO: more details.)

8.7. Real-time device drivers

spdrv, rtnet, plus strong integration with Comedi.

(TODO: more details.)

8.8. /proc interface

The /proc interface is an extension to the standard Linux/proc interface feature: files under the
subdirectory/proc/rtai give status and debug information of the currently active RTAI modules.
These files are activated when the associated module is inserted into the kernel.

/proc interface code can be found in most RTAI source files. It’s a non real-time feature (hence, only to
be used by normal user space tasks), but it requires support from the real-time kernel; this support is
implemented again viatraps.

8.9. RTAI loadable modules

RTAI’s functionality is made available by dynamicallyloading modulesinto the running (and patched)
Linux kernel. Every module extends the API of the kernel with some new “objects” (i.e., function calls
and data structures). Not all modules are needed in all cases, but, vice versa, dependencies exist between
modules, i.e., in order to use functionality in one module, one often also needs to load other modules first.

97

Chapter 8. RTAI: the features

rtai core modulertai.c , and made inrtaidir .

Scheduler moduleABCscheduler/rtai_sched.c .

Tasklet module: allocates and initializes the data structures for the tasklet and timer queues; starts the
timers_manager task, that is responsible for the execution of the timers;

Scheduler module... .

Extra scheduler module... .

RTAI utilities module... .

Types mailboxes module... .

pthreads module... .

Memory manager module... .

FIFOs modulefifos/rtai_fifos.c .

LX/RT modulelxrt/lxrt.c .

Serial line modulespdrv/rtai_spdrv.c .

C++ module... .

Network RPC modulenet_rpc/net_rpc.c .

Tracing moduletrace/rtai_trace.c .

Watchdog modulewatchdog/rtai_watchdog.c .

Bits modulebits/rtai_bits.c .

(TODO: explain contents of the different RTAI modules; dependencies: what must be loaded in order to
use the different functionalities mentioned above?)

98

Chapter 8. RTAI: the features

8.10. Specific features

RTAI has developed a number of features that common real-time operating systems miss:

• LX/RT is the component that allows user space tasks to execute soft and hard real-time functions.
Because this feature is quite extensive, sectionSection 11.5gives more details.

• Dynamic memory allocation, also by real-time tasks. (TODO: give details.)

• Integration of the Linux Trace Toolkit (http://www.opersys.com/LTT/index.html), which allows to
trace (i.e., log to a buffer) a large number of activities from the kernel: interrupts, scheduling, creation
of tasks, etc. (TODO: give details.)

• C++ support,Chapter 12.

99

Chapter 9. Linux-based real-time and
embedded operating systems

This Chapter presents “spin-offs” of the standard Linux kernel that provide hard real-time performance,
or that are targeted to embedded use.

9.1. Introduction

There are two major developments at the RTOS level: RTLinux and RTAI. RTAI forked off an earlier
version of RTLinux. RTLinux and RTAI do basically the same thing (and do it with industrial strenght
quality, except maybe for documentation. . .), they make their sources available, they have partial POSIX
compliance, but they don’t use compatible APIs. In theembedded(but non real-time) Linux world,
projects have emerged, such as uCLinux, and Etlinux. But probably standard Linux is the major
workhorse here, thanks to its great configurability.

9.2. RTLinux: Real-Time Linux

RTLinux (http://www.rtlinux.com) is a patch for the standard Linux kernel (often called the “vanilla”
Linux kernel), for single as well as for multi-processor kernels. It offers all components of a hard
real-time system in a multi-threaded real-time kernel, in which standard Linux is the lowest-priority
thread. One advantage (or disadvantage, depending on your taste) of this approach is that real-time space
and Linux space (both kernel space and user space) are strictly separated: programmers have to specify
explicitly which of their tasks should run with real-time capabilities, and which others should not. This
separation also relieves the real-time kernel from “bookkeeping” tasks such as booting, device
initialization, module (un)loading, or dynamic memory allocation. None of these have real-time
constraints, hence they naturally belong to Linux and not RTLinux. From programming point of view,
most, but not all, functionality, habits and tools of Linux remain available at no cost,and the real-time
application can run and be debugged on the same computer on which it is developed, without the need
for cross-compilation tools. This makes “migration” for Linux users quite painless.

The disadvantage of a distribution in the form of a kernel patch is that this patch has (i) to be maintained
(by the RTLinux developers) over evolving kernel versions, and (ii) applied (by the users) each time they
upgrade their kernel. Pre-patched versions of some kernel versions are available from the RTLinux web
page. The RTLinux patch is minor: it provides a “virtual interrupt” emulation to standard Linux, and
offers a kernel space micro-kernel with real-time scheduled threads. RTLinux intercepts all hardware
interrupts, checks whether an interrupt is destined for a real-time service routine (and launches the
corresponding ISR if it is), or forwards them to Linux in the form of a virtual interrupt, which is held
until no real-time activity must run. In this scheme, Linux is never able to disablehardwareinterrupts.

RTLinux comes (after compilation) as a set of loadable modules within Linux: the core module with the
above-mentioned interrupt controller handler, a real-time scheduler (with static priorities), a timer

100

Chapter 9. Linux-based real-time and embedded operating systems

module, a FIFO implementation, shared memory and most real-time lock and event primitives. This
modularity makes customization easier, and increases the embeddability (because unnecessary modules
need not be loaded).

9.2.1. Functionalities

RTLinux offers basic POSIX compliance: it has implemented theMinimal Realtime System Profile
(POSIX 1001.13, PSE51). This means that it has basic thread management, IPC primitives, and
open /read / write /. . . function calls, but only for basicdeviceI/O rather than fullfile systemsupport.
RTLinux has support for mutexes, condition variables, semaphores, signals, spinlocks, and FIFOs. It
implements some form ofuser space real time, based on the signal mechanism. RTLinux tasks can
communicate with Linux tasks, with the guarantee that this IPC isneverblocking at the RTLinux side.

Some function calls do not follow the POSIX standard; these are namedpthread_..._np() , where the
“np” stands for “non-portable.” This behaviour of adding “pthread_..._np() functions in a
POSIX-compatible operating system is explicitly allowed by the POSIX standard. RTLinux uses this
behaviour, but none of its core functionality depends on it.

9.2.2. MiniRTL

miniRTL (http://www.thinkingnerds.com/projects/minirtl/minirtl.html) is a (not actively maintained)
sub-project of RTLinux that offers a small-sized real-time Linux that is small enough to boot from a
single floppy (or small Flash memory device) into a ramdisk, yet offers the most important features of
Linux. miniRTL is intended to be useful as the basis for embedded systems, but also provides a means
for real-time “newbies” (or non-Linux users) to learn more about real-time Linux.

9.2.3. The RTLinux patent

RTLinux has matured significantly over three major versions of RTLinux, and, since the 3.0 release, not
many API changes have occurred. This is partially due to the carefully conservative policy of RTLinux
maintainer Victor Yodaiken, but partially also to the fact that RTLinux started with a closed-source,
proprietary, patent-protected version. That means that there are two branches of RTLinux: RTLinux/GPL
(free software), and RTLinux/PRO (non-free software, where most of the developments and hardware
ports are taking place). The start of such a closed-cource branch was possible, because Yodaiken didn’t
include contributions in the RTLinux core with (GPL) copyrights of other contributors than FSMLabs.
This move was not too well appreciated in the free software community, but was practically inevitable in
order to build a business around RTLinux development. The support for, and response to, users of the
GPL-ed version has drastically been reduced.

The RTLinux approach is covered by US Patent 5995745
(http://www.patents.ibm.com/details?pn=US05995745__), issued on November 30, 1999. RTLinux
comes with a remarkable license for using this patent (see the filePATENTin the source distribution of
RTLinux). The following is an excerpt from that patent license file:

101

Chapter 9. Linux-based real-time and embedded operating systems

. . .

The Patented Process may be used, without any payment of a royalty, with two (2) types of software. The first
type is software that operates under the terms of a GPL (as defined later in this License). The second type is
software operating under Finite State Machine Labs Open RTLinux (as defined below). As long as the
Licensee complies with the terms and conditions of this License and, where applicable, with the terms of the
GPL, the Licensee may continue to use the Patented Process without paying a royalty for its use.

. . .
—THE OPEN RTLINUX PATENT LICENSE

With this patent, FSMLabs tries to find a balance between stimulating development under the GPL on
the one hand, and generating a business income from real-time operating system development and
service on the other hand. This patent is (at the time of this writing) not valid outside of the USA.
FSMLabs has expressed its intention toenforcethe patent, which has led to very strong reactions in the
free software community. One of these reactions has been the development of an alternative approach,
free of the patent claims (seeSection 10.1); another reaction is the massive transition of community
development efforts towards RTAI.

9.3. RTAI: the Real-Time Application Interface

RTAI (http://www.rtai.org) has its origin in RTLinux, when main developer Paolo Mantegazza wanted to
bring his work and experiences with real-time on DOS to Linux. The “schism” from RTLinux that gave
birth to RTAI occurred quite early on in the history of RTLinux, when Mantegazza wanted some features
for his own work (e.g., multi-processor support) that did not exist in RTLinux, and in which the RTLinux
developers showed no interest. The APIs of RTLinux and RTAI are similar (both are RTOSs anyway),
but not trivially exchangeable. And they become even more and more distinct over time. They do,
however, support about the same set of POSIX primitives.

RTAI is more of a “bazaar”-like project than RTLinux, in the sense that it happily accepts contributions
from anybody, without sticking to a strict design vision, or code tree and documentation discipline. In
that sense it responds better to user requests, evolves rapidly, but possibly at the price of giving a chaotic
impression to new users. Anyway, it has succeeded in attracking almost all community development
efforts in the area of real-time for Linux, at the expense of the RTLinux project.

This document takes RTAI as an example RTOS to investigate in more technical details inChapter 8.
The following sections give some information about an important non-technical aspect of RTAI: its
relationship with the RTLinux patent (Section 9.2.3).

9.3.1. RTAI and the RTLinux patent

RTLinux’s owner FSMLabs has done little to clear up the uncertainty around the legal repercussions of
its patent, which could scare away potential commercial interest in RTAI. However, the RTAI community

102

Chapter 9. Linux-based real-time and embedded operating systems

has been able to clear up matters, in different ways:

1. The license of the RTAI core changed from LGPL to GPL, so that it complies with the patent.

2. Eben Moglen, Professor of law at Columbia University, and legal adviser to the Free Software
Foundation (http://www.fsf.org), published a legal study, that concludes that the patent is not
enforceable on applications done with RTAI. A summary of his study
(http://www.aero.polimi.it/~rtai/documentation/articles/moglen.html) can be read at the RTAI
homepage.

3. Karim Yaghmour’s rebuttal of the RTLinux patent rights. Basically, the patent was submitted too
long after the patented ideas were published and available in code form. The details can be found in
his “Check Mate”
(http://www2.fsmlabs.com/mailing_list/rtl.w5archive/advocacy-0204/msg00042.html) posting on
the RTLinux advocacy mailing list.

4. Adeos.(SeeSection 10.1for more technical detail.) This is a nano-kernel, that offers an alternative
to the patented concept of RTLinux. At the time of writing, Adeos has not yet been accepted as the
real core of RTAI, but several positive testing and porting signs emerge from the community.

5. RTAI has introduced additions to normal Linux task management and scheduling, that offer the
functionality to scheduleuser spacetasks with hard real-time determinism (Section 11.5). And
Linux user space applications are not within the scope of the patent’s claims.

9.4. uCLinux

uCLinux (http://www.uclinux.org): for MMU-less processors; small footprint (about 500 to 900 kB); full
TCP/IP stack; support for various file systems. Has real-time functionality too. An introduction to
uCLinux can be found here (http://www.snapgear.com/tb20020807.html).

9.5. Etlinux

Etlinux (http://www.prosa.it/etlinux/) is a complete Linux-based system designed to run on very small
industrial computers, such as i386 and PC/104 modules with not more than 2 Megabytes of RAM.

103

Chapter 10. Non-Linux real-time operating
systems

There are many application areas where using a Linux kernel is not a good idea, because of memory
footprint, feature bloat, licensing and patent issues, processor support, etc. Moreover, Linux was certainly
not the first free software operating system, particularly not in the area of real-time. This chapter points
out some of the non-Linux alternatives that are available under free software licenses. From them, eCos
has probably been the most successful in gathering a large user and development community.

10.1. The Adeos nano-kernel

TheAdaptive Domain Environment for Operating Systems(Adeos ()) is not really an (RT)OS in itself,
but a software layer between the hardware interrupts and the operating system. Or rather, between the
hardware and thevariousoperating systems that can run on top of it. Indeed, Adeos is capable of
“hosting” more than one OS on top of it, and these OSs don’t know about each other, as long as they ask
Adeos to pass through the interrupts they need.

The Adeos design was done by Karim Yaghmour, because he wanted to find a way to avoid the
FSMLabs patent (Section 9.2.3) on the real-time Linux approach. The idea is not really new, because
Yaghmour found references from the early 90s. Philippe Gerum did most of the work in implementing
the idea into a working piece of code. (Philippe also has complementary Free Software projects:
Xenomai (http://freesoftware.fsf.org/projects/xenomai/) and CarbonKernel
(http://freesoftware.fsf.org/projects/carbonkernel/), respectively aimed at real-time operating systems
emulation and simulation.)

The following text is a copy from theREADMEfile of the Adeos code tarball: “To share the hardware
among the different OSes, Adeos implements an interrupt pipeline (ipipe). Every OS domain has an entry
in the ipipe. Each interrupt that comes in the ipipe is passed on to every domain in the ipipe. Instead of
disabling/enabling interrupts, each domain in the pipeline only needs to stall/unstall his pipeline stage. If
an ipipe stage is stalled, then the interrupts do not progress in the ipipe until that stage has been
unstalled. Each stage of the ipipe can, of course, decide to do a number of things with an interrupt.
Among other things, it can decide that it’s the last recipient of the interrupt. In that case, the ipipe does
not propagate the interrupt to the rest of the domains in the ipipe..”

10.2. eCos

(TODO: more details)

eCos (http://sources.redhat.com/ecos/) scheduler: fast and deterministic, deals with priority inversion, but
not optimally; offersµITRON, POSIX and OSEK APIs and a non-standard API that shows its roots in

104

Chapter 10. Non-Linux real-time operating systems

the Cygnus company (“cyg_scheduler_start() ” etc.). DSR: interrupts enabled but scheduling
disabled. No kernel space/user space distinction. No development on same machine. Board support
packages for a lot of processors, many of them embedded processors.

eCos has a quite turbulent history. RedHat acquires Cygnus in 1998 releasing their embedded operating
systems efforts under the eCos name, but fires its eCos development team in June 2002. Development
was taken over by eCos>entric (http://www.ecoscentric.com/). The license also changed over time, with
the version 2.0 released under what is largely the GPL, with “guarantees” for compatibility with
closed-source commercial components.

10.3. RT-EMS

The origins of RT-EMS (http://www.rtems.com/) lie with the Department of Defense in the USA, that
wanted an Ada-based “Real-time Executive for Missile Systems.” This became the “Real-time Executive
for Military Systems,” when they realised its relevance beyond missile control, and the C version later
became the “Real-Time Executive for Multiprocessor Systems.” The Ada version keeps the “M” of
“military.”

RT-EMS has a POSIX POSIX 1003.1b API (under construction); multitasking for homogeneous and
heterogeneous multiprocessor systems; an event-driven, priority-based, preemptive scheduling; optional
rate monotonic scheduling; intertask communication and synchronization; priority inheritance;
responsive interrupt management; dynamic memory allocation; and it is compatible with the GNU tools.

(TODO: more details)

10.4. Jaluna

Jaluna(Jaluna (http://www.jaluna.com)) is an RTOS plus development environment released under a
free software license in 2002. Jaluna is based on C5, the 5th generation of Sun Microsystems’ ChorusOS
product.

10.5. Wonka + Oswald

Wonka (http://wonka.acunia.com) is a free softwareVirtual Machinefor Java, with a real-time executive
OSwald.

10.6. FIASCO and DROPS

FIASCO (http://os.inf.tu-dresden.de/fiasco) is a (for the time being academic) micro-kernel running on

105

Chapter 10. Non-Linux real-time operating systems

x86 CPUs. It is a pre-emptable real-time kernel supporting hard priorities. It uses non-blocking
synchronization for its kernel objects, guarantees priority inheritance, and makes sure that runnable
high-priority processes never block waiting for lower-priority processes. FIASCO is used as the kernel of
the real-time operating system DROPS (http://os.inf.tu-dresden.de/drops/), thats want to bringQuality of
Service to real-time operating systems.

10.7. Real-time micro-kernel

The Real-time micro-kernel (http://rtmk.sourceforge.net/) is inspired by the Mach micro-kernel, but is
also meant for embedded systems.

10.8. KISS Realtime Kernel

The KISS Embedded Realtime Kernel (http://kiss.sourceforge.net/) is an academic project, intended for
use in deeply embedded applications such as cell phones, cars, VCRs, consumer electronics, microwave
ovens, toasters and ballistic intercontinental nuclear missiles. Being deterministic, small, readable and
understandable, it is suitable for applications where deterministic response is primordial. The kernel also
providesresource tracking: should an application terminate unexpectedly, all resources it had allocated
are released.

106

II. RTOS implementation
This Part leaves the terrain of general concepts, and digs a bit deeper into implementation aspects of
real-time operating systems. The RTAI operating system is taken as an illustration of a hard real-time
operating system, and its implementation is explained in some more detail.

Chapter 11. RTAI: the implementation

(TODO: lots of things. Most sections are not decently structured, and their contents not decently
checked. . .)

This Chapter describes theimplementationof the three basic parts of RTAI: the hardware abstraction
layer (RTHAL), the core of real-time task scheduling, and the “user space real time” LX/RT. The reader
learns how RTAI can be a hard real-time kernel, while still allowing Linux to function “as usual” on the
same hardware. The discussion doesn’t go into the deepest detail of the code however, but aims at
offering the appropriate trade-off between detail and generality, to help the interested reader to quickly
understand the (not extensively documented) RTAI source code, and to be able to place it in the wider
context of (real-time) operating systems.

11.1. The RTAI source tree

The RTAI source code tree doesn’t reflect the subdivision into the major components presented in the
previous Chapter: the Hardware Abstraction Layer, the Linux compatibility layer, the core functionality,
LX/RT, and the extended functionality packages. So, finding where a particular feature is implemented
can be time consuming. Part of the code, of course, contains hardware-dependent code, which contain
the basis for the first three RTAI parts mentioned above. This code is concentrated in the following three
directories (all directories given in this Chapter are with respect to the “root” directory of the RTAI
source tree; or the Linux source tree, whenever applicable):

• patches/ : this directory contains the Linux kernel patch, which is available for different Linux kernel
versions and for different hardware architectures. The contents of the RTAI patch tend to change
slightly from release to release, because of (i) a growing number of supported RTOS features that need
low-level support; (ii) Linux itself evolving in the direction of offering a cleaner HAL, so eliminating
the need for some parts of earlier patches; and (iii) code optimizations. It is necessary to apply the
correct version of the patch to acleanLinux kernel of the corresponding version. And be aware that
kernels that come with many Linux distributions have already been patched by the distributor for
various reasons, so that patching it once more with the RTAI patch could fail.

• include/asm-xyz/ , with xyz the identifier for a particular hardware; for example,i386 , arm, or
ppc . The header files in these directories also contain some code, often in the form of assembler in
inlined function definitions.

• arch/xyz/ , with xyz the identifier for a particular hardware. These directories, together with the
above-mentioned header files, implement the hardware-dependent parts of RTAI’s functionality.

The state of the RTAI source tree at the time of writing is such that is doesn’t have clearly separated code
trees for different stable and unstable versions. Hence, one sometimes finds different versions of a file in
the same directory. For example,include/asm-i386 contains several versions ofrtai.c , with names
such as:rtai.c (stable version),allsoft.c (experimental version),rtai-22.c (version for 2.2.x
Linux kernels). Theconfigurationscripts of RTAI choose the version that corresponds to your
configuration selection, and copy them to the “official” filenames (which isrtai.c in the example
above). Linux configuration, by the way, follows a similar approach. The RTAI patch also contains

108

Chapter 11. RTAI: the implementation

adaptation to the Linux configuration settings, such that existing Linux configuration tools can be used.
For example, xconfig or menuconfig.

One of the most important files in the RTAI source tree is thepatchto the Linux source tree. The patch
modifies the Linux kernel, in order to place the “hooks” to which the RTAI functionality is attached.
Such a patch file is in “diff” form (see thediff man page). That means that it lists only thedifferences
between the original Linux source files and the adapted RTAI versions of these same files. This allows to
keep the patch file small (far below 50 kilobytes) and to get a good and complete overview of the
changes that RTAI applies. The diff file contains patches to different Linux files, each patch being of the
following form (the markers at the end of lines are added for annotation purposes only):

diff -urN -X kernel-patches/dontdiff linux-2.4.18/Makefile ➊

linux-2.4.18-rthal5/Makefile ➊

--- linux-2.4.18/Makefile Mon Feb 25 20:37:52 2002 ➋

+++ linux-2.4.18-rthal5/Makefile Tue Feb 26 09:52:01 2002 ➋

@@ -1,7 +1,7 @@ ➌

VERSION = 2 ➍

PATCHLEVEL = 4 ➍

SUBLEVEL = 18 ➍

-EXTRAVERSION = ➎

+EXTRAVERSION = -rthal5 ➏

➍

KERNELRELEASE=$(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION) ➍

➍

➊ This line shows thediff command that has produced the patch.

➋ These are the files in two different directories whosediff is shown. One file is identified with minus
signs, the other with plus signs.

➌ These are the line numbers, for both files, that the following part of the patch has changed.

➍ This is the “context” of the patch. Thediff must always findthree consecutive linesthat have
remained unchanged before and after the patched lines.

➎ This is the first part of the actual patch: the lines marked with “-” represent the code of the file
identified previously with the minus signs.

➏ This is the second part of the patch: the lines marked with “+” represent the code of the file
identified previously with the plus signs.

What the simple patch above does is filling in theEXTRAVERSIONparameter that Linux provides to
identify different build versions of the same kernel. In this case, the-rthal5 identifier is added.

Here is a small list of “peculiarities” that (Linux and RTAI) kernel programmers tend to use quite often,
and that could make reading kernel source code a bit tedious:

• Magic numbers: these are seemingly random numbers, that appear in many data structures. An
example is found in the fileinclude/rtai_sched.h :

109

Chapter 11. RTAI: the implementation

#define RT_TASK_MAGIC 0x754d2774

This magic number is filled in in theRT_TASKdata structure, in the function
rt_task_init_cpuid() in the filemupscheduler/rtai_sched.c :

task->magic = RT_TASK_MAGIC

This data structure contains all information about an RTAI task. Since the kernel code is in C, and a lot
of use is made of pointers to data structures, the magic numbers are used to check whether a pointer is
pointing to the right data structure: if that is indeed the case, the magic number must be found at a
prescribed place. In theRT_TASKexample above, this check is performed many time in the scheduler
code, as follows:

if (task->magic != RT_TASK_MAGIC) { return -EINVAL; }

where the error parameterEINVAL encodes an invalid situation.

• do {...} while(0); . This kind of construct appears quite often, especially in macro definitions
in header files. At first sight, this seems a complicated procedure to execute the code between the
braces just once, but in the context of macros it has a useful side-effect: using thiswhile construct
guarantees that compilers will not optimize anything away inside the construct, and they consider the
whole construct as one single programming primitive (i.e., macro parameter), instead of the several
individual statements that occur inside of thewhile scope. (See the kernelnewbies FAQ
(http://kernelnewbies.org/faq/index.php3#dowhile) for more details.) One example is found in the
RTAI patch (patches/patch-2.4.18-rthal5g):

-#define prepare_to_switch() do { } while(0)
+#define prepare_to_switch() do { \
+ if (rthal.lxrt_global_cli) { \
+ rthal.lxrt_global_cli(); \
+ } \
+} while(0)

• call *SYMBOL_NAME(rthal + 8) : these assembly language constructs are used to call a
function at byte offset “8” in therthal data struture. This is the data structure used for the hardware
abstraction layer,Section 11.2. This complicated way to call a function allows to call different
functions according to what is filled in in that data structure. RTAI uses it to replace Linux function
calls with its own function calls. The patch files contain a couple of examples.

11.2. Hardware abstraction layer

TheRTHAL(Real-Time Hardware Abstraction Layer), is, not surprisingly,veryplatform-dependent. Its
code typically contains lots of assembler code that builds the low-levelinfrastructure, not only for the
HAL, but also for the Linux compatibility layer (Section 11.3), the core (Section 11.4) and for LX/RT
(Section 11.5). A large part of that code comes from RTAI’spatch. The main patch fragments (as far as
the HAL is concerned) are for thearch/xyz/kernel/irq.c andinclude/asm-xyz/system.h files
in the Linux source tree. (Replace “xyz ” with a suported architecture, such as arm, i386 or ppc.) The
patch adds therthal data structure to theinclude/asm-xyz/system.h file of the Linux source, and
changes the interrupt handling and management functions that Linux uses. Thisrthal is the central
data structure of RTAI’s HAL: it collects the variables and function calls that Linux uses for interrupts

110

Chapter 11. RTAI: the implementation

(vector, flags, CPU affinity, i.e., thehardwareabstraction), and task switching (which is the basis for the
RTAI core,Section 11.4). In RTAI 24.1.9, therthal data structure looks as follows:

struct rt_hal rthal = {
void *ret_from_intr; ➊

void *__switch_to; ➋

struct desc_struct *idt_table; ➌

void (*disint)(void); ➍

void (*enint)(void); ➍

unsigned int (*getflags)(void); ➍

void (*setflags)(unsigned int flags); ➍

unsigned int (*getflags_and_cli)(void); ➍

void *irq_desc; ➍

int *irq_vector; ➍

unsigned long *irq_affinity; ➎

void (*smp_invalidate_interrupt)(void); ➎

void (*ack_8259_irq)(unsigned int); ➏

int *idle_weight; ➐

void (*lxrt_global_cli)(void); ➐

void (*switch_mem)(struct task_struct *, struct task_struct *, int); ➐

struct task_struct **init_tasks; ➐

unsigned int *apicmap; ➑

};

➊ Pointer to the “return from interrupt” call. By adapting this call, it’s not Linux but RTAI that decides
what will be done next, after an interrupt routine has finished. (TODO: This pointer seems not to be
changed any more during RTAI’s lifetime; is it still needed in the RTHAL?)

➋ Pointer to the function that does a task switch. Again, it should be RTAI that controls which task to
switch to.

➌ Pointer to theInterrupt Description Table (IDT), the data structure that holds thestatusof how
interrupts behave: what is the interrupt service routine attached to an interrupt, what interrupts are
enabled, and what are their priority and status.

➍ These lines contain the pointers to the fundamental interruptmanagement functions(disable and
enable interrupts, with or without saving of the interrupt status flags), and data structures (interrupt
descriptor (which IRQ to handle on which CPU). These pointers are filled in when RTAI is enabled.
This happens in the function__rtai_mount , implemented inarch/xyz/rtai.c .

➎ These are only needed in an SMP system. The IRQ affinity remebers which interrupt numbers are
possibly reserved to what CPU number; the data is filled in inarch/xyz/rtai.c . The
smp_invalidate_interrupt() function is defined in Linux:arch/xyz/kernel/smp.c : a
CPU in a multi-CPU system can raise a “request for TLB invalidate” interrupt to signal when a page
in memory has been changed, such that others can take appropriate action to update their caches.
RTAI can catch this interrupt, and decide when to give it to Linux.

➏ This is the function with which to acknowledge the interrupts from the timer. (The name is too much
bound to the traditional 8259 timer chips; many others are in use nowadays.)

➐ This is used in LX/RT scheduling; seelxrt/lxrt.c . Theinit_tasks() function is defined in
Linux: arch/xyz/kernel/smp.c .

111

Chapter 11. RTAI: the implementation

➑ Points to a Linux-defined vector (inarch/xyz/kernel/smpboot.c) called
“physical_apicid_2_cpu”, which is filled at boot time and maps the physical APIC (Section 3.2)
interrupt controller identifiers to logical CPU identifiers.

The form of the entries in theInterrupt Descriptor Tabledata structure is defined in Linux
(linux/irq.h):

typedef struct {
unsigned int status; // IRQ status
hw_irq_controller *handler; // functions to manage hardware interrupts

// (see below)
struct irqaction *action; // IRQ action list

// (see below)
unsigned int depth; // nested irq disables
spinlock_t lock; // lock used to access handler and

// action lists
} ____cacheline_aligned irq_desc_t;

This pointer toirq_desc_t is filled in in arch/xyz/rtai.c . The filelinux/interrupt.h defines
the irqaction field, that contains all information about a specific interrupt handler:

struct irqaction {
// function to execute:

void (*handler)(int, void *, struct pt_regs *);
unsigned long flags; // saved flags at moment of interrupt
unsigned long mask; // interrupt mask
const char *name; // name of handler
void *dev_id; // identifier of interrupting device
struct irqaction *next; // pointer to next handler structure

};

And the filelinux/irq.h defines thehw_irq_controller data structure:

struct hw_interrupt_type {
const char * typename;
unsigned int (*startup)(unsigned int irq);
void (*shutdown)(unsigned int irq);
void (*enable)(unsigned int irq);
void (*disable)(unsigned int irq);
void (*ack)(unsigned int irq);
void (*end)(unsigned int irq);
void (*set_affinity)(unsigned int irq, unsigned long mask);

};

typedef struct hw_interrupt_type hw_irq_controller;

This data structure contains pointers to the functions needed to manage the hardware interrupts: how to
enable and disable an interrupt, how to acknowledge an interrupts, how to attach an interrupt to a set of
CPUs (“affinity”), etc.

The core of the HAL patch works as follows:

1. RTAI replaces Linux functions that work with the interrupt hardware withpointersto functions.

112

Chapter 11. RTAI: the implementation

2. RTAI introduces therthal data structure to store all these pointers.

3. RTAI can now switch these pointers to pointers to its own functions whenever it wants.

An example of this approach to replace original Linux functions with pointer entries from therthal
data structure can be seen in the patch to thesystem.h file:

#define __cli() (rthal.disint())
#define __sti() (rthal.enint())
#define __save_flags(x) ((x) = rthal.getflags())
#define __restore_flags(x) (rthal.setflags(x))

Here, the disable and enable interrupt functions are replaced, as well as the functions that save and
restore the interrupt status flags. The patch, of course, also introduces “hard” versions of these functions,
so that RTAI can work on the real hardware, while Linux works with the “soft” versions (i.e., the
interrupts for these soft versions come from the RTAI software, and not from the hardware). For
example, thehard_cli() andhard_sti() functions (that the patch adds to the Linux’s
include/asm-xyz/system.h file) get the functionality of the original__cli() and__sti() of
Linux. This is again done in the patch file:

+#define hard_sti() __asm__ __volatile__ ("sti": : :"memory")
+#define hard_cli() __asm__ __volatile__ ("cli": : :"memory")

The original__cli() and__sti() of Linux are replaced by soft versions, as seen in the code example
above.

Another (assembly code) example of the procedure to let Linux work with “intercepted” function calls, is
the following patch fragment for thearch/i386/kernel/entry.S file:

ENTRY(ret_from_fork)
+ sti

pushl %ebx
call SYMBOL_NAME(schedule_tail)
addl $4, %esp

@@ -202,17 +203,20 @@
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
movl %eax,EAX(%esp) # save the return value

ENTRY(ret_from_sys_call)
- cli # need_resched and signals atomic test
+ call *SYMBOL_NAME(rthal + 12) ➊

cmpl $0,need_resched(%ebx)
jne reschedule
cmpl $0,sigpending(%ebx)
jne signal_return

+ sti ➋

+ call *SYMBOL_NAME(rthal + 16) ➋

restore_all:
RESTORE_ALL

ALIGN
signal_return:

- sti # we can get here from an interrupt handler

113

Chapter 11. RTAI: the implementation

+ sti # we can get here from an interrupt handler ➋

+ call *SYMBOL_NAME(rthal + 16) ➋

testl $(VM_MASK),EFLAGS(%esp)
movl %esp,%eax
jne v86_signal_return

➊ The originalcli (to disable interrupts) is replaced by a call to the function that sits on offset “12” in
therthal data structure. With four bytes per pointer, this corresponds to the fourth line of that data
structure, i.e., the place where RTAI fills in its own version of the disable interrupt call.

➋ Similarly, but now for the function at offset “16”, i.e., the enable interrupt function of RTAI.

All the adapted function definitions are finally filled in in therthal data structure in the file
arch/xyz/kernel/irq.c :

struct rt_hal rthal = {
&ret_from_intr,
__switch_to,
idt_table,
linux_cli,
linux_sti,
linux_save_flags,
linux_restore_flags,
linux_save_flags_and_cli,
irq_desc,
irq_vector,
irq_affinity,
smp_invalidate_interrupt,
ack_8259_irq,
&idle_weight,
0, // lxrt_global_cli
switch_mem,
init_tasks,
physical_apicid_2_cpu

};

That is, they get pointers to their original Linux functions, or to patched functions that have the original
Linux behaviour. The reason is, of course, that, at boot time, the system should behave as normal Linux.
(Some of the entries in therthal data structure have not been discussed yet, because they do not really
belong to thehardwareabstraction, but are meant to support the core functionality of RTAI,Section
11.4.) So, at boot time, Linux runs as if nothing has happened, except for a small loss in performance,
due to the extra level of indirection introduced by replacing function calls bypointers to function callsin
therthal structure. The user can activate the RTAI functionality at any later time, via a loadable
module that executes thert_mount_rtai() (file arch/xyz/rtai.c). This switches the pointers to
functions in therthal data structure from their Linux version to their RTAI version. From that moment
on, Linux is under control of the RTAI kernel, because Linux works with what it thinks is the “real”
hardware through the replacement functions that RTAI has installed. But these functions give avirtual
hardware to Linux, while RTAI manages the real hardware. For example, RTAI queues interrupts for
Linux in softwareuntil Linux gets a chance to run again; at that moment, the pending interrupts seem to
come from the hardware, as far as the Linux side is concerned.

114

Chapter 11. RTAI: the implementation

In principle, the HAL could be used for other purposes than serving as a stub for the RTAI core. That is,
another kind of operating system could be implemented on top of the RTHAL. But also the opposite
could be done, i.e., implementing the same RTAI core on top of another low-level stub. This is what is
being done in the ongoing integration of RTAI and Adeos (Section 10.1). This effort, however,
experiences some problems because RTAI currently doesn’t make a clean distinction between what is
needed for a realhardware abstractionon the one hand, and what is needed forreplacing Linuxon the
other hand. So, it is not straightforward to get the RTHAL alone, without any mention of the RTAI core
or the Linux compatibility structures. For example, the patch and theinclude/arch/xyz/rtai.c file
mixe both parts.

(TODO: explain implementation of all RTAI spinlocks and interrupt disabling/enabling functions; and
dispatch_trap in rtai.c (checks whether traps come from NMI, Linux, debugger, of RTAI.); what
do SRQs do? srqisr(),rt_request_srq() in rtai.c? use 0xFE as IRQ,#define RTAI_SYS_VECTOR
0xFE in include/asm-i386/rtai_srq.h ? rtai_open_srq(); implementation of barrier
bits/rtai_bits.c)

11.3. Linux compatibility layer

RTAI is developed to cooperate closely with Linux, and to let Linux take care of all non hard real-time
tasks, such as networking, file IO, user interfacing, etc. But the cooperation with Linux is aone-way
endeavour: Linux development doesn’t (want to) care about how it could facilitate development of an
RTOS below it. And its data structures are not fully appropriate for real-time. So, RTAI must place hooks
in the Linux code, for the following things:

• Task data structures.

• Timing.

• LX/RT (Section 11.5): this requires interaction with Linux scheduling.

A first part of the Linux compatibility interface. consists of data structures in which RTAI stores the state
in which it finds the running Linux kernel at the moment that it (i.e., RTAI) becomes active
(arch/xyz/rtai.c andinclude/asm-xyz/rtai.h):

static struct rt_hal linux_rthal;
static struct desc_struct linux_idt_table[256];
static void (*linux_isr[256])(void);
static struct hw_interrupt_type *linux_irq_desc_handler[NR_GLOBAL_IRQS];

This state is restored when the RTAI module is unloaded. The Linux state is stored, and RTAI
functionality is loaded, in theinit_module() of rtai.c . This file, and itsinclude/rtai-xy.h

header file (withxy the RTAI version), further implement the basic function calls of a hard real-time
kernel (Section 11.4). Note thatglobal locks (similar to theBig Kernel Lock, Section 1.2, are available in
RTAI. These locks, however, cannot be taken by user space processes, because the global locks in Linux
have been virtualised.

115

Chapter 11. RTAI: the implementation

Therthal data structure in the RTAI patch contains not onlyhardware-relatedfields (everything
concerning interrupts), but also somesoftware-relatedentries, such as task switching functions that have
to work together with Linux. For example, the patch extends thetask_struct data structure in
include/linux/sched.h of the Linux source with

void *this_rt_task[2];

to accomodate a real-time tasks queue. The two pointers to real-time tasks are initialized to 0:

this_rt_task: {0,0}

because at Linux boot, no real-time task exist yet. The otherLinux-compatibilityentries in therthal
data structure are:

struct rt_hal rthal = {
void *ret_from_intr;
void *__switch_to;

...
int *idle_weight;

...
void (*switch_mem)(struct task_struct *, struct task_struct *, int);
struct task_struct **init_tasks;

...
};

The patch adds code to the source of thelinux/kernel/exit.c file in the Linux source, to execute a
callbackto RTAI at the moment that a real-time task is stopped. Inlinux/kernel/sched.c of the
Linux source, the scheduler is extended to work also with the LX/RT tasks (Section 11.5).

11.4. RTOS core

The RTOS core relies on the RTHAL and Linux compatibility “tricks” of the previous sections, to build a
hard real-time kernel on top of the interrupt system of the hardware, and integrated with the task
management of Linux.Chapter 8gives more details aboutwhat functionality is offered; this section deals
with howRTAI implements this functionality. The core’s functionality consists of: task management and
scheduling, interrupts and traps, synchronization and data exchange, and memory management.

The code of the RTAI core resides in theinclude/asm-generic/rtai.h ,
include/asm-xyz/rtai.h andinclude/arch/xyz/rtai.c files. The central data structure is the
one that stores the global status of the RTAI core:

struct global_rt_status {
volatile unsigned int pending_irqs;
volatile unsigned int activ_irqs;
volatile unsigned int pending_srqs;
volatile unsigned int activ_srqs;
volatile unsigned int cpu_in_sti;
volatile unsigned int used_by_linux;
volatile unsigned int locked_cpus;

116

Chapter 11. RTAI: the implementation

volatile unsigned int hard_nesting;
volatile unsigned int hard_lock_all_service;
spinlock_t hard_lock;
spinlock_t data_lock;

};

11.4.1. Task management and scheduling

Task switching happens through theswitch_to function in therthal data structure; this can be seen
in the

"jmp *"SYMBOL_NAME_STR(rthal + 4)"\n"

The function on offset “4” inrthal is indeed__switch_to . Also in this file is the trap handling; the
relevant part in this assembler code is where the appropriate handler is called:

"call "SYMBOL_NAME_STR(lxrt_handler)"

This handler is filled in in (TODO). At the end of this assembler code, the “return from interrupt” is
performed, again by calling the corresponding functions on therthal data structure:

"1:call *" SYMBOL_NAME_STR(rthal + 16) "\n\t"
"jmp *" SYMBOL_NAME_STR(rthal)

Time managementis very important for a real-time operation system, so RTAI has a bunch of
functionality in its core to work with the time hardware. The low-level functions can be found in
arch/xyz/rtai.c ; for example:

int rt_request_timer(
void (*handler)(void),
unsigned int tick,
int apic)

void rt_free_timer(void)

void rt_request_timer_cpuid(
void (*handler)(void),
unsigned int tick,
int cpuid)

void rt_request_apic_timers(
void (*handler)(void),
struct apic_timer_setup_data *apic_timer_data)

void rt_free_apic_timers(void)

117

Chapter 11. RTAI: the implementation

void setup_periodic_apic(
unsigned int count,
unsigned int vector)

void setup_oneshot_apic(
unsigned int count,
unsigned int vector)

...

11.4.2. Interrupts and traps

The “encoded trap” technique consists of two parts:

1. Allowing a user space task to execute a kernel function.

2. Incorporating a user space task into the real-time scheduling. This requires an adaptation of the
standard Linux task bookkeeping.

This first functionality is implemented via the use of atrap (Section 3.3). The trap allows the user space
task to launch a kernel space function (the “trap handler”). The user space taskencodesthe desired
real-time service in a set of two integers that it puts on the trap handler stack; it can, in addition, also pass
someargumentsto the trap handler.dispatch_trap() in arch/xyz/rtai.c does the trap handling.

11.4.3. IPC

locks, etc.

11.4.4. Memory management

mlockall(MCL_CURRENT | MCL_FUTURE) : POSIX function (coming from the Linux source tree:
linux/include/asm-xyz/mman.h) that locks all pages of the calling task in memory; the parameters
are macros that indicate that all current pages must be locked, but also all pages that the task will ask in
the future.

11.5. LX/RT

LX/RT stands for “Linux/real-time”, i.e., it offerssoftandhard real-time functionality to Linux user
space tasks. This functionality is only slightly limited with respect to what can be achieved in kernel
space. The ultimate goal is a fully “symmetric API”, i.e., to offer the same real-time API to user space
tasks as what is available to RTAI kernel tasks. A symmetric API, available in user space, reduces the

118

Chapter 11. RTAI: the implementation

threshold for new users to start using real-time in their applications, but it also allows for easier
debugging when writing new applications. The bad news is that it makes understanding the RTAI code a
bit more difficult, because similar function calls get different implementations, depending on their usage
in kernel space or in user space. This symmetry, obviously, can never be absolute and only works from
kernel space to user space, and not the other way around: it is not possible to bring anarbitrary user
space function to the kernel, because it would use functions that are not available in the kernel. Also, the
user space task that one wants to execute in hard real-time via LX/RT should satisfy all constraints of
hard real-time: no undeterministic or blocking calls, etc.

The LX/RT idea is quite old, actually, and has gone through various stages of evolution. Thefirst
generationused the idea to let a user space task run a companion task in the kernel, i.e., the so-called
“buddy” in RTAI language. This companion task executes kernel space functions on behalf of the user
space task. Technically speaking, this is realized by passing an identifier of the required function to a
trap handler, which then executes the function call that corresponds to this identifier (Section 11.4.2);
there is another “kernel space/user space” switch to return.

Thesecond generationdesign of LX/RT (appropriately callednew LX/RT) needs only one switch,
doesn’t use a “buddy” anymore, and integrates maximally with existing Linux task scheduling. This
means that Linux is not any more the “idle” task of the RTOS, but Linux itself has been extended with
full pre-emption and real-time scheduling (for tasks that obey certain restrictions).

This clear distinction between first and second generation has only occurredafter the facts: there have
been several prototypes in various releases of RTAI, with names such as “LX/RT
extended”, “ALLSOFT”, or “USP”. This has led to some confusion, but in the future only the two
above-mentioned approaches will be supported.

From a user’s perspective, thedifferencebetween the soft and hard versions of LX/RT is that the hard
version disables software interrupts when the LX/RT task runs.

11.5.1. LX/RT for the user

First, make the LX/RT functionality available by loading the LX/RT module, so that your tasks can use
it. A typical LX/RT user task looks like this:

... TODO ... ➊ ➋

➊

A maximum ofMAX_SRQLinux tasks can be made into hard real-time LX/RT tasks. (This constant is
set to 128 in RTAI 24.1.9, in the fileinclude/rtai_lxrt.h .) The user space task can alsoregister a
namefor itself, consisting of at most six characters. This naming allows a LX/RT task to call all LX/RT
functions via their “named” version; for example,rt_named_task_init() . The task name can also be
used by other tasks than the one that gave the name, for example to send messages to each other.

119

Chapter 11. RTAI: the implementation

A user space task is made into an LX/RT user space task by using only a couple of LX/RT calls. The task
callsrt_make_hard_real_time() (in include/rtai_lxrt.h) at the moment it wants to switch to
real-time, andrt_make_soft_real_time() to switch back. (Commenting out these functions is an
easy way to allow user space debugging.) LX/RT also provides function calls to detect whether the
calling task is currently running in hard real-time (rt_is_linux() , in arch/xyz/rtai.c) or in
LX/RT: (rt_is_lxrt()), and whether it wants to use the floating point registers of the CPU.

(TODO: name registry.)

11.5.2. LX/RT implementation

(TODO: sketch the dependencies between files in LX/RT; document the encoding; stuff already done in
Documentation/README.EXTENDING_LXRT .)

Thert_task_init() , implemented in the fileinclude/rtai_lxrt.h . Its arguments are:

LX_TASK *rt_task_init(
unsigned int tasknum, // number of the task
int prio, // desired priority level
int stack_size, // allocated stack size
int max_msg_size) // max size of inter-task message buffer

This function call eventually ends up in the__task_init() in lxrt/lxrt.c , which initializes all
parameters of the task and allocates the memory required for them. These are not only the parameters
that the application programmer sets, but also the parameters needed behind the screens: the memory to
communicate data to the trap handler, and the task data structure.

The real heavy part of LX/RT lies in__lxrt_resume() in lxrt/lxrt.c . This function takes care of
the seemless integration with Linux task management. One of the calls it makes is to
__emuser_trxl() in XYZscheduler/rtai_sched.c (whereXYZstands for “up” (uni-processor),
“mup” (multiple uni-processors), or “smp” (symmetric multi-processor):

static inline void __emuser_trxl(RT_TASK *new_task)
{

if ((new_task->state |= READY) == READY) { ➊

enq_ready_task(new_task); ➋

rt_switch_to_real_time(0); ➌

save_cr0_and_clts(linux_cr0); ➍

rt_switch_to(new_task); ➎

if (rt_current->signal) { (*rt_current->signal)(); } ➏

}
}

120

Chapter 11. RTAI: the implementation

➊ . . .

➋ . . .

➌ . . .

➍ . . .

➎ . . .

➏ . . .

Two important functions inlxrt/lxrt.c are:steal_from_linux() , and
give_back_to_linux() :

static void steal_from_linux(RT_TASK *rt_task)
{

int cpuid;
struct klist_t *klistp;

...
rthal.lxrt_global_cli = linux_lxrt_global_cli; ➊

cpuid = ffnz((rt_task->lnxtsk)->cpus_allowed); ➋

klistp = klistbp[cpuid]; ➌

hard_cli(); ➍

klistp->task[klistp->in] = rt_task; ➎

klistp->in = (klistp->in + 1) & (MAX_SRQ - 1); ➏

hard_sti(); ➐

current->state = TASK_LXRT_OWNED; ➑

wake_up_process(kthreadb[cpuid]); ➒

schedule(); (10)
rt_task->is_hard = 1; (11)
HARD_STI(); (12)
if (current->used_math) { restore_fpu(current); } (13)

}

➊ . . .

➋ . . .

➌ . . .

➍ . . .

➎ . . .

➏ . . .

➐ . . .

➑ . . .

➒ . . .

(10). . .

(11). . .

(12). . .

(13). . .

121

Chapter 11. RTAI: the implementation

static void give_back_to_linux(RT_TASK *rt_task, int in_trap)
{

int cpuid;
struct klist_t *klistp;

...
cpuid = ffnz((rt_task->lnxtsk)->cpus_allowed);
hard_cli();
if (in_trap) { ➊

rt_signal_linux_task((void *)0, 0, rt_task); ➋

} else {
klistp = klistep[cpuid];
klistp->task[klistp->in] = rt_task->lnxtsk;
klistp->in = (klistp->in + 1) & (MAX_SRQ - 1); ➌

rt_pend_linux_srq(sysrq.srq); ➌

} ➌

rem_ready_task(rt_task); ➌

lxrt_schedule(cpuid);
rt_task->is_hard = 0; ➍

hard_sti();
} ➎

➊ . . .

➋ . . .

➌ . . .

➍ . . .

➎ . . .

LX/RT uses Linux kernel threadskthread_b() (ldquo;kernel thread begin”) and kthread_e()

(ldquo;kernel thread end”), with its own lxrt_schedule() scheduling.

(TODO: what dokthread_b() andkthread_e() really do?)

RTAI has had different versions of LX/RT functionality. The later ones are more robust against a task
crash in the user space Linux side. At that moment, Linux executes ado_exit() function, and the RTAI
patch has added a pointer to a callback function in that function. The callback is used to free the resources
that where registered by the real-time buddy. It also deletes the real-time buddy task, and unblocks any
other task that may have engaged in blocking IPC (e.g., via a semaphore) with the real time task.

This section discusses the implementation of the LX/RT techniques, (at the time of writing, only fully
supported on i386 hardware) as implemented in the following files in the RTAI source tree:

• include/asm-i386/rtai_lxrt.h

122

Chapter 11. RTAI: the implementation

• include/rtai_lxrt.h

• lxrt/lxrt.c

• ABCscheduler/rtai_sched.c , whereABCstands for eitherup (uni-processor), or mup (multiple
uni-processors), or smp (symmetric multi-processors).

This involvement in LX/RT of a file called “scheduler” is one of these unfortunate things that make RTAI
a confusingly documented project. . . The reason it is needed in the discussion on LX/RT is that it
contains the implementation of theRTAI kernel spacefunctionrt_task_init() , which starts up a
kernel space “proxy” (orbuddy_fun() as it is called inlxrt/lxrt.c) for each user space LX/RT task
that calls theuser spacefunction with the same name,rt_task_init() , but with different arguments.
This buddy_fun() function has, at first sight, a strange implementation:

struct fun_args { int a0; int a1; int a2; int a3; int a4; int a5; \
int a6; int a7; int a8; int a9; long long (*fun)(int, ...); };

static void buddy_fun(RT_TASK *mytask)
{

struct fun_args *arg = (void *)mytask->fun_args;
while (1) {

mytask->retval = arg->fun(\
arg->a0, arg->a1, arg->a2, arg->a3, arg->a4, \
arg->a5, arg->a6, arg->a7, arg->a8, arg->a9);

lxrt_suspend(mytask);
}

}

So,everyLX/RT task gets this samebuddy_fun() as its buddy. But yet the result of executing it differs
from task to task, and from activation to activation of the buddy, because the buddy executes the function
(and the arguments) that it got in thelist of parametersfrom thelxrt_handler() trap handler (Section
11.4.2). So, thebuddy_fun() remains suspended until the user space task makes a real-time LX/RT
call; at that moment, the LX/RT scheduler wakes up the buddy withlxrt_resume() , which executes
the function that it got through its arguments from the trap handler, and then goes to sleep again.

LX/RT has 16expansion slots, that application writers can use to plug-in their own functionality. That
means, if you have a set of functions that run in hard real-time, by the LX/RT extension you can make
them available to user space tasks. You need to do two things:

• In kernel space.done by acquiring (at compile time of your functions) a “key” from LX/RT, and
making an array of function pointers. So, you functions can be recognized by the LX/RT infrastructure
based on these two numbers: (i) the LX/RT key, and (ii) the index in the function array.

• In user space.Make user space functions with the same interface as the above-mentioned kernel space
functions, by using thertai_lxrt() function that takes care of the trap setup, discussed in a section
above.

The symmetry between the use of the new functionality in kernel space and user space shows up your
source files: their typical structure is as follows:

#ifdef MODULE
...

#ifdef __KERNEL__

123

Chapter 11. RTAI: the implementation

// kernel space functions
#else

// user space functions
#endif

#endif

The above-mentioned functions such asrt_task_init() andrt_make_hard_real_time() are
examples of the “encoded trap” technique (Section 11.4.2) that is behind all of LX/RT. The argument
passing needed in an encoded trap is performed in the short but somewhat enigmatic function
rtai_lxrt() in include/asm-xyz/rtai_lxrt_sup.h . The “magic” is due to the argument
encoding used in this function.

So, the clue of the LX/RT procedure is to make the user space task launch a trap handler that executes a
real-time service for the user space task; and all this is done through just one single trap handler, by
encoding the desired service. Hence, a special LX/RT version must be made forall RTAI functions that
one wants to be available to user space tasks, and a unique code must be given to each function. The
codes are given ininclude/rtai_lxrt.h , which also contains the LX/RT versions of the core RTAI
calls; non-core functionality (FIFOs, serial communication, etc.) needs extra header files, such as, for
example,include/rtai_fifos_lxrt.h . The functionlxrt_handler() in the file lxrt/lxrt.c

connects the encoded service requests with real executable calls in kernel space. Thelxrt_handler()

does not only work withtasksshared between user space and kernel space, but also withsemaphoresand
mailboxes, via precisely the same technique: encoding what the desired action is, in the data given to the
LX/RT trap.

dispatch_trap() in arch/xyz/rtai.c does the trap handling. If it is a trap for RTAI it is passed to
the trap handler that RTAI has registered; this is done in theinit_module() of lxrt/lxrt.c .
lxrt_trap_handler() in lxrt/lxrt.c : catches 7 (floating point error?) and 14 (memory allocation
error), and then proceeds to the basic job:

The data structure for the coded trap message from user space to kernel space is hardware dependent,
e.g., for i386 it is defined ininclude/asm-i386/rtai_lxrt.h :

union rtai_lxrt_t { RTIME rt; int i[2]; void *v[2]; };

It is aunion data structure, because its contents can have various meanings. The same file also shows
that for this hardware platform, LX/RT chooses the trapint $0xFC ; this trap number is defined as:

#define RTAI_LXRT_VECTOR 0xFC

but also occurs directly in the assembler code that defines the data structure for the trap:

static union rtai_lxrt_t _rtai_lxrt(int srq, void *arg)
{

union rtai_lxrt_t retval;
__asm__ __volatile__ ("int $0xFC"
: "=A" (retval) : "a" (srq), "d" (arg));
return retval;

}

124

Chapter 11. RTAI: the implementation

Incorporating a user space task into the real-time scheduling is the second LX/RT funtionality. It is
implemented by patching the normal task switching code of Linux.
include/asm-i386/rtai_lxrt.h defines the hardware-dependent part. LX/RT works with a flag
that signals the scheduler whether or not to take into account LX/RT tasks; this flag

volatile unsigned long lxrt_hrt_flags;

keeps track of whether a task is running in hard real-time or not. The flag is used, for example, in the
XYZ/scheduler/rtai_sched.c file. That scheduler code also uses themy_switch_to function.
Also lxrt/lxrt.c uses that function, in thelxrt_schedule() . That is a replacement for the Linux
schedule . lxrt_schedule() is used in the kernel thread scheduler (??)kthread_b() , and in
give_back_to_linux()

Scheduling in LX/RT:lxrt_sigfun() to lxrt_schedule() when getting back to Linux from the
RTAI schedulers;steal_from_linux() to make a Linux process a user space hard real-time module;
give_back_to_linux() to return a user space module to the Linux tasks.

(TODO: signals for LX/RT tasks.)

11.6. Making your own extensions to LX/RT

(TODO: LX/RT/Comedi as an example of extending LX/RT.)

11.7. Module implementations

This section explains the code in theinit_module() functions in the various RTAI parts.

init_module() of lxrt/lxrt.c does the following: . . .

125

Chapter 12. C++ and real-time

Operating systems are most often written completely in one single language, and most often that
language is C. There are (and will be) always small, hardware-dependent parts that use assembly
language, for efficiency or feasibility reasons. But, at the other end of the language spectrum, also
object-oriented languages are being used; sometimes in combination with C as the basic, low-level
language, [Walmsley2000].

12.1. C and C++

Most operating systems are programmed in C: all commercial UNIX systems, Linux, Microsoft NT,
QNX, etc. Writing operating systems in a hardware-independent way was exactly the reason why Bell
Labs created the C language. It is not much more than an embellished assembly programming language,
but it has become a de facto standard because of the success of the UNIX operating system. Thepointer
concept of C is one of its major advantages for writing device drivers and operating systems: it allows the
programmer to place a variable of a program onto a specific hardware address; or to work with (doubly)
linked lists of data structures, which is a very common need in the bookkeeping tasks of the OS; etc.
Efficiency is another advantage of C: is doesn’t have a “runtime” (such as C++ or Java) in which
non-deterministic operations take place behind the screens (e.g., dynamic allocation of memory; garbage
collection), and beyond the control of the programmer.

C does have a number of disadvantages too, of course. Modern programmers have learned to appreciate
object-oriented programming, with its emphasis on keeping related data and functionality hidden inside
of classes with well-defined interfaces. Although a programmercanpractice the ideas of object-oriented
programming in C, the language itself doesn’t support it. And a large part of the C source files of free
software projects prove that writing “spaghetti” programs is way too easy in C. . .

So, Ada (in the 1980s already) and C++ (from the late 1990s) have appeared on the radar screen of
operating system programmers. Not Java, or Eiffel, or other object-oriented languages, because Ada and
C++ allow to keep most of the C advantages (pointers, efficiency) needed in operating systems. Ada
became in vogue because the US army wanted a reliable and “safe” programming language for all its
real-time and embedded software. Ada is still mandatory for most aerospace systems (military as well as
civilian). RT-EMS (Section 10.3) is a free software RTOS that came into being in this context.

An interesting evolution in portable and high-quality C++ code, that can (sometimes) be used in
real-time systems, is the Boost project. (http://www.boost.org) The project offers interesting motivations
(http://www.boost.org/libs/thread/doc/rationale.html) for their work on threads, locks, etc.

The three primary aspects of object oriented programming are

1. Encapsulation.The idea to encapsulate the implementation of a class is based on various
motivations:

126

Chapter 12. C++ and real-time

• To distinguish between theinterface(or, “specification”) the class, and theimplementationof the
operations that can be called on the class.

• The need formodularity, in order to structure complex applications designed and implemented by
a team of programmers.

• It offers a structure for protection and authorization.

2. Inheritance.The idea that one class can inherit properties from another class provides for anatural
classificationof classes, with a minimum of specifications. Natural means that the software
specifications of a class correspond closely to the properties that we know from real-world objects
and/or concepts. The inheritance relationship between classes makes one class theparent(or “base”,
“superclass”, “ancestor”, etc.) of another class. Inheritance can be used as anis-a-kind-of (or is-a)
relationship. Inheritance comes in two flavours:interface inheritance, andimplementation
inheritance.

3. Polymorphism.This is the idea that the same software object can behave in different ways,
depending on various factors.

Not all object-oriented languages offer the full set of these concepts, or implement them in the same way.
For example, C++ lacks direct support of the concept of ainterface, such that interface inheritance is
always implemented by “workarounds”. (TODO: how?)

None of the above-mentioned object-oriented aspects are supported in C, which leads to the following
“problems”:

• Lack of encapsulation.If the programming language doesn’t impose or stimulate encapsulation, any
effort at trying to separate specification from implementation that the original coder may have had,
tends to be compromised very quickly, not only by other contributors, but also by the original coders
themselves.

• Lack of inheritance.Because C programmers have never been taught and drilled to watch for
commonalities between different software components, most of them apply code re-use by
“copy-and-paste” of source code lines between components. But once a common piece of code appears
in two different places, these two pieces begin to have their own evolution, and the bonus of having a
common ancestor disappears, and the code becomes larger. Typically, newcomers to the project don’t
know about the commonality insights their predecessors had, and have much more problems
understanding the code, and will, hence, be less efficient and more error-prone in their contributions.

• Lack of polymorphism.This has led to the introduction of “states”, with Boolean operators as the
simplest form of state: the “class” reacts differently to the same inputs when it is in a different state;
or, alternatively, it accepts different inputs according to its state. This in itself is not the real issue, but
in combination with the lack of interfaces and encapsulation, the internal states of objects are used by
other software components, that begin to adapt their interactions with the object based on the
knowledge of its state. This is a typical situation ofhigh couplingbetween software components;
Chapter 14explains the pitfalls of this situation.

Of course, using the above-mentioned OO aspects is notin itself a sufficient condition for writing good
quality software!

127

Chapter 12. C++ and real-time

12.2. C++ in the Linux RTOSs

C++ has kept all aspects of C that are useful in the implementation of software that works in close
interaction with the hardware: pointers to hardware addresses being a major features. However, C++ also
has two parts whose execution is non-deterministic: (i) dynamic object creation and deletion, and (ii) the
Run-Time Type Identification (RTTI) feature. The good news is that both parts are reasonably easy to
avoid, because there is even compile-time support from the compilers to disable these non-deterministic
parts. The bad news is that most of this functionality is used deeply behind the screens of object creation
and deletion, and exception handling; and few programmers have been trained in spotting these points in
their C++ code.

Both RTLinux and RTAI have growing support for C++ in real-time, but the majority of their
programmers and code are not “C++-ready”. eCos, on the other hand, has been written completely in
C++ from scratch, and hence all of its contributors must master the C++ basics.

RTAI (Section 8.10) allows to use C++ in kernel space. But this doesnot mean that one can use Linux
kernel functions from C++. That will most likely cause problems when trying to include Linux kernel
header files into RTAI C++ files, and similarly with RTAI header files. To get the functionality that is
needed for thertai_cpp classes, some wrapper file was “hacked”, to deal with just a very few problem
headers. This file does not give full Linux kernel functionality to C++ programs, though. So, in order to
use a function from Linux, one needs to wrap it in anextern "C" function.

128

Chapter 13. Cross compilation, debugging and
tracing

This Chapter explains the basic principles behind developing code for another platform than the
development platform, loading code to that platform, making it boot autonomously, and debugging it.
Tracing of the execution of a running embedded or real-time system is another important tool to assess
the behaviour of an application in its whole.

13.1. Cross development

(TODO: How? What hardware support needed?)

13.2. Debugging

(TODO: host + target, remote debugging, BDM, S-records for serial communication,rt_printk()

(explain where its output ends up).

13.3. Linux Trace Toolkit

(Excerpt from the documentation of Linux Trace Toolkit.) The Linux operating system is a
multiprogramming, multiuser system. This means that it is able to handle multiple running programs at
once. On a uniprocessor system (a computer with only one microprocessor), this is achieved by sharing
this precious resource among multiple tasks, letting each execute for a certain period of time and then
switching to another. The selection and switching of processes is handled by the Linux kernel, which
also is a program and therefore also needs some time from the processor. It is also responsible for
fulfilling certain requests by the programs it manages, dealing with error conditions, etc. One could have
the need to know exactly what these schedulingdecisions, process switches and various management
tasks are, how they are handled, how long they take and to which process the processor is allocated.
Spread out over a certain period of time, we call this an execution trace.

The Linux Trace Toolkit (http://www.opersys.com/LTT/), is a suite of tools designed to do just that:
extract program execution details from the Linux or RTAI operating systems and interpret them.
Specifically, it enables its user to extract processor utilization and allocation information for a certain
period of time. It is then possible to perform various calculations on this data and dump this in a text file.
the list of probed events can also be included in this. The integrated environment can also plot these
results and perform specific searches.

Linux Trace Toolkit works by inserting tracing commands into the source code. This requires a “patch”,
and the extra instructions slow down the execution a little bit.

129

Chapter 13. Cross compilation, debugging and tracing

(TODO: more details.)

130

III. Design
The first Parts of this text dealt withfunctionality; this Part is aboutstructure.

The previous Chapters described real-time operating system concepts, theirgeneral-purpose
functionalities, and some of their implementation aspects. The following Chapters give information,
examples and hints about how todesignapplications on top of this raw RTOS functionality. Indeed,
design is not about adding as many RTOS features in your application as you can, or about using the first
API function you find that could be used to solve your current implementation problem. No, design is all
about making thelogical structureof your particular application as explicit and clear as possible, and on
searching hard to reduce the number of RTOS features needed to implement that application logic. So,
design is, by definition, always driven byapplication-specificcriteria, and hence no “general purpose”
real-time system design exists. Nevertheless, thereare lots of generic design issues, that have received
neat solutions that all application programmers should be familiar with. Examples treated in later
Chapters of this Part are: loose coupling, components, application architectures, software patterns, and
frameworks.

The observation from which to start a discussion on design, is that (mature) application domains have,
over the years, developed a relatively fixedstructureof cooperating tasks. But, typically, thefunctionality
of some of the tasks changes more quickly: features are added, alternative implementations of
functionality are tried, new hardware or communication protocols are supported, etc. Examples of such
mature domains are: telecom, motion control of machines, setpoint control of processes, networking, or
data bases. Except for the last domain, real-time and embedded aspects are very important. Hence, it’s
the goal of this Part to describegood designsfor the basisstructurecode in these application domains.
The domain ofgeneral feedback control and signal processingis taken as an example. (And similarly
worked-out examples for other domains are very welcome!) The good news is that most application
domains have a lot of very similar basic needs. The Software Engineering community is working hard to
capture these in so-calledSoftware Patterns; the ones relevant to real-time and embedded systems are
presented later in this Part.

Most of the material addressed in this Part is not unique to real-time or embedded systems. But real-time
and embedded systems tend to be more affected by the “holy grail of efficiency”, which is one of the
major causes of poorly structured and hence poorly maintainable code: programmers make “shortcuts”
that mixfunctional aspectsof theapplicationwith structuralaspects of the application’sarchitectural
design. And mixing function and structure makes implementations much more messy. Wedopay
attention to efficiency, however. And the focus remains on real-time systems, which means that
scalabilitycomes second: no-one expects a real-time application to be scalable to the same extent as
other IT applications, such as web or database serving. But a well-designed project has astructurein
which it is clear which parts are scalable and which are not.

Chapter 14. Design principles

The message of this Chapter is: a well-designed software project has a clear and documenteddecoupling
between structure and functionality. Section 14.1explains what “structure” and “functionality” mean,
andSection 14.2says how to separate them. Components (Section 14.4) are the modern software
engineering approach to build software projects that use cleanly separated structure and functionality.
The architecture of the system (Section 14.5) defines how the available components are to be connected
together, and explains why that particular choice should be made.

This Chapter only talks about thetheoryof good software design; the following Chapters illustrate this
theory with applications that are relevant to the scope of this document.

14.1. Structure and functionality

Functionalityis the set of all algorithms needed to perform the purpose of the application;structureis
the way in which the algorithms are distributed over tasks, which tasks have to exchange data, and how
they have to be synchronized. In large software projects, the division between structure and functionality
is important, because few of the contributors will be able to grasp the whole software project and predict
the consequences of the code they add to the project. Therefore, the “senior” project people should define
and code the project’s infrastructure, in which all contributors can add functionality while having to
consider only a limited part of the project. This idea is already wide-spread, because large projects such
as Mozilla, Gnome, the Linux kernel, Windows 2000, etc., all work (more or less) along these lines.
However, a lot of the real-time developments (outside of specialized companies) are done in small,
isolated groups, where often the majority of developers are not computer scientists but specialists in the
application domain; and new students in the field are concentrating more on understanding the real-time
primitives than on learning to design software applications. This often leads to “spaghetti code”, and
abuse of the available real-time and IPC primitives.

These are some examples of large scale applications, with major real-time and embedded needs:

• Communication networks: examples of structure in this domain are theOSI7-layer model, the
principle ofname servers, theCORBAspecifications, etc. They all decouple the infrastructure of
sending packages with data from the meaning of these packages in the context of an application.
Telecom is one of the best examples of time-prove designs (and of the importance ofopen standards
to make optimal use of these designs): everybody takes it for granted that telephone systems do not
crash, but few people realise the magnitude of software components involved in the process.

• Control systems. Many devices and even whole plants are controlled by computers. These systems
have a wide variety offunctionalities: oil refinery, milling tools, medical apparatus, laser “guns” in
discotheques, laser printers, etc. But they all have the same basic components, well-known and
thoroughly studied in engineering sciences such as systems and control theory. The genericstructure
of all these applications is that offeedback control: one component generates a signal that represents
the desired value(s) of one or more of the physical signals in the system; one component measures
these physical signals; aenother component derives values of other signals that are not directly

132

Chapter 14. Design principles

measurable; one components steers the inputs to “actuators” that can change the value of (some of) the
relevant physical signals.Chapter 16gives a more detailed description.

The control application is used in the following Chapters to illustrate the theory of good design with
practical examples.

14.2. Loose coupling

Only the simplest of applications can be programmed as one single task, with nothing else but
straightforward communication with peripheral hardware. Most other projects need multiple
components, and hence synchronization and data exchange between them. Many developers make the
mistake of putting too muchcouplingbetween their components. That means that, in the implementation
of one software component, they use knowledge about the implementation internals of other software
components, or about the specific architecture (and operating system!) in which the components are
used. Some typical examples are:

• A task in one component suspends and restarts a task in another component. This implicitly means
that the first task knows (or rather, pretends to know!) when it is appropriate and safe to influence the
activities of the other task.

• Component A uses afinite state machineto structure its internal working; component B bases its
interaction with component A on deciding which state it wants A to go to. This means that the
implementation of A cannot be changed without changing B also.

• Task X delays itself during 100 milliseconds, in order to allow task Y to be scheduled and get started.
This means that the “proper” synchronization of X and Y depends on platform and configuration
dependent timing; and this timing tends to change drastically when functionality is added, or hardware
is updated.

• There is only one interrupt service routine in the application, and the programmer doesn’t do the effort
of splitting its implementation into areal ISR (that does nothing but the really essential processing)
and a DSR (that takes care of the further processing of the interrupt,Section 3.4). Again, this is a
software structure that is error prone when updating the system or migrating it to other hardware.

• Application programmer S raises the priority of a task, because it doesn’t run “fast enough” within the
current situation. She also switches topriority inheritance(Section 4.8) for some of the system’s
critical section. Her colleague H adds his part of the system, and also feels the need to raise the
priorities of “his” tasks and critical sections. This phenomenon reflects an implicit use of knowledge
about the operating system, and, in practice, often leads to a race that eventually ends in most tasks
running at the highest priorities, which, of course, reduces the usefulness of priority-based scheduling.

(TODO: make this list of bad examples as exhaustive as possible.)

The solution to these coupling problems is, of course, quite simple:avoid every form of coupling. Or
rather, strive forloose coupling, because complete decoupling is only possible for tasks that have
nothing to do with each other. This loose coupling advice, however, is difficult to translate into concrete
guidelines. It’s one of these things that make good (software) engineering stand out from the rest, and
makes program design into an “art”. Understanding what exactly causes the problems in the list of
examples given above, is already a good beginning; as is understanding the relevant software patterns in

133

Chapter 14. Design principles

Chapter 15. Looking at your application in an object-oriented way also helps a lot: the fundamental
reason behind the successful use of objects is exactly their ability to clearlydecouplestructure (“class
hierarchies”) and functionality (“object methods and data”). And designing a software system in an
object-oriented way is independent of the language(s) used in the implementation of the system. A good
design can also be implemented in C (if the programmers are disciplined enough). Anyway, there is more
to a software system than describing which objects it should use. . .

14.3. Mediator

A mediatoris a major design principle to introduceloose coupling(Section 14.2) into the interaction
between two or more components. “Mediator” means “object in the middle” between two interacting
objects. And “interaction” means, at least, bothsynchronizationanddata exchange, i.e., IPC. The
mediator takes care of the decoupling in multiple ways:

• Service name serving: the components need not know each other’s identity, but just have to know the
name of the mediator they have to interact with, in order to get the service they are looking for in the
interaction.

• Data handling: a general interaction involves the exchange of data between the interacting
components. This data resides in the object or component that implements the mediator, and the
interacting components access the data through methods in the mediator’s interface. Only in this way,
the mediator can guarantee data consistency. Hence, the implementation of the mediator software
pattern will itself be based one some sort ofmonitor (or “protected object”) software pattern (Section
15.2).

• Synchronization. Instead of distributing over all the interacting components the information about how
to synchronize their mutual interaction, it’s only the mediator that has to know about the
synchronization needs in the whole system of interacting components. And it’s only with the mediator
that each component interacts. This means that a “graph-like” interaction structure is replaced by a
much simpler “star-like” interaction, with the mediator in the centre.

In summary, the mediator pattern is one particularpolicy to use themechanismoffered by the monitor
pattern. In addition, the monitor patterns makes use of several (purely)synchronizationmediators. This is
not a contradiction, or a case of circular reasoning: mediator and monitor patterns exist in different levels
of complexity. It’s the more complex form of the one that makes use of the simpler form(s) of the other.

The following Chapters introduce various examples of mediators. With a small stretch of the imagination,
all synchronization (Chapter 4) and data exchange (Chapter 5) IPC primitives can be considered to be
mediators; however, in their implementation this insight has rarely been taken into account.

14.4. Components

A componentis a unit of software with a clearly specifiedinterface, that describes its functionality. This
functional interface makes a software component into an independently reusable piece of code, i.e.,
something that can be used as a “service”. It’s this independent server property that distinguishes a
component from an object class. Here is a list of things that a componentcan(but need not) do: run

134

Chapter 14. Design principles

several tasks and IPC channels internally; interrogate other components to find and use their interfaces;
be interrogated itself; and generate and handle events. Hence, a component is deliverable by third parties
on the basis of its interface specification only. In principle, it can even be delivered as a binary. A
component should not only document the interface it offers to the world, but also the interfaces it
requires from other components in order to do its job.

The difference between (or rather, the complementarity of) the concept ofcomponentsand the concept of
object-oriented programmingis that object-oriented programming talks only aboutstaticstructure, and
not about concurrency and system semantics. Even the most compilers for object-oriented languages
cannot impose that, for example, theinitialize() method of an object must be calledbeforeits
run() method. Synchronization constraints in a system also don’t enter the scope of object-oriented
programming. For example,method x() must be executed every millisecond, but only whenmethod

y() has run successfully.

Different implementations of the same interface can focus on different optimizations: efficiency of
execution or of memory usage, proven absence of deadlocks, etc. In a typical application, components of
different types are needed, and must be integrated. A component-based design facilitates the distribution
of the implementation work over several contributors, it improves portability, and facilitates the
integration with, and re-use by, other projects.

So much for the theory. . . This theory seems to work quite well in the context of “normal” applications
(business transactions processing, web services, etc.), but in the context of real-time and embedded
systems, the classical component interface lacks two important specifications:

• Timing and synchronization needs.It’s next to impossible to guarantee in a component interface what
the exact behaviour of the component will be if it is integrated into other people’s real-time
application.

• Memory needs.The memory footprint of the component binary in itself is not sufficient information
for its safe integration into an embedded system: the component could use much more heap and stack
space during its operation than expected.

• Composition of components.“Glueing” two components together doesn’t, in general, result in a new
component. That is, the composite “component” doesn’t offer a new interface consisting of an ordered
sequence of completely specified interactions and properties. It is for this reason that the development
of concurrent programs is an error-prone process. Especially in real-time systems.

The conclusion isnot that the idea of components should be abandoned for real-time and embedded
system; only that the use of binary delivered third-party components is cumbersome. The advantages of
specifying clear interfaces of parts of a system remains a useful design guideline, also for real-time and
embedded application programmers, and even within a project that has no externally delivered
components. A real-time system should have a good description of which components it offers (i.e.,
describing theirfunctionalityin a documented interface), and how theirinternalsubcomponents are
interconnected (i.e., thestructureof the system). This mostly boils down to deciding which tasks to use,
and what their synchronization and data exchange needs are.

The pessimistic view is that this specification of the internal structure violates the previously introduced
guideline for loose coupling, and that this violation is often unavoidable. The optimistic view is that this

135

Chapter 14. Design principles

internal structure is anatural partof a good software component: as said before, and as explained in
more detail inChapter 15, a mature software solution for a particular problem has a natural structure
which has proven to be the best. Hence, revealing this structure should not be seen as a negative
compromise.

14.5. Architecture

The architecture of a software system is all about choosing itsstructure: it is aspecific connection
between the software components in the system. That is, an architecture makes a specific choice of how
data and signals must travel between components. And, in general, other structures may be possible.

The best-known example of a system architecture is probably thehierarchical architecture: data and
signals flow from layer to layer in the hierarchy. This architecture has the advantage of being very
transparent and hence understandable, but the disadvantage of being inflexible. Many projects start this
way, but then try to “patch” the architecture later on, when trying to work around the inflexibility. An
example of an often encountered inflexibility is that the highest level in the hierarchy is, strictly
speaking, not allowed to investigate the status of the components in the lowest layer directly, and must
pass through all intermediate levels.

So, in the design phase one should try to postpone decisions about the architecture as long as possible,
and to design the components in such a way that their functioning does not depend on a particular choice
of architecture. It is indeed almost certain that the requirements of the software project will change
during its lifetime, and architectures are often the most difficult to adapt aspect of a software system.
Especially so when the original developers did not provide an explicit description and motivation for the
system’s architecture.

136

Chapter 15. Patterns and Frameworks

This Chapter defines whatsoftware patternsandsoftware frameworksare. It describes some common
patterns that are relevant to real-time systems: monitors, events and state machines, and mediators such
as “producer-consumer” and “execution engine”. The motion controlframeworkis developed in more
detail inChapter 16, with the presented software patterns as “medium-level” components, and the RTOS
primitives ofPart I inReal-Time and Embedded Guideas “low-level” programming primitives.

15.1. Definitions

A Software Pattern([gof94], [posa96]) is aproven, non-obvious, and constructive solution to a common
problem in a well-defined context. This solution is the result of many years of experience dealing with
the often delicate interactions and trade-offs (“forces”) that each tend to drive the solution into different
directions. A Pattern describes the interaction between a group of components, hence it is a higher-level
abstraction than classes or objects. It’s alsonot an implementation, but a textual description of a solution
and its context.

Chapter 14introduced already an important software pattern: themediator. It takes care of the
decouplingof the interaction between two or more components.

A framework([Johnson97]) isa set of computer code files that implement a reusable software solution
for a complete but particular problem domain.Important words in this definition are “implement” and
“particular”: a framework iscode, which only need some so-called “hot spots” to be filled in before it
works. These hot spots are system-dependent parts of the software, such as: particular device drivers or
user interface code.

A framework is much broader (“programming in the large”) than a software pattern (“programming in
the small”). A framework typically contains several patterns, but a pattern doesn’t contain frameworks; a
framework contains code, a pattern doesn’t. Frameworks are constructed in such a way that similar
applications within the same domain can benefit from the same structures and abstractions, but may need
re-implementation of the “hot spots” in the framework.

15.2. Monitor

Themonitor is one of the older software patterns, developed for more complex mutual exclusion jobs
than what the are RTOS primitives can deliver. Getting it working in a real-time application in a
time-deterministic way, however, is not straigthforward, and its scalability is much worse than linear in
the number of tasks, resources, and access conditions to be synchronized.

Semaphores (as well as all other locking mechanism discussed in the previous Chapters) areprimitive
(“low-level”) tools: programmers have to get the logic of usingsem_signal() andsem_wait()

137

Chapter 15. Patterns and Frameworks

(Section 4.6.1) calls correct. One single mistake most often means an incorrectly functioning system.
But, more importantly, using the locking primitives in this way also violates theloose couplingprinciple
of good software design (Chapter 14): the synchronization is achieved by spreading lock function calls
over the different tasks that take part in a mutual exclusion or any other synchronization. This
distribution of the lock function calls makes later maintenance or updating more difficult and
error-prone, because the maintainers should not forget to updateall files in which the locks are used.

The solution that lies at the basis of the monitor pattern, is to avoid this spreading of locks bykeeping
them all at one place, protected in the internals of one single so-called “monitor” (or “protected object)
that delivers theserializationservice to client tasks. And, moreover, the monitor does this serialization in
a quite specific fashion: it makes sure that, at any given time,only one single client taskcan execute any
of thesetof function calls that the monitor “protects.” Or, in more modern object-oriented terminology:
if one task calls a member function of the monitor, then it cannot be interrupted by another task that
wants to call a member function of the same monitor. This aspect of mutual exclusion at the function
calling level is the really newsynchronization primitivethat the monitor brings, in comparison with the
classical IPC primitives found in traditional operating systems. (They provide mutual exclusion at the
statement execution level.)

The monitor concept is another example of themediatoridea (Section 14.3):

• It mediates an intricatesynchronizationbetween several tasks.

• None of these tasks has to know the name or anything else about the other tasks involved in the
synchronization.

• Part of the monitor could be theprotection of shared databetween the interacting tasks.

Obviously, a monitor needs locks internally to do the synchronization and the bookkeeping of the client
tasks that request its services. But the advantage of the monitor is that it can keep all this bookkeeping
inside its own code and that much of this bookkeeping must only be programmed once. So, the overall
application code is easier to understand, predict, debug and maintain. The price paid for the convenience
of a monitor is that: (i) it requires more complex (and hence slower) code; (ii) the exclusive execution
within the monitor can lead to substantial delays for the client tasks that have to wait outside the monitor;
(iii) using a monitor inside another monitor impliesnestedcritical sections, and this leads to a deadlock
sooner or later; and (iv) a monitor is difficult to distribute over a network, because it needs shared
memory for the semaphores that it uses behind the screens.

The general monitor concept is not available as system call in any operating system, because, as will
become clear later, the syntax of a OS function call is not sufficient to describe the full semantics of a
general monitor. There are a number of runtime support libraries (such as the Mozilla NSPR library) and
programming languages (such as Ada and Java) that offer monitors. But also in these cases, only a
limited version of the monitor idea can be offered as a language or runtime primitive. Ideally, one would
like to use a programming language syntax as shown in the pseudo-code skeleton of a monitor below:

monitor { // begin of protected scope
mutex monitor_mutex;// monitor-wide mutex to allow only one task

138

Chapter 15. Patterns and Frameworks

// to access the procedures below

data shared_data; // data structure protected by the monitor

mutex cond1_mutex; // first application-specific condition
pthread_cond_t cond1; // variable and its mutex

mutex cond2_mutex; // second application-specific condition
pthread_cond_t cond2; // variable and its mutex

// procedures that operate on the "shared_data":
procedure_1 {

... // this procedure uses one or more of the application-specific
// condition variables, to synchronize access to the
// "shared_data"

}

procedure_2 {
... // also this procedure uses one or more of the

// application-specific condition variables
}

} // end of protected scope

Of course, such an ideal syntax is not supported by operating systems. And the full implementation of a
monitor in an operating system will be quite a bit different from the code above. But for the time being,
the focus is onmeaning, and not onsyntax. So, a small example of an application that needs a monitor
will hopefully help to make the discussion more concrete. The monitor object could be your bank
account: the protected data structure is the unique resource (your money on the bank), and the method
calls on that data structure are the classical things, such as redraw money, deposit money, check the
available amount, etc. It is clear that clients should be allowed to access the bank account resource only
one by one. For example, the husband checks the account, sees that it contains 1000 euros, and withdraws
800 of them. He should be guaranteed that, as soon as he was allowed to perform his first operation
(check the account), he would be certain to proceed without another client coming in and changing the
state of the account. For example, his wife also checking the account and withdrawing 800 euros. The
monitor-wide mutexmonitor_mutex is involved in allowing the husband to do his first operation, but
disallowing his wife access to the monitor until he has finished is anapplication-specific condition. Of
course, it is not difficult to replace the bank account scenario with any similar scenario in your real-time
or embedded application where a shared resource must be accessed according to the monitor semantics.
For example: an automatic clothing manufacturing cell has several machines that need material from the
same textile sheet cutting machine; in order to guarantee color consistency of each single piece of
clothing, each machine must be sure it can get all of the pieces it needs from the same textile batch.

Although far from complete, the ideal code fragment above does represent the essential aspects of
applications that need the synchronization services of a monitor:

• The monitor has multiple “access points”: client tasks can call (i.e., ask to be allowed to execute) each
of the procedures in the monitor, in any sequence, and at any time.

139

Chapter 15. Patterns and Frameworks

• Only one client taskshould, at any given time, effectively be allowed to execute some code of the
procedures within the monitor, irrespective of how many clients have requested to do so. This mutual
exclusion is the goal of the monitor-wide mutexmonitor_mutex : it is used to allow only one task
to enter what we will call the monitor’s “activity zone.”

• In addition to the monitor-wide mutexmonitor_mutex , the different procedures in the monitor
havemutual critical sections. Otherwise, putting them inside the same protected object would be an
unnecessary complication. So, in general, a client task that is active in the monitor’s “activity zone”
(and, hence, runs in the critical section protected bymonitor_mutex) can blockon a task-specific
condition. This facility to block when running inside of a critical section should sound familiar by
now: it’s the essence behind the introduction ofcondition variableson the operating system scene
(Section 4.7). So, it comes as no surprise to see condition variables appear in the monitor procedures.

• Once a client task is in the monitor’s “activity zone”, it cannot be forced by other client tasks to leave
that zone: it must leave it voluntarily. Otherwise, allowing the operating system or the runtime to force
a task to stop anywhere in the code compromises the logical consistency of the monitor. Of course, the
task can be pre-empted by the scheduler, and continue later on. However, this delaysall client tasks of
the monitor, because non of the other tasks is allowed to proceed in the activity zone. So, a monitor
should be used with a lot of care in a real-time environment!

• So, themonitor_mutex protects the “activity zone” of the monitor. This zone is not explicitly
visible in the code fragment above: it is a lock on atask queue, that would be behind the screens of a
monitor implementation in a programming language: each client task that executes a method call on
the object is blocked on this task queue, until it is allowed access to the “activity zone.”. In a
(real-time) OS context, this task queue cannot remain behind the screens, so the application
programmer will have to make this queue visible (see below).

• monitor_mutex is agenericlock, that is part of every monitor structure, independently of the
application that it protects. But the condition variables areapplication-specific. And that’s the reason
why a monitor can, in general,not be implemented as an operating system or runtime primitive:
applications differ so much in their synchronization needs within the monitor procedures, that it is
impossible to let users blindly fill in their procedures and condition variables as parameters in such a
system call, with the guarantee that client tasks will only be active within the monitor one by oneand
according to the synchronization semantics of the application task. No, the monitor procedures must
be carefully designed together, and this design cannot but make use of the error-prone and low-level
operating system synchronization primitives discussed before. However, the advantage remains that all
these primitives are used within one single programming scope.

• A monitor can be implemented as an abstract data type (i.e., using nothing but function calls on the
monitor, as in the pseudo-code above), but also as an active component (i.e., in which each of the
function calls above is replaced by a task that executes the function). The differences are that, in the
active component version, the procedures run in the context of the tasks in the active monitor
component, and the monitor clients could, in principle, continue doing something else after they have
send their service request to the monitor. For example, in the bank account scenario above, the
husband could use an internet banking application to prepare a set of bank account operations, send
them to his bank in one batch operation, without waiting for the response from the bank server.

Because a task can block once it has been allowed into the monitor’s activity zone, the monitor
implementation becomes necessarily a bit more complex than the following simplistic solution that using
nothing more but the monitor-widemonitor_mutex :

mutex_lock(&monitor_mutex);

140

Chapter 15. Patterns and Frameworks

switch (proc} {
case (proc == procedure_1):

... // execute code of procedure_1
break;

case (proc == procedure_2):
... // execute code of procedure_2
break;

}
mutex_unlock(&monitor_mutex);

This solution is simplistic, because, as said before, allowing a task to block in themonitor_mutex
critical section can lead to deadlocks. So, the implementation of the monitor must make sure, “behind the
screens” of what is visible in the code, that:

1. the task that is currently in the “activity zone”, leaves that zone to wait on a condition variable.

2. that task doesnot leave the monitor, because it is not yet finished with its monitor procedure and it
holds a resource (i.e., lock) of the monitor which should not be exported to outside of the monitor.

3. it allows another task into its “activity zone.”

The section on condition variables (Section 4.7) showed that the condition variable primitive has exactly
been introduced to allow a task to block within a critical section locked by a mutex. But in themselves,
the normal condition variables are not sufficient: they work only within the code of one single procedure,
and cannot span the scope of several procedures. Hence, the implementation of a monitor will be more
complex than just using themonitor_mutex as the mutex of the required condition variables. The
monitor_mutex and the condition variables must beintegrated, in an application-specific way. And
that is the reason why a general monitor does not exist in programming languages or runtimes.

Of course, not all applications need the full version of the monitor idea, so there exist various levels of
functional complexity in the monitor concept. Not surprisingly, the more complex ones carry the highest
cost in undeterministic timing behaviour. The following sections present monitors with increasing
functional complexity.

15.2.1. Multi-procedure critical section

This is the simplest monitor, and it delivers only the service ofexclusive accessto its procedures. That
means that only one client task can execute any of its procedures at the same time. So, the procedures in
the monitor don’t have critical sections inside, but, on the contrary, they are within the critical section
provided by the monitor widemonitor_mutex . So, the simplistic implementation above is sufficient,
and this kind of monitorcanbe offered as a parameterized runtime primitive.

An example of such a monitor is the simplified version of the bank account:eachoperation on the bank
account involves enteringand leaving the monitor. So, one misses the “batch processing” functionality
of the previously given example. Another example is acommand interpreterof an embedded application
that controls a machine: a client comes in with a request for a machine operation; such an operation
request is typically translated in a sequence of multiple primitive actions on that machine, so all primitive

141

Chapter 15. Patterns and Frameworks

actions in the client request should be executed before another client’s request can be executed. However,
this other client’s request can already beinterpreted, because that can happen outside of the monitor; the
monitor is needed for theexecutionof the request, i.e., the unique and serialized access to the machine.

15.2.2. Semaphore-based monitor

The next level of monitor complexity comes when client tasks do have application-dependent
synchronization needs, but these needs can be dealt with usingbinary semaphoresonly. This means that
the synchronization condition on which task blocks in the monitor need not be checked explicitly: when
the semaphore is signaled, the condition isguaranteedto be true. This kind of monitor is often called a
Hoare monitor, after C.A.R. Hoare, who first described this semantics, [Hoare74]. Another name is
Mesa monitor, after Xerox’ graphical user interface language Mesa, in which it was first used,
[LampsonRedell80]. The monitor has the so-calledSignal-and-sleepsemantics: the task that is in the
monitor signals the condition semaphore, goes to sleep itself, while the signaled task runs immediately.
The Hoare monitor is the kind of monitor that every object in Java offers to the programmer, via the
synchronized access policy to its methods. While itsimplementationis a bit more complex
(semaphores!) and time consuming (context switches!), its semantics are much simpler: by
context-switching immediately to the signaled task, the monitor guarantees that this task knows that the
condition is satisfied, because no other task in the monitor could have changed it. This semantics is only
possible if the signaling task can indeed sleep immediately, i.e., when at the moment of signaling, it can
leave the data structure in a consistent state. The waking and sleeping on the semaphore occurswithout
freeing themonitor_mutex mutex; so this synchronization is between two tasksin the monitor; a task
outside of the monitor can only enter when all of the tasks that are already in, are waiting, or there are no
tasks in the monitor.

An example is the classical producer-consumer buffer problem: the data structure in the monitor is a
buffer, in which a producer task writes data, and from which a consumer client retrieves data. The
semaphore is needed to signal and wait for the (binary!) condition that the buffer is empty or full:

monitor
{ // begin of monitor scope
const int BUFFER_CAPACITY = ...;
data buffer[BUFFER_CAPACITY];
data nextp, nextc;
int buffered_items = 0;
pthread_cond_t full = false;
pthread_cond_t empty = true;

produce_an_item()
{

nextp = produce(...);
if (buffered_items == BUFFER_CAPACITY) wait(full);
// when going further here, there is certainly place in the buffer
// and the consumer has set ‘buffered_items’ to its correct value
buffer[buffered_items++] = nextp;
signal(empty); // wake up some task waiting to consume an item

}

142

Chapter 15. Patterns and Frameworks

consume_an_item()
{

if (buffered_items == 0) wait(empty);
// when going further here, something is certainly in the buffer
// and the producer has set ‘buffered_items’ to its correct value
nextc = buffer[--buffered_items];
consume(nextc);
signal(full); // wake up a producer

}

} // end of monitor scope

The checks for how many items are in the buffer take place in the critical section protected by the
monitor-wide mutex. After the last signals inproduce_an_item() andconsume_an_item() , the
producer or consumer task leaves the monitor, such that a new task can be allowed. This uses the
monitor-wide mutes, and is not visible in the code; it is assumed to be done by the runtime.

This kind of monitor can also reasonably easy be offered as a parameterized primitive of a generally
useful service, such as buffering.

15.2.3. Condition variable-based monitor

The most complex monitor allows its procedures to have synchronization needs that can only be dealt
with using composite boolean expressions, such that condition variables are required. This kind of
monitor is often called aHansenmonitor, after Per Brinch Hansen, who first described its semantics,
[BrinchHansen73]. The semantics of the signaling is nowSignal-and-continue: the task that is in the
monitor and raises the signal continues, and the signaled task is put in a wait queue (within the monitor!).
So, this task is not guaranteed of finding the condition fulfilled when it gets a chance to run again, and it
should check that condition again. That’s the reason for thewhile{} loop in the code:

monitor
{ // begin of monitor scope
const int BUFFER_CAPACITY = ...;
data buffer[BUFFER_CAPACITY];
data nextp, nextc;
int buffered_items = 0;
pthread_cond_t full = false;
pthread_cond_t empty = true;

produce_an_item()
{

nextp = produce();
while (buffered_items == BUFFER_CAPACITY)

{ wait(full); }
// the condition is _checked_, not just signaled

buffer[buffered_items++] = nextp;
signal(empty); // wake up someone waiting for an item

}

143

Chapter 15. Patterns and Frameworks

consume_an_item()
{

while (buffered_items == 0) wait(empty);
// at this point, I m guaranteed to get an item

nextc = buffer[--buffered_items];
consume(nextc);
signal(full); // wake up a producer

}
} //end of monitor scope

An example is a resource allocation system, such as the producer-consumer buffer above: the shared data
structure is the resource, and the (de)allocation procedures check a lot of conditions before each client
can get or release (part of) the resource.

This kind of monitor is very difficult to offer as a general parameterized primitive.

(TODO: give full code example. E.g. coordinating readers and writers example of [Nutt2000], p. 202, but
with more complex conditions than the binary semaphores.)

15.3. Producer-Consumer

Section 14.3introduced the general concept of amediator; Section 15.2explained how themonitor
mediatorworks. And this Section applies the pattern to the very often usedProducer-ConsumerIPC
between two tasks. The Producer-Consumer mediator is the object (data and methods) that helps task A
to send data to task B, without having (i) to know anything about task B, and (ii) to worry about the
implementation details of getting the data from A to B. Again, thisloose couplingallows for easier
maintenance and updates. For example, if task B is moved to another process or processor, the mediator
can choose, internally, for a more appropriate type of communication and buffering, and neither A nor B
have to be changed.

15.3.1. Terminology

This Section uses the following terminology:

• Theproduceris the task that wants to send the data.

• Theconsumeris the task that wants to receive the data.

• Themediatoris the task (active) or object (passive) that producer and consumer use to perform their
communication, without having to know each other.

• The data is also called themessage.

• The asymmetry suggested by the terminology “producer” and “consumer” is not really relevant in the
mediator pattern. So, both producer and consumer are calledclientsof the mediator.

144

Chapter 15. Patterns and Frameworks

• The mediator can bepersistent, i.e., it is created once at start-up, and handles all requests during the
lifetime of the interaction between both clients.

• The mediator can betransient, i.e., it is created each time a client issues a new request, and deleted as
soon as the request has been handled.

15.3.2. Handling

Every line of code in a program is executed by one particular task (possibly the kernel). One says that the
code “runs in the task’s “context”, using its stack, program counter, etc. In the method calls on the
mediator object, it is not always clear or predictable which parts are executed in which context. For both
unprotected and protected objects, everything that happens “in” the mediator is in fact executed using the
stack and the context of one of the clients. One discriminates between thesynchronousandasynchronous
parts of every call of a mediator method:

• Synchronous.This is the part that executesmost definitelyin the context of the calling client.
“Synchronous” here means: “activated by code in the method call” that the client performs.
Asynchronous.This part doesnot necessarilyrun in the context of the calling client (but that remains
possible), because it is executed “asynchronously”. That means, it is not directly activated by code in
the client call, but by other methods of the mediator. These other method calls can, for example, be
activated by the other client of the mediator. A typical example: the synchronous part gets the data
from the producer to the mediator protected object, where it stays until the consumer asks for it later
on (“asynchronously”).

Every client call involves, in general, three distinct handlers (or “services”) by the mediator:
synchronous, asynchronous, and completion handling:

• Synchronous handlingis that part of the interaction that is done in the client’s method call: the client
changes some mediator data structure that remembers that this call has taken place and that it needs
further handling (in other words, it makes the producer-consumer data exchange “pending”), and
possibly also copies the data needed for this further handling. In general, this synchronous part
involves some locks on protected data structures, and hence possibly blocks the calling thread.

• Asynchronous handling.The mediator usually has to do more work than the message copying and
bookkeeping in the synchronous part: the message must effectively be delivered to a consumer; the
buffers must be updated according to incoming priority and cancellation request; an event that has fired
has to be serviced; etc. How exactly the further handling is done depends on the type of the mediator:

• The mediator is a passive object (unprotected or protected object).In this case, one of the
interaction initiating client tasks executesall the asynchronous handling that is pending in the
mediator. Not only its own handling, but that of all pending requests. So, for this client, there is no
real distinction between the synchronous and asynchronous handling parts.

• The mediator is a task (active object, or component).The IPC initiating client continues after the
synchronous handle finishes, i.e., it has put all data for further handling in an appropriate buffer, and
the mediator further processes this data later on, in its own context.

145

Chapter 15. Patterns and Frameworks

• Completion handlingis an optional third handling part that clients can ask for. For example: a
producer sends new data to a consumer only as soon as it knows that the consumer is ready to accept
the new data. Or, the producer blocks until the mediator has completed the interaction, after which the
producer is woken up by the mediator.

Completion is performedafter the asynchronous handling, and in the context of the task that just
finished executing the last asynchronous handling. Completion could involve the mediator accessing
data structures of the client that has registered the completion. Hence, completion requires more
careful coding from the application programmer, because it runs asynchronously and hence the
context is probably not the one of the registering client. An additional concern for the application
programmer is that it is not always straightforward to guarantee that, at the time of completion, the
called object still exists. In summary, treat a completion handler as if it were an interrupt handler: it
should never do something that can block.

The client (or every task authorized to do it for the client) has to registerexplicitlya completion function
(or “call-back function”) with the mediator. Synchronous and asynchronous handlings must not be
registered in the case of a Producer-Consumer mediator, because they are the default send and receive
methods of the Producer-Consumer mediator. (However, other types of mediators could require explicit
registering of client-specific functions forall handlers.) The mediator calls the registered completion
function at the appropriate moment, i.e., after all asynchronous handling has been done.

Note that (i) asynchronous and completion handling need not be present in every mediator; (ii)
asynchronous handling must always come after the synchronous handling; and (iii) completion must
always come after asynchronous handling.

15.3.3. Data buffering

The mediator can buffer the protected message data in various ways, as explained inChapter 5.

15.3.4. Data access

Accessing the data of the message object in the mediator can happen in various ways, each with a
different trade-off between blocking and data protection:

• Unprotected object.The data of the message is directly accessed in the IPC function calls, i.e., it is
shared memoryin the form of a global variable. This allows for the most efficient data access, with the
shortest amount of blocking, but it is only a viable IPC mechanism if producer and consumer are
guaranteednot to access the data simultaneously. Indeed, in general, these IPC calls on an unprotected
mediator object arenot thread safebecause the object contains data that is shared between consumer
and producer. Hence, this approach is only viable in fully deterministic cases, such as an ISR-DSR
combination.

• Protected object(Also called “monitor” in some literature.) The data of the message is not directly
accessible to producer and consumer. They must use access method calls (“read” and “write”), which

146

Chapter 15. Patterns and Frameworks

areserializedwithin the mediator by some kind of mutual exclusion lock (mutex, semaphore, \dots)
around the data. This allows (but does not automatically guarantee!) safe access to the message data,
but producer and consumer can block on the lock.

• Active object.This is conceptually the same as a protected object, but with one important difference:
the mediator has its own thread.

• Component.The protected or active objects are a good solution in a system in which producers and
consumers know which objects to use. Modern software systems become more dynamic and more
distributed, and having to know the identity of all services in the system becomes a scaling
bottle-neck. Therefore, the concept of components has been introduced: they have a protected object
inside, but have extra functionality to work together with aname serverthat offers run-time and
network-transparant bindings between components.

15.4. Events

The event pattern describes how to synchronize activities running in different task, with very loose
coupling between the tasks. The event pattern is applicable to the RTOS primitivessignal(Section 4.3)
andinterrupt (Section 3.3), with only minor adaptations:

• Tasks mustregisterto get notified about events and interrupts, while (in the POSIX semantics, at least)
they have to explicitlyde-registerfrom every signal they don’t want to receive.

• The synchronous handling of interrupts is initiated by thehardware, and not by another software task.

• Events can carry any form of data, while signals, and interrupts are data-less triggers. Or, almost
data-less: they can carry information about, for example, the time or the cause of the triggering.

15.4.1. Semantics

The event pattern has a lot in common with the Producer-Consumer pattern, but its emphasis is on
synchronization of the tasks’ activitiesand not ondata exchange. In any case, this discussion re-uses as
much material of the Producer-Consumer pattern as possible. The semantics of a general event are as
follows:

• (De-)Registrationof a listener function. Registration is aconfiguration timeactivity, and is not part of
the event’s interaction itself. At registration, a task gives (a reference to) a function call (the “listener”)
which must be called assynchronous or asynchronous handlerwhent the eventfires. Whether the
listener is synchronous or asynchronous is again a configuration option. When called, the listener gets
information about which event has caused it to run.

Multiple processes can register their listeners with the same event. And the same listener can be
registered with several events.

147

Chapter 15. Patterns and Frameworks

• (De-)Registrationof acompletion function. This is technically similar to listener registration, but
functionally different: the completor is called by the event mediator when all synchronous and
asynchronous activities for this event have finished. The task that registers a completion function need
not be the one that registers the listener. And a task doesn’t have to register in order to be allowed to
fire an event.

• Firing.

• Firing. A task fires the event, i.e., it executes a method call of the mediator, that performs the
synchronous handlingof the event, and puts the asynchronous and completion handling in the pending
queue for the fired event. (All this requires synchronized access to the mediator’s bookkeeping data
structures.)

• Guard. Whether a firing event really sets the handling in acion or not, can be made dependent on a
guard. This can be any Boolean expression, which prevents the firing if its evaluation returns “false”.
The evaluation happens instantaneously, at the fire time of the event, i.e., in the synchronous handling
by the mediator.

Be careful with guards: they are a too powerful mechanism for scalable and deterministic software
systems. Having a Boolean decide about whether or not to do something is often a sign of a bad
design: it’s much cleaner to have this “state dependency” inside the mediator, by providing it with the
State Machinemechanism (Section 15.5).

• Handling. This covers the asynchronous and completion parts of the event. So, handling calls the
registered listeners and/or completion functions.

15.4.2. Policies

Events can have multiplepolicieson top of the above-mentioned mechanism. All of the following ones
can be combined:

• Queue pending events.The event mediator can have a queue for each listener, in which it drops every
fired event, at synchronous handling. So, no events are lost when a new one arrives, while the
synchronous processing is still busy with a previous event.

• Prioritize listeners and completors.This allows to influence the order in which they are executed.

• One-off execution of listeners and completors.This means that on each fired event, only one of the
registered listeners and completors is executed.

15.4.3. Composite events

Often, a task wants to be notified not just when one particular event has been fired, but whenever a
logical “AND” or “OR” combination of several events has occurred. Such a composite eventC could be

148

Chapter 15. Patterns and Frameworks

implemented by a mediator event between the processP and the two eventsA andB. For example, for
the AND composite event:

• The taskP registers its listener and completion function withC.

• C registers listeners for bothA andB but registers no completion handler.

• The listeners forA andB look like this:

if (A_has_fired and B_has_fired)
clear A_has_fired
clear B_has_fired
fire C

This code runs internally in the mediator ofC hence it can access the flagsA_has_fired and
B_has_fired atomically, without needing the overhead of a critical section.

Of course, any Boolean expression of events can be implemented as a composite event. Whether or not
to provide a separate composite event for a specific Boolean expression is an efficiency trade-off: writing
a new object, versus introducing multiple levels of the simple AND and OR composite events.

15.4.4. Loop with asynchronous exit event

A taskP cyclically runs a functionF which it must execute whenever eventA occurs. But whenever
eventB occurs, the task should exit the loop aroundF. B can be asynchronous to the execution of the
loop, so it’s best to letP finish the loop, and only then exit. This can be done by having the process wait
for the “OR” of both events, and then take appropriate action (loop or exit). Here follows a possible
implementation, where the composite event signals a condition variable:

Task P: Composite event listener:

while (1) { if (A_has_fired or B_has_fired)
wait_on_condition(A_OR_B); broadcast(A_OR_B);
if (A) F;
if (B) exit;
}

The exit is done “synchronously”, i.e., it never interrupts the loop functionF. As a result, the process
comes out of the loop in a predictable state.

15.4.5. Some caution

Let’s conclude this Section with a critical note by Per Brinch Hansen on event variables
[BrinchHansen73]: “Event operations force the programmer to be aware of the relative speeds of the
sending and receiving processes.” And: “We must therefore conclude that event variables of the previous
type are impractical for system design. The effect of an interaction between two processes must be
independent of the speed at which it is carried out.” He was talking about using events as ageneral
multi-tasking synchronization primitive, replacing the synchronizations ofChapter 4. And in that
context, his remarks are very valid (and he suggestedcondition variables, Section 4.7). But there are

149

Chapter 15. Patterns and Frameworks

situations where the synchronization isnot time-dependent; for example, the feedback control example
in Chapter 16.

15.5. State Machines

A state machine is a common way to give structure to the execution of computer tasks: a task can be in a
number of possiblestates, performing aparticular functionin each of these states, and making a
transition to another state caused by either an external event or internal state logic. So, a state machine is
the appropriate pattern for an application in which different modes of control are to be available, and the
transitions between these mode is triggered by events.

This Section discussesobjectstate machines: the state machine doesn’t describe the classicalprocessof
actions triggered by events, but it allows anobject to change its behaviourthrough events. The software
engineering advantage of the object-based approach to state machines is that the internals of the states
need not be exported outside of the object. This Section describes the mechanism of one particular type
of state machine, where the design goal is to maximize determinism and semantic unambiguity, at the
cost of ultimate generality. The execution of the above-mentioned state functionality requires, in general,
finite amounts of time, while the mathematical state machine reacts in zero time. No software approach
can guarantee such zero-time execution, but the presented object state machine does guarantee that all
state functions are executed atomically within the context of the state machine, i.e., state functions are
properly serialized with state transitions.

(TODO: code examples; Hierarchical State Machines eventhelix example
(http://www.eventhelix.com/RealtimeMantra/HierarchicalStateMachine.htm)?;)

15.5.1. Semantics

An object state machine is a composite class that manages the following data:

• Oneclassfor each state in the state machine. It contains the functions to be called in the state, as
discussed below.

• Eventsto make the objecttransitionto other states.

• A graph, to represent the structure of the state machine: a node is a state class, and an edge is a
transition between states.

The choice for a graph object corresponds to the choice of apersistentstate machine mediator: the graph
persistently stores the information of transitions and related events, such that this information is directly
available and no time is lost creating or deleting state objects. This is an example of the classical
trade-off between computation cost and storage cost of performing the same functionality.

Figure 15-1. General structure of a state.

150

Chapter 15. Patterns and Frameworks

FigureFigure 15-1shows the general structure of a state:

• Entry.This function runs when the object first enters a state. If a state is implemented as a transient
object, this would be the state object’s constructor. The last thing the entry function does is to call the
state function.

• State function.The state object runs this function after the entry. The state function is guaranteed to be
executedatomically(i.e., without interruption)within the context of the object’s state machine. That is,
no state transitions can happen when the function is running.

The state function can be anactionor anactivity:

• Action.The state function runs once, performs a certain “action” (such as setting an output), and
then runs the exit function (see below).

• Activity.The state function runs in a loop, from which it exits when it receives the “abort” event, or
when it decides itself to exit from its loop.

• Exit. This function runs when the object is about to transition to another state. For a transient object, it
would be the object’s destructor.

The exit function calls the state machine object (with as parameters the current state and the event that
has caused the transition) to load the next state information in the state object, and (optionally) fires an
event that signals the state exit. Loading the next state means that new entry, state and exit functions
are filled in in the corresponding data structure of the state machine object.

When the next state is equal to the current state, the object goes directly to the state function, without
executing the entry function again.

This mechanism does not represent the most general form of state machine: the atomicity of the state
function (action as well as activity) is a restriction on the generality, but this serialization of state
function execution and state transitioning adds a lot to thedeterminismof the state machine. If the state
function is not guaranteed to run until completion, the object could end up with unpredictable and
inconsistent values of some variables. The atomicity is only guaranteed within the context of the running
task, and not within the whole software system.

The presented mechanism can represent bothMoore andMealy state machines. If the state function is
an activity, the state machine is a Moore machine. Action (or “(discrete) change”) is associated to a
transition, and in that case, the state machine is a Mealy state machine, [Mealy55]. So, Moore machines
are appropriate for continuous, non zero-time activity (such as software objects), and Mealy machines
for discrete changes (such as electronic circuits).

151

Chapter 15. Patterns and Frameworks

15.5.2. Implementation with events

The execution of a state machine can be implemented on top of the event mechanism ofSection 15.4.
The state machine object has an event object for each of its transition events, and it has a data structure
that stores the entry, state and exit functions of the currently active state. The event that causes a state
transition has been initialized as follows:

• Its listener executes the current state’s exit function.

• Its completer executes the new state’s entry function (unless the new state is the same as the old state),
as well as its state function.

The listener and completer select the right functions from the information in the state machine graph, and
from the identity of the current state.

In principle, both actions (i.e., exit and entry functions) could be done by the listener. But if the event
causes more things than just a state transition in a state object, it could be interesting to have all this
event’s listeners executed before the completer executes any of the state entry functions.

The above-mentioned run-time registration of listeners and completer is not always a good idea, because
registration involves a lot of linked list operations. An alternative is to have the state machine listen to all
events, and let its listener call the corresponding state listeners and completers.

The advantage of using events to trigger transitions is, that the knowledge of to which next state to
transition at exit, is not stored in the current state, but in the state machine object’s graph structure. In this
sense, that state machine object is a mediator between the different states.

15.6. Execution Engine

(TODO:sequencingof non-distributed but non-linear activities;)

TheExecution Engineis a pattern that takes care ofactivationandconfigurationof software
components:

• Activating components respecting their individual timing specifications.

• Run-time configuration of components.

The Execution Engine is a mediator object (Section 14.3) in the sense that it decouples the activation and
configuration synchronization of several components. Unlike previously discussed mediators, it doesn’t
take care about anydata exchangeor mutual exclusion synchronizationbetween the components.

By localizing theactivation logicof a complete application in one single mediator, the system is much
easier to understand, program, adapt, and make deterministic. The core of the Execution Engine can be a
finite state machine, whose outputs are triggers for the other components; for the pacing of its state

152

Chapter 15. Patterns and Frameworks

machine, the Execution Engine relies on basic timer functionality of the RTOS on which it is
implemented.

15.7. Distributed IPC

The important domain ofcomponent distribution and communicationhas already been developed quite
extensively. Douglas C. Schmidt’s free software projects ACE
(http://www.cs.wustl.edu/~schmidt/ACE.html) (Adaptive Communication Environment) and TAO
(http://www.cs.wustl.edu/~schmidt/TAO.html) (The ACE Orb) are primary references. This work has
been an important basis for the specification ofReal-Time CORBA, Section 1.5.8.

There is sufficient documentation and code available on-line, so this text will not go into more detail.
Especially because distributed IPC is inherently not a hard real-time system.

(TODO: more details; example with real-time or embedded relevance:DAIS(Data Acquisition from
Industrial Systems Specification, OMG group effort for large-scale data acquisition);)

15.8. Transactions

Important concept in the context of databases:
ACID (http://www.cis.temple.edu/~ingargio/old/cis307s01/readings/transaction.html) (Atomicity,
Consistency, Isolation/Serializability, Durability). In that form, it is too heavy for real-time systems,
which often interact with a real world, in which it can impossibly undo actions. But an more realistic
sub-primitive is theTwo-Phase Commit(TPC) pattern for atomic transactions in a Distributed System,
[Gray78], [Galli2000], [BurnsWellings2001], p.390: two tasks want to be sure that both of them agree on
a particular action being done, and the TPC guarantees that the action is completely done or completely
undone. The first of the two phases is thenegotation and set-up phase, and the second phase is the
execution phase (“commit”).

(TODO: more details; example with real-time relevance;)

153

Chapter 16. Design example: “control”

“Control” is a very mature and broad domain, with thousands of research publications every year. Most
of these publications deal with newapplicationsof existing concepts and technology, or with improved
functionalityof existing aproaches. There is almost no evolution anymore in thefundamentalsof the
technology. But this lack of evolution is not perceived as a problem, because the fundamentals are
mature and have proven to work. This means control is an exquisite subject to define Software Patterns
for, Chapter 15.

This Chapter describes these Patterns, as far as they are relevant for thereal-timesoftware engineering
aspects of the problem. It presents (a design for) a generic, hard real-time control framework, making use
of the decoupling ideas and other Software Patterns introduced in the previous Chapters. A similar
discussion could be held for other mature application areas, such as telecommunication.

(TODO: are there other hard real-time areas besides control and telecom? Is telecom really hard
real-time? Or is its hard real-time functionality only the signal processing, which we take as part of the
generic control pattern?)

The first message of this Chapter is that many complex hard real-time systems can be built using only an
amazingly small set of the primitives offered by a typical RTOS. (The design presented in this Chapter
can even runwithoutoperating system.) This fact often comes as a surprise to students or newcomers in
the field, because they tend to come up with systems that have separate tasks for every piece of
functionality in the system, and that need complex IPC, driven as they are by their eagerness to use the
largest possible set of the RTOS primitives they’ve learned in the classroom. So, also in real-time and
embedded application programming, simplicity of design is the signature of the real craftsman.

The second message is inspired by the observation that experienced designers ineveryparticular
application domain introduce a lot ofstructurein the way they solve the application problems. They do
this most oftenimplicitly. So, the message is to first make explicit the largest form of structure that is
generic for the application domain, and then use it to build theinfrastructureparts in your design. The
rule of thumb is that structurealwaysleads to efficiency gains, in design, in implementation, and in
documentation.

The third message is to document and localize the“hot spots” in your design. That is, those parts that
will have to be changed whenever the application is ported to new hardware and a new operating system.
This Chapter calls them thedevice interfaceand theoperating system interface.

16.1. What is control?

This Chapter uses “control” to illustrate the above-mentioned messages. It interprets the concept of

154

Chapter 16. Design example: “control”

control quite broadly: the presented framework covers various domains, known under names such as:

• Pure data acquisition,as implemented by Comedi (Section 7.4).

• Extended data acquisition and generation,with pre- and post-processing of the signals. For example,
applications which must calibrate equipment against standards, send specific pulse trains, detect peaks
and abrupt changes, etc. The presented design can be seen as an extension to Comedi, adding signal
processing and feedback control funtionality.

• Waveform generation, which is the same as the generation application above.

• Programmable Logic Control (PLC), i.e., the “primitive” form of control in which all inputs are read
first and stored in a buffer, then a set of (possibly unrelated) functions are run in sequence, each
producing one or more values in the output buffer, which is finally written to the peripherals “in
block.” PLC functionality is present in most machine tools, to manage discrete actions, such as closing
valves, setting LEDs, and even simple control loops such asPID (Proportional-Integrative-Derivative).

• Feedforward/feedback control,such as in robotics or other mechatronic systems.

• Observation,i.e., measured signals are monitored, and specific patterns in the signals are detected and
reacted to.

• Estimation,i.e., the measured raw signals are processed, and estimates of non directly measurable
quantities are derived from them. Observation and estimation are often used as synonyms; this text
will do that too.

• Signal processing: still another name for all the applications mentioned above (i.e., those that don’t
drive outputs based on measured inputs).

16.2. Functional components

The presented design is limited to thecommon real-time (infra)structureneeded by all these
applications. Application-specificfunctionalitymust be implemented on top of it, via“plug-ins.” This
Section presents the (application-independent)functionalparts of the generic control system. (Some of
the above-mentioned application areas don’t need all of these components.) Each functional component
has a specific goal in the overall control (i.e., it runs an application-specificalgorithm), and the interfaces
between the parts are small and well defined.

An interface consists of: (i) data structures; (ii) function calls; and (iii) events (Section 15.4). Data
structures and function calls can be considered as one single part of the interface, by assuming that each
access to the data takes place through a function call. The event information in the interface specifies for
which events the component has a “listener” (without saying explicitly what the listener does), and
which other events it can “fire”.

The following Section discusses theinfrastructuralparts of the design, i.e., those that support the
functional components in their actions, but contain no application-specific functionality themselves. The
functional components are:

155

Chapter 16. Design example: “control”

• Scanner: measures signals on interface cards.

• Actuator: writes setpoints to interface cards.

• Generator: generates signal setpoints. It supportshybrid signals, i.e., discrete signals (“pulses”),
analog signals (in sampled form, of course), as well as discrete switches between analog signal forms.
In its signal generation, it can make use of the data that other components have available. In control
theory, one calls the functionality offered by the Generator “feedforward” and/or “setpoint
generation.”

• Observer: reads Generator and Scanner results, and calculates estimates on these data. Lots of
application-dependent forms of data observation exist, known under names such as “filtering,”
“transformations,” “data reduction,” “classification,” etc.

• Controller: reads Generator, Scanner and Observer, and calculates setpoints for the Actuator, in its
“control algorithm.”

These are thefunctional components, i.e., the components of which application programmers see the
plug-in interface, and for which they must provide functional contents, in the form of the signal
generation or processing algorithms of their application.

When they are present, these functional components arealwaysconnected according to the same
structure, depicted inFigure 16-1. This figure shows the functional components (and the infrastructural
components discussed in the following Section) as rectangular boxes. They interact through
Producer-Consumermediators(Section 15.3), depicted by ovals.

Figure 16-1. Structure of generic control application.

16.3. Infrastructural components

The design also needs someinfrastructural components, that run “behind the screens” in order to support
the functional components, but that don’t execute any application-specific algorithms. These components
are:

• Execution Engine: is responsible foractivationandconfiguration:

• activating the functional components, respecting their individual timing specifications.

• run-time configuration of the functional components.

This is the only component that knows how the other components should interact, and it triggers other
components to execute their functionality. By localizing theapplication logicin one single component,
the system is much easier to understand, program, adapt, and make deterministic. The core of the
Execution Engine is a finite state machine, whose outputs are triggers for the other components; for
the pacing of its state machine, the Execution Engine relies on basic timer functionality of the RTOS.

• Command Interpreter: this isnot a hard real-time component, because it receives commands
(configuration, action specification, etc.) fromuser space(in whateverprotocolthe application uses),
parses them, checks their consistency, fills in the configuration data structures for the other

156

Chapter 16. Design example: “control”

components, and signals the Execution Engine when a complete and consistent new specification for
the real-time system is available. It has to make sure that its communication with the real-time
Execution Engine isatomic: either the whole new specification is transferred, or nothing. “Swinging
buffers” (Section 5.5) are a possible RTOS IPC primitive to implement this atomicity.

• Reporter: collects the data that the other components want to send to the user, and takes care of the
transmission.

• HeartBeat: this component handles the timer ticks from the operating system, and derives a “virtual
system time” from it. The Execution Engine asks the HeartBeat to activate some components (i.e., to
fire appropriate events) at particular virtual time instants.

16.4. Design

This Section explains the design decisions behind the structure ofFigure 16-1.

One major design choice is to introducemaximum decouplingbetween components. This is achieved in
various ways:

• Dividing the whole application into components with aminimal amount of interactions.The whole
system has simple “Producer-Consumer” interactions, and the interaction graph hasno loops.
Execution Engine, Generator, Observer and Controller can be designed fully independently of RTOS
and user, because they interact only with Scanner, Actuator, Reporter and HeartBeat.

• Minimizing theRTOS primitivesthat each component needs. The HeartBeat needs input from the
timer of the RTOS, and the mediators need locks to sequence the access to the interaction data they
encapsulate. They do need more, only in case the system is distributed over a network, by cutting a
mediator in two.

• Localizingeach of the component-component interactions into a mediator object.

• Localizingthe RTOS interaction in the so-calledoperating system interface.

• Localizingthe hardware interaction in the so-calleddevice interface, so that it can be ported to other
platforms, or to user space, running on virtual hardware, used for example for simulation or
non-real-time signal processing.

• Using events allows the system to not rely at all on theschedulerof the RTOS (see next Section).

Another design choice is to provide a design that can be flexibly configured, going from everything
running as one single task, even without an operating system, to a system where each component runs an
a separate processor. This design goal has been reached as follows:

• Events.This is one of the best decoupling mechanism to use at all possible levels of distribution (if the
application allows it,Section 15.4.5). Events encompass hardware and software interrupts, exceptions,
state machine actions, CORBA events, etc.

157

Chapter 16. Design example: “control”

• Mediators.Since all information about an interaction is localized in these mediators, distributing the
mediators is all it takes to distribute the application. Everyhting outside of the mediators remains
unchanged.

16.5. Implementation

A full control application may seem quite complex at first. But the structure of the application, and the
design decisions explained in the previous Section, make a very simple and efficient implementation
possible on a single-processor system.

The key behind the implementation is that thestructureof the application is aloopless graph. This
means that there is a deterministic way toserializethe whole execution of the control system. There are
two natural orders,push, andpull,. Push means that the execution starts at the Scanner component, that
reads the hardware, and produces data for its mediator, that mediator then uses these “inputs” to trigger
the Observer, and the Generator. Then, the Controller works and finally the Actuator. After they have
done their job, the Command Interpreter and Execution Engine are executed. Pull is the same thing, in
reverse order, starting from the Actuator.

All this “execution” is nothing else but running the event handlers of the HeartBeat virtual tick event: all
functionality of all components is registered as listeners to that event. The order of the execution of the
listeners corresponds to the natural order in the presented control design.

The serial execution above could also be executed in one single combination of ISR and DSR, (Section
3.4), where the ISR is triggered by the hardware timer of the system. So, in principle, this
implementation doesn’t even need an operating system, and is appropriate for embedded
implementations that require little flexibility.

The fact that all execution can nicely be serialized deterministically allows to useunprotected objectsin
the mediators (Section 15.3.4), again improving efficiency because no locking is needed.

158

IV. Tips and tricks
This last Part is a collection of more or less unconnected tips and tricks, that can help application
programmers to solve many of those little annoying problems that show up in a software project. Of
course, the emphasis is again on real-time and embedded applications.

Chapter 17. Tips and tricks

TODO: memory barriers; exception handling: recover, hang up or crash, error recovery vs die on the
spot; time stamps; garbage collection vs fixed size chunks vs static allocation;

17.1. Tasks

The term “thread pool” is often used in the context of servers that have to process lots of service requests
coming in asynchronously from client tasks. The term makes one think about a company that hires
workers when it needs them and gives them a job to do. This “active way of distributing jobs” is a rather
unfortunate analogy to think of programs: you shouldn’t be thinking about “giving the threads work to
do”, but about “announcing that there is work to do”. The threads will then pick up that work when they
are ready. The Producer-Consumer mediator model is the way to go here. A request comes in, the
producer puts it on a queue, and a consumer takes it off that queue and processes it. Consumer threads
block when there is nothing to do, and they wake up and work when jobs become available.

The thread pool example above is one of those many occasions where programmers create a “manager”
task: that manager takes all the decisions, such asactivelydeciding when a certain task has to start and
stop. But trying to start and stop threads from an external task is error proneSection 2.2. Trying todelete
another task is even more dangerous: there is no way you can determine when another task is not
involved anymore in IPC with other tasks, or when it has released all of the locks it holds on shared
resources.

Determining a correct stack size for your tasks is often a difficult job. If you have the possibility to
experiment with your application in realistic and worst-case environments, the following trick can help
you out:

• Allocate a quite large stack size for a task.

• At creation of the task, fill the stack with a regular pattern, such as “123412341234. . . ”.

• At the end of your test run, check how much of the regular pattern has been overwritten. This is a
lower boundin the stack size this particular task should get.

17.2. Signals

Signals and threads do not mix well. A lot of programmers start out by writing their code under the
mistaken assumption that they can set a signal handler for each thread; but signals operate on the
process, i.e., all threads receive all signals. One can block or unblock signals on a thread-by-thread basis,
but this is not the same thing.

160

Chapter 17. Tips and tricks

However, in Linux each thread is a process, and has its own signal handling. Linux executes signal
handlers in theret_from_inter action (seearch/xyz/kernel/entry.S , with xyz the name of a
particular CPU architecture).

If you have to deal with signals, the best you can do is to create a special signal handling thread: its sole
purpose is to handle signals for the entire process. This thread should loop callingsigwait() , and all
threads (including the one that calls sigwait) block the signals you are interested in. This allows your
system to deal with signals synchronously.

Sending signals to other threads within your own process is not a friendly thing to do, unless you are
careful with signal masks.

Usingsigwait() and installing signals handlers for the signals you are sigwaiting for is a bad idea: one
signal will generate two reactions in your application, and these reactions are hard to synchronize.

Let threads sleep on time or condition variables only: this makes their actions on wake-up deterministic.
So avoidpthread_suspend_np() andpthread_wakeup_np() . POSIX didn’t include these calls
because they are too easy to lead to inconsistent system, but UNIX98 has them.

17.3. Condition variables

Don’t mistake the (POSIX,Section 1.5.1) condition variablefor a logical condition: the condition
variable act like a signal, in that it is only thenotificationthat some logical conditionmightbe changed.
When coming out of the blocking, the task should check the logical condition again, because the
signaling through the condition variable doesn’t guarantee anything about the value of the logical
condition. Have a look at the example inSection 4.7.

17.4. Locks

Application programmers are responsible for acquiring and releasing locks; they cannot expect much
help from programming tools or from the operating system to use locks efficiently and effectively. It is
indeedverydifficult to interpret automatically thepurposeof a lock, i.e., locks are really part of the
semanticsof a program, and much less of itssyntax. Moreover, locks work only whenall tasks that
access the resource obey the (non-enforceable) lock: any task can just decide not to check the lock and
access the resource, without the operating system or other tasks being able to prevent it.

The programmer should think about the following when using locks:

• Make sure the sections protected by locks are as short as possible,and remain buried in the operating
system code, or inobjects(encapsulated data types) in the application’s support libraries or
components.

161

Chapter 17. Tips and tricks

• Make sure interrupt routines do not share locks with non-interrupt code. If this condition is not
satisfied, the interrupt routine can block on the lock, or the non-interrupt task that sets a lock can never
be sure that an interrupt routine will not enter its critical section. Here is an example that leads to a
deadlock:

lock lock_A;
...
// in task A:
get_lock(lock_A);
...

// Here, an interrupt routine comes in
// and tries to get the same lock:
get_lock(lock_A);
...

• Use locks onlylocally (i.e., in at most two tasks, and without nesting) andfocused(i.e., use one lock
for one purpose only, and give it a relevant name). Although this is not a strict requirement, violating it
leads to complex code, which is error-prone and difficult to maintain and extend.

• Place lock and protected data in the same data structure. Theyreally belong together, to form a
“protected object”.

• If interrupt routines and kernel or user tasks share critical sections (which they shouldn’t!), the latter
ones shoulddisable interruptswhen entering the critical section. Again, many processors make this
kind of combined operation available (test and set lock, disable interrupts) in an atomic version. But be
aware of its cost!

• Never use a recursive mutex with condition variables because the implicit unlock performed for a
pthread_cond_wait() or pthread_cond_timedwait() might not actually release the mutex. In
that case, no other thread can satisfy the condition of the predicate.

17.5. Interrupts

The correct place to callrequest_irq() is when the device is first opened, before the hardware is
instructed to generate interrupts. The place to callfree_irq() is the last time the device is closed, after
the hardware is told not to interrupt the processor any more. The disadvantage of this technique is that
you need to keep a per-device open count. Using the module count isn’t enough if you control two or
more devices from the same module. . . .

In some operating systems, interrupt code runs on the stack of whatever task was running when the
interrupt happened. This complicates the programmer’s job of choosing an appropriate stack size for
tasks.

162

Chapter 17. Tips and tricks

17.6. Memory

Some peripheral devices useDirect Memory Access(DMA) (Section 5.1) Often, it’s a practical problem
to get enoughcontiguousmemory, e.g., the device expects to be able to dump its data to 2 megabytes of
RAM without “holes” in the address range, while the operating system doesn’t have such a big chunk of
physical RAM.

One way to solve this problem is to set aside a part of the available RAM at boot time,Section 6.2.1.
This means that the operating system will not use that RAM for anything, such that an application can
use it. Of course, if your application has several tasks that want to use this RAM, you have to do the
memory management yourself. As an example, the Linux operating system allows a boot parameter
option as follows:

linux mem=128M

indicating that only 128 of the available megabytes will be used by the operating system. Boot loaders,
such as lilo or grub, have similar configuration options.

Another approach isscatter/gather DMA: the operating system divides the physically non-contiguous
DMA buffer into a list with entries that contain (i) a pointer to a physical page, and (ii) the amount of
contiguous RAM available at that place. Typically, all these physical pages have the default size of your
operating system, except probably the first and the last. To initiate the DMA, you load the first
pointer/size pair from the list into the DMA controller, and program it to issue aninterrupt (Section 3.3)
when the DMA is done. Then, in the interrupt handler, you re-initiate the DMA with the next pair of
values from the list. This is repeated until the list is exhausted.

17.7. Design

Don’t make use of platform-specific function calls or data structures: use standards (e.g.; POSIX), or
encapsulate platform-specific code in libraries with a neutral API. Difficult!

17.8. Programming

Thevolatile keyword is an important feature of the C compiler for real-time and embedded systems.
These systems most often interact with peripheral hardware, viamemory-mapped I/O. That means that
the harware’s registers are read from, or written to, as if they were a couple of bytes in the normal RAM
of the system. Typically, some registers of the hardware are always read, some others always written.
And many peripheral devices use the same register for subsequent reads or writes. Hence, the following
code fragment is typical for such an operation:

char *writereg = 0xFF20000;
char byte1, byte2;

...

163

Chapter 17. Tips and tricks

*writereg = byte1;
*writereg = byte2;
...

Most compilers are doing lots of optimizations behind the screens. And they will “optimize away” the
code above to one single write, because their reasoning is that writing to the same variable twice in a row
amounts to the same thing as only writing the last value; indeed, the first write is overwritten
immediately. But this is not what one wants to access peripheral hardware registers. To prevent the
compiler from optmizing away these multiple write, one should use thevolatile qualifier in front of
thewritereg .

Default initialization: the C standard says that static integers are automatically initialized to zeros. This is
often used by programmers as an excuse not the initialize their variables explicitly. The arguments being
that (i) in standard C, and (ii) explicit initialization requires a couple more bytes in the binary.
Nevertheless, explicit initialization does help other coders to better understand your code. And
remember: this implicit initialization is nothing but asyntacticsupport from the compiler, which may
well lead tosemanticerrors! For example, your code compiles because a condition integers has gotten a
value (zero), but the logic of your application requires that it would have been initialized to one.

For embedded applications, making the binaries of the loaded code as small as possible is important.
Normal compilation results in quite some “overhead” in this respect, such as symbolic data, etc. There
exist various ways to make binary code smaller:strip ; using C or GUI libraries that are especially
designed for embedding, such as ; etc. For example, BusyBox (http://www.busybox.net) is a replacement
for most of the utilities one usually finds in the GNUfileutils , shellutils , etc.;µclibc
(http://www.uclibc.org) is a small version of the general C library; (micro window toolkits. . .).

Modern CPUs can decide to “optimize” your code, by changing the order of some statement. This means
that reads and writes can be done in different orders, unless you take action to prevent it, such as a
memory barrier. (This is ahardwarebarrier, which is different from the software barrier inSection
4.6.5!) Operating systems do these barriers for you, in a number of primitives, such asmutex, condition
variable, or semaphore. The POSIX specification has more to say about this here
(http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap04.html#tag_04_10).

164

Bibliography

URLs
KernelAnalysis-HOWTO (http://www.tldp.org/HOWTO/KernelAnalysis-HOWTO.html)..

POSIX thread API concepts
(http://as400bks.rochester.ibm.com/pubs/html/as400/v5r1/ic2924/index.htm?info/apis/rzah4mst.htm).
.

Product Standard: Multi-Purpose Realtime Operating System
(http://www.opengroup.org/branding/prodstds/x98rt.htm)..

The IEEE Computer Society Real-time Research Repository
(http://cs-www.bu.edu/pub/ieee-rts/Home.html)..

Embedded Linux Howto (http://linux-embedded.org/howto/Embedded-Linux-Howto.html), Sebastien
Huet.

Linux for PowerPC Embedded Systems HOWTO
(http://members.nbci.com/_XMCM/greyhams/linux/PowerPC-Embedded-HOWTO.html), Graham
Stoney.

Using Shared Memory in Real-Time Linux ()., Frederick M. Proctor.

TheDocumentation directory of the Linux kernel.

comp.realtime (news:comp.realtime).

Real-time Linux mailinglist (/www.rtlinux.org).

LinuxThread FAQ (http://linas.org/linux/threads-faq.html).

comp.programming.threads FAQ (http://www.lambdacs.com/cpt/FAQ.html).

Real-time FAQ (http://www.realtime-info.be/encyc/techno/publi/faq/rtfaq.htm).

Real-time Linux FAQ (http://www.rtlinux.org/rtlinux.new/documents/faq.html)..

[Locke2002]Priority Inheritance: The Real Story
(http://www.linuxdevices.com/articles/AT5698775833.html), Doug Locke.

[Yodaiken2002]Against priority inheritance
(http://www.linuxdevices.com/files/misc/yodaiken-july02.pdf), Victor Yodaiken.

Linux, Real-Time Linux, & IPC (http://www.ddj.com/documents/s=897/ddj9911b/9911b.htm), Frederick
M. Proctor.

165

Bibliography

Linux Kernel Hacking HOWTO
(http://netfilter.kernelnotes.org/kernel-hacking-HOWTO/kernel-hacking-HOWTO.html), Paul
Rusty Russell.

Linux Kernel Locking
(http://netfilter.kernelnotes.org/unreliable-guides/kernel-locking/lklockingguide.html), Paul Rusty
Russell.

[Hyde97] Interrupts on the Intel 80x86
(http://www.ladysharrow.ndirect.co.uk/library/Progamming/The%20Art%20of%20Assembly%20Language%20Programming/Chapter%2017.htm)
, Randall Hyde.

The ZEN of BDM (http://www.macraigor.com/zenofbdm.pdf), Craig A. Haller.

MC68376 manuals (http://ebus.mot-sps.com/ProdCat/psp/0,1250,68376~M98645,00.html)., Motorola.

Articles and books
[Arcomano2002] KernelAnalysis-HOWTO

(http://www.tldp.org/HOWTO/KernelAnalysis-HOWTO.html), Roberto Arcomano, 2002, The
Linux Documentation Project.

[Barr99]Programming embedded systems in C and C++, Michael Barr, 1999, O’Reilly.

[BrinchHansen73] “Concurrent Programming Concepts”, Per Brinch Hansen, 223–245, 5, 4, 1973,ACM
Computing Surveys.

[BurnsWellings2001]Real-time systems and Programming Languages, 3, Alan Burns and Andy
Wellings, 2001, Addison-Wesley.

[posa96]Pattern-oriented software architecture: a system of patterns, Frank Buschmann, Regine
Meunier, and Hans Rohnert, 1996, Wiley Chicester.

[Dijkstra65] “Cooperating sequential processes”, Edsger Wybe Dijkstra, 43–112, 1968,Programming
Languages, Edited by F. Genuys, Academic Press.

[gof94] Design Patterns Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, 1994, Addison Wesley.

[Galli2001]Distributed Operating Systems, Doreen L. Galli, 2000, Springer.

[Gray78] “Notes on database operating systems”, J. Gray, 394–481, 1978,Operating systems: an
advanced course, Edited by R. Bayer, Edited by R. Graham, Edited by and G. Seegmuller,
Springer.

[Herlihy91] “Wait free Synchronization”, M. Herlihy, 124–149, 13, 1, 1991,ACM Transactions on
Programming Languages and Systems.

[Herlihy93] “A Methodology for Implementing Highly Concurrent Data Objects”, M. Herlihy, 745–77,
15, 5, 1993,ACM Transactions on Programming Languages and Systems.

166

Bibliography

[Hoare74] “Monitors, an operating system structuring concept”, C.A.R. Hoare, 549–557, 1974, 17, 10,
Communications of the ACM.

[Johnson97] “Frameworks = (components + patterns)”, R. E. Johnson, 39–42, 40, 10, 1997,
Communications of the ACM.

[LampsonRedell80] “Experiences with processes and monitors in Mesa”, Butler W. Lampson and Redell
W. David, 105–117, 1980, 23, 2,Communications of the ACM.

[Mealy55] “A method for synthesizing sequential circuits”, G.-H. Mealy, 1045–1079, 1955, 34, 5,Bell
System Technical Journal.

[Lewine91]POSIX Programmer’s Guide: Writing Portable UNIX Programs, Donald Lewine, 1991,
O’Reilly.

[Nutt2000]Operating systems : a modern perspective, Gary J. Nutt, 2000, Addison-Wesley.

[Rubini2001]Linux Device Drivers (http://www.oreilly.com/catalog/linuxdrive2/), 2, Alessandro Rubini
and Jonathan Corbet, 2001, O’Reilly.

[Sakamura98]µITRON 3.0: An Open and Portable Real-Time Operating System for Embedded Systems,
Ken Sakamura, 1998, IEEE Computer Society.

[Simon99]An Embedded Software Primer, David E. Simon, 1999, Addison-Wesley.

[Stevens99]UNIX Network Programming. Interprocess Communications, W. Richard Stevens, 1999,
Prentice-Hall.

[Walmsley2000]Multi-threaded programming in C++, Mark Walmsley, 2000, Springer.

167

